河西走廊太阳能和CO_2空气源热泵联合采暖系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前河西走廊地区采暖方式以燃煤、燃气锅炉为主,这种采暖方式不仅能耗高而且污染严重,从而节能、环保的采暖方式成为该地区一个亟需解决的问题。本文从河西走廊地区的气候特征和能源结构特点综合考虑,基于改进型生命周期评价方法,建立了河西走廊地区采暖形式全生命周期评价指标体系,并利用优化算法,验证了太阳能和CO2空气源热泵联合采暖系统是可应用于该地区的最优采暖形式。采用实验和仿真计算相结合的方法对太阳能和CO2空气源热泵联合采暖系统进行了详细、系统的研究,其研究成果可以为太阳能和C02空气源热泵联合采暖系统在河西走廊及气候条件相似地区的应用提供理论依据和技术参考。
     本文分别开展了太阳能集热采暖系统、C02空气源热泵采暖系统的实验研究。实验结果表明:大流量造成集热器出口温度较低,温差变大,但不同流量的进出口平均温度基本一致。通过动态测试方法,可计算得出所用集热器太阳能保证率,并线性拟合得到集热器瞬时效率公式:77=0.627-0.35T*。CO2空气源热泵实验结果表明:气体冷却器水侧的进水温度、进水流量和蒸发器空气侧的室外温度、风速是影响该系统COP的主要因素,并进一步得到室外温度在-25℃--15℃时,CO2空气源热泵COP在2-3之间。
     基于微元法建立了太阳能和CO2空气源热泵联合采暖系统的数学模型,并应用TRNSYS软件建立了仿真计算模型,实现了系统各模型耦合求解。同时,对模拟数据和实验数据进行对比,验证了仿真模型的可靠性。
     分析了CO2空气源热泵中气体冷却器、蒸发器和回热器在低温条件下对机组性能的影响。气体冷却器对机组性能的影响为:随气体冷却器进水温度的升高,机组制热量不断下降。另外,气体冷却器进水流量的增大能够提高机组的性能系数,但同时也会减小出水温度,所以应该根据实际需求确定进水流量。由蒸发器空气侧室外温度和空气流量对机组性能的影响可知,机组COP随着室外温度的下降而下降,而空气流量的增加提高了机组COP,但空气流量的不断增大,对COP的影响却越来越小。因此,在实际应用中当室外温度较低时,为了使机组COP保持在较高水平,可通过调节空气流量等方法来实现。研究还表明:带回热器的机组平均COP比无回热器提高了5%。
     本文基于典型晴天、多云天和阴天三种工况对太阳能和C02空气源热泵联合采暖系统影响因素进行了分析。其结果表明:三种工况下均呈现出机组COP随集热器面积的增大逐渐增大的趋势,并且同一集热器面积下,机组COP随日间太阳辐射的增强逐渐增大。如,当集热器面积为600m2时,和集热器面积为Om2相比,CO2空气源热泵节能率提高了24.9%;另外,典型晴天和多云天工况相比,节能率提高了19.2%。在能耗分析中,根据能耗分析方法定义了太阳能相应产电效率ηsegp及集热器综合效率,通过综合效率对集热面积进行了优化,得出该地区最佳采暖季太阳能保证率27.7%。在此基础上给出了联合采暖系统应用于实际工程时,集热面积与C02空气源热泵机组制热量之间的关系式
     通过确定系统的控制目标,提出相应监测参数、探讨太阳能和CO2空气源热泵联合采暖系统的7种运行模式及各种运行模式的转换条件,从而建立了一套适用于太阳能和C02空气源热泵联合采暖系统的逻辑控制策略,并通过案例分析验证了控制策略的可靠性。
Currently, the heating system gives first place to the cola-fired and gas-fired boiler system in Hexi Corridor, which is of high energy consumption and serious pollution; therefore, an energy-saving, environmentally-friendly heating system is a priority of great concern and to be addressed. Based on the improved life cycle assessment method, this paper has, taking into overall consideration the climatic characteristics and energy structure features of Hexi Corridor, established a life cycle assessment index system of heating system for Hexi Corridor, based on which optimized algorithm is used to obtain the optimum heating system suitable for Hexi Corridor—solar energy and CO2air-source heat pump combined heating system. Experiment and simulated computation models are integrated to make detailed, in-depth study on the system. The study results may provide theoretical basis and technical reference for the design of solar and CO2air-source heat pump combined heating system in Hexi Corridor.
     In this paper, an experimental research is performed on the solar collector heating system and the CO2air-source heat pump heating system respectively. The results indicate that the law is that the heat collector outlet is low in temperature and has a large temperature difference caused by a large flow rate, but the mean temperature of inlet and outlet is the same under the different flow rates. Using the dynamic measurement method, the solar fraction of the used heat collector can be calculat, and the linear fit formula for instantaneous efficiency of the used heat collector is η=0.627-0.357*. The experimental results of CO2air-source heat pump indicate that water inlet temperature and flow at water side of the gas cooler as well as outdoor temperature and air flow at air side of the evaporator are primary factors to affect the system COP, and the unit COP is ranging from2to3when the CO2air-source heat pump is in a low-temperature condition of-25℃~15℃.
     In this paper, the mathematical model and simulated calculation model are established for the solar energy and CO2air-source heat pump combined heating system based on the infinitesimal method, and TRNSYS is applied to make coupling solutions of all models of the system. Furthermore, the simulation and experimental data is compared to verify the reliability of the simulated model.
     The impact of the unit performance on the gas cooler, evaporator and heat regenerator of the CO2air-source heat pump under low temperature is analyzed The impact of the unit performance on the gas cooler of the results indicate that, while under a low temperature, the heating capacity would be continuous reduced with the increase of inlet water temperature of the gas cooler. In addition, increased water inflow of the gas cooler can improve the coefficient of performance (COP) of the unit, but also can reduce the water outflow temperature, thus, water inflow shall be chosen properly according to actual demands. Judging from the impacts of the outdoor temperature and air flow at air side of the evaporator on the unit performance, the unit COP decreases with the drop of outdoor temperature; the increased air flow may improve the unit COP, yet the increasing air flow has less and less impacts on the COP. Therefore, in actual application when outdoor temperature is in a low-temperature condition, in order to make the unit COP is maintained at a higher level, may be by adjusting the air flow and other methods to achieve. The study results on heat regenerator show that the average COP of units with heat regenerators are5%higher than those without heat regenerators;
     This paper also makes simulation study on operating characteristics of the solar and CO2air-source heat pump combined heating system based on typical clear day, cloudy day and cloudy three conditions, and the impact of collector area on the performance of CO2air-source heat pump is analyzed. The results indicate that in three working conditions, the COP of the unit would gradually increase with the increase of collector area. Meanwhile, the COP would gradually increase with the increase of solar radiation. For instance, when the collector area is600m2, of which, the energy saving rate of the CO2air source heat pump is24.9%higher than that when the collector area Om2; the energy saving rate in a typical cloudy day is19.2%lower than that in the sunny day. Through the analysis of energy consumption, the solar equivalent generation power efficiency ηsegp and the comprehensive efficiency of collector is defineded. The collector area is optimized through the comprehensive efficiency, thus obtaining the optimal the solar fraction of this area in the heating season is27.7%. Based on the optimal the solar fraction, the relation expression between the collector area and the heating capacity of CO2air-source heat pump unit, when the combined heating system is used in actual engineering, is
     The control strategy of the solar energy and CO2air-source heat pump combined heating system is established. Propose the monitoring parameters through determining the control objective of the system, comprehensively introduce the seven operation modes of the solar energy and CO2air-source heat pump combined heating system under the optimal operation conditions, introduce the converting conditions of each operation mode based on the control principle by making examples, and finally determine the control strategy as well as verify its reliability through case analysis.
引文
[1]郜蕊.西北地区能源利用率现状分析[J].企业研究.2010(10):116-118.
    [2]梁萧翠,刘俊姌.河西走廊冬季采暖能源使用现状及节能对策[J].环境保护与循环经济.2010(5):47-52.
    [3]梅晓文,何立群.甘肃新能源开发利用现状及未来发展趋势研究分析[J].中国市场.2010(22):16-18.
    [4]郑瑞澄.太阳能供热、采暖工程应用及经济性分析[J].建设科技.2008(1):136-139.
    [5]马景涛,张明明,钳锋.大型太阳能供热系统—发展与前景[J].区域供热.2008(4):38-40.
    [6]Schmidt T, Mangold D, Muller-Steinhagen H. Central solar heating plants with storage in Germany [J]. Solar Energy,2009,87(2):390-397.
    [7]何建清.住宅小区太阳能热水技术的工程应用—借鉴欧洲大型太阳能热力站的经验[A].全国住宅工程太阳能热水应用研讨会论文集[C].2004:113-115.
    [8]何梓年,朱敦智.太阳能供热采暖应用技术手册[M].北京:化学工业出版社,2009.
    [9]杨维菊.美国太阳能热利用考察及思考[J].世界建筑.2008(8):83-85.
    [10]何梓年.太阳能热利用[M].合肥:中国科学技术大学出版社,2009.
    [11]北京市新能源与可再生能源协会.北京地区太阳能采暖工程现状及分析[J].农业工程技术.2008(4):2-7.
    [12]郑瑞澄.中国太阳能供热采暖技术的现状与发展[J].建设科技.2009(6):70-72.
    [13]中国建筑科学研究院.GB 50495-2009太阳能供热采暖工程技术规范[S].北京:中国建筑工业出版社,2009.
    [14]胡润青.太阳能技术与激励政策[J].建设科技,2008(18):62-64.
    [15]郑瑞澄.民用建筑太阳能热水系统工程技术手册(第二版)[M].北京:化学工业出版社,2011.
    [16]J. A. Duffie, W. A. Beckman. Solar engineering of thermal processes[M]. Wiley Interscience, New York,1980.
    [17]宋志平.太阳能热水器系统的计算机分析[J].太阳能学报.1983(2):170-173.
    [18]彭飞,张国勋.一个太阳能-热能系统的计算机分析模型[J].太阳能学报.1988(4):383-389.
    [19]G.Oliveti,N.Arcuri,S.Ruffolo.First experimental results from a prototype plant for the interseasonal storage of solar energy for the winter heating of buildings [J]. Solar Energy,1996 (6):118-1124.
    [20]K.K.Matrawy, I.Farkas. New technique for short term storage sizing[J]. Renewable Energy,1998 (62):281-290.
    [21]MO.Chung,JUN-UN Park,HYUNG-KEE Yoon.Simulation of a central solar heating system with seasonal storage in Korae[J].Solar Energy,1998(64):163-178.
    [22]D.Pahud.Central solar heating plants with seasonal duck storage and short-team water storage:Design guidelines obtained by dynamic system simulations[J].Solar Energy, 2000(69):495-509.
    [23]A. Ucar, M. Inalli. A finite element model of solar heating system with underground storage[J]. International Journal of Thermal Sciences,2008,47(4):1639-1648.
    [24]赵军,曲航,崔俊奎等.跨季节蓄热太阳能集中供暖系统的仿真分析[J].太阳能学报.2008(2):214-218.
    [25]王丽.跨季节太阳能水箱蓄热供暖系统的计算与研究[D].华北电力大学硕士论文,2012.
    [26]西藏自治区居住建筑采暖地方标准[S].J11036,中国标准出版社,2007:16-17.
    [27]潘云刚,金键.太阳能在拉萨火车站供暖系统中的应用[J].暖通空调,2007,37(6):53-58.
    [28]E.Torres-Reyes,J.J.Navarrete-Gonzalez,J.G.Cervantes-de Gortari.Thermal design and field experiment of transparent honeycomb insulated integrated-collector-storage solar water heater.Applied Thermal Engineering.1999 (19):145-161.
    [29]Mousa.S.Mohsen,Bilal.A.Akash.ON INTEGRATED SOLAR WATER HEATING SYSTEM. Int. Comm. Heat Mass Transfer.2008,29 (1):135-140.
    [30]魏生贤,李明等.非正南方向太阳集热器面积补偿的理论研究[J].太阳能学报.2007,2,28(2):119-124.
    [31]李穆然.实用经济有效的太阳能热水解决方案[J].建筑技术.2006(5):51-53.
    [32]于国清,王小兵等.小型太阳能复合供热系统的应用与设计[J].暖通空调.2007,37(3):87-90.
    [33]M.N.Fisch,M.Guigas,J.O.Dalenback.A review of large-scale solar heating systems in Europe.Solar Energy.1998,63(6):355-366.
    [34]Alfred Heller.15 years of R&D in central solar heating in Denmark.Solar Energy.2010, 69 (6):437-447.
    [35]G.J.Parker.A forced circulation system for solar water heating.Solar Energy.2006,18 (5):475-479.
    [36]M.S.Sodha,S.N.Shukla,G.N.Tiwari.Transient analysis of forced circulation solar water heating system.Energy Conversion and Management.1982,22(1):55-62.
    [37]M.S.Sodha,S.N.Shukla,V.Ranjan,G.N.Tiwari.Transient analysis of closed loop solar water heating system.Energy Conversion and Management.1982,22(2):155-161.
    [38]G.N.Tiwari,V.S.V.Bapeshwara.Rao,V.Ranjan.Long term performance of large scale solar water heating systems:Forced circulation mode. Energy Conversion and Management.1984,24(1):33-42.
    [39]G.N.Tiwari,H.P.Garg,M.S.Husain.Transient analysis of parallel plate forced circulation solar water heating system.Energy Conversion and Management.1984,24(3):171-175.
    [40]S.N.Shukla,G.N.Tiwari.Transient analysis of forced circulation solar water heating system with collectors in series.Energy Conversion and Management.1983(23):77-82.
    [41]M.F.M.Fahmy,M.Abd-EI Sadek.Transient analysis of closed loop solar water heating system(effect of heat exchangers).Energy Conversion and Management.1990,30(4):343-355.
    [42]高金水.太阳能供暖系统分析[D].天津大学硕士论文,2005.
    [43]高庆龙.被动式太阳能建筑热工设计参数优化研究[D].西安建筑科技大学硕士论文.2007.
    [44]熊安华.太阳能低温热水采暖系统在拉萨地区的应用研究.[D].上海交通大学,2008.
    [45]王磊.西藏地区被动太阳能建筑采暖研究[D].西南交通大学博士论文,2008.
    [46]余学江.严寒地区日光温室主动太阳能供暖系统研究[D].大庆:东北石油大学,2011.
    [47]吕静,周传,王伟峰.跨临界CO2热泵热水器的应用研究[J].节能.2009(1):10-13.
    [48]Heyl P,Kraus W.E. The CO2 heat pump project at the Dresden.CO2 technology in refrigeration,heat pumps and air conditioning systems. Norway:Trondheim,2007.
    [49]刘圣春,马一太,管海清.CO2空气源热泵热水器的研究现状及展望[J].制冷与空调.2008(2):4-12.
    [50]Takeuchi H., Kume Y, Oshitani H. Ejector cycle system. US Patent NO.6,438,993 B2,2002.
    [51]刘圣春,马一太,刘秋菊.CO2热泵热水器实验研究[J].天津大学学报.2008(2):238-242.
    [52]杨俊兰,马一太,李敏霞.C02跨临界热泵系统的优化与实验研究[J].流体机械.2009(1):53-58.
    [53]田华,马一太,王伟等.C02跨临界双级压缩带中间冷却器系统[J].天津大学学报.2010(8):685-689.
    [54]马一太,袁秋霞,李敏霞等.跨临界CO2带膨胀机和带喷射器的性能分析[J].低温与超导.2011(6):36-41.
    [55]李敏霞,马利蓉,马一太等.CO2.流滚动活塞膨胀机膨胀过程模拟计算[J].工程热物理学报.2009(5):745-748.
    [56]刘秋菊.C02热泵热水器的理论与实践研究[D].天津:天津大学,2007.
    [57]黄冬平,丁国良,张春路.不同跨临界二氧化碳制冷循环的性能比较.上海交通大学学报.2003(7):94-97.
    [58]丁国良,张春路.制冷空调装置仿真与优化[M].北京:北京科学出版社,2001.
    [59]李涛,孙民等.利用喷射提高跨临界二氧化碳系统的性能[J].西安交通大学学报.2006(5):553-557
    [60]刘军朴,陈江平,陈芝久.跨临界二氧化碳蒸汽压缩/喷射制冷循环[J].上海交通大学学报.2004(2):273-275.
    [61]刘爽.用于CO2热泵热水器的喷射器特性研究[D].杭州:浙江大学,2008.
    [62]Chen G.M.,Xu X.X. An experimental and theoretical study of a CO2 ejector. International journal of refrigeration.2010,33:915-921.
    [63]徐肖肖,陈光明,唐黎明等.带喷射器的跨临界CO2热泵热水器系统的试验研究[J].西安交通大学学报.2009(11):51-55.
    [64]徐肖肖,唐黎明等.跨临界CO2压缩喷射系统稳定性的试验研究[J].浙江大学学报.2010(9):1838-1844.
    [65]梁丽霞.用于CO2热泵热水器的可调喷射器特性研究[D].杭州:浙江大学,2010.
    [66]Aprea C., Maiorino A. An experimental evaluation of the transcritical CO2 refrigerator performances using an internal heat exchanger,2008(31):1006-1011.
    [67]Robinson D.M., Groll E.A. Efficiencies of transcritical CO2 cycles with and without an expansion turbine, International Journal of Refrigeration,2008(7):577-589.
    [68]Elbel S.W., Hrnjak P.S. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation,2008:411-422.
    [69]Petterson J, Lorentzen G. A new efficient and environment benign system for automobile air conditioning. SAE Trans,1993:35-145.
    [70]Elbel S.W, Hrnjak P.S. Experimental investigation on air-source transcritical CO2 heat pump water heater system at fixed water inlet temperature[J]. Interational Journal of Refrigeration.2011(5):678-682,.
    [71]Elbel S.W, Hrnjak P.S. Ejector refrigeration:an overview of historical and present developments with an emphasis on air conditioning applications. Proceedings of the 12th International Refrigeration and Air Conditioning Conference,West Lafayette, Indiana,USA:ARI,2008.
    [72]Kornhauser A.A. The use of an ejector as a refrigerant expander. Proceeding of the USNC/IIR-Purdue 1990 Refrigeration Conference. Indiana, USA:Purdue University, 1990.
    [73]Liu J.P, Chen J.P. Chen Z.J. Thermodynamic analysis an trans-critical R744 vapor-compression/ejection hybrid refrigeration cycle. In:Proceedings of the fifth IIR Gustav Lorentzen conference on natural working fluids, Guangzhou, China, 2002:184-188.
    [74]Elbel S.W, Hrnjak P.S. Effect of the internal heat exchanger on performance of transcritical CO2 systems with ejector. Interational Refrigeration and Air Conditioning Conference at Purdue. US,2004.
    [75]Deng J.Q, Jiang P.X, Lu T, Lu W. Particular characteristics of transcritical CO2 refrigeration cycle with an ejector, Applied Thermal Engineering.2007,(2-3):381-388.
    [76]Li D.Q, Groll E.A. Transcitical CO2 refrigeration cycle with ejector-expansion device. International Journal of refrigeration.2008(5):766-773.
    [77]马一太,管海清,杨俊等.CO2双蒸发器压缩/喷射式跨临界制冷循环[J].太阳能学报.2006(1):73-77.
    [78]陈光明,陈邦国.制冷与低温物理[M].北京:机械工业出版社,2006.
    [79]Bullock C.E. Theoretical performance of carbon dioxide in subcritical and transcritical cycles, ASHRAE/NIST confer-ence refrigerants for the 21st century, Gaithersburg, Maryland, USA,1997:20-26.
    [80]E.Torrella, R. Llopis, R. Cabello. Energetic evaluation of an internal heat exchanger in a CO2 transcritical refrigeration plant using experimental data[J]. International Journal of Refrigeration.2011(34):40-49.
    [81]Kim S.G, Kim Y.J, et al. The performance of a transcritical CO2 cycle with an internal heat exchanger for hot water heating. International Journal of Refrigeration. 2005(28):1064-1072.
    [82]F.Z.Zhang, P.X.Jiang, Y.W.Zhang, et,al. Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger[J]. Applied Thermal Engineering.2011(31):432-438.
    [83]姜云涛,马一太,张子坤等.回热器对跨临界C02水源热泵的影响判别及实验研究[J].热科学与技术,2009(4):307-311.
    [84]郭小芹,李岩英,曹玲.气候变化对疏勒河流域径流量影响研究[J].安徽农业科学2009,37(25):17595-17598.
    [85]杨晓玲,丁文魁,杨金虎等.河西走廊近50年气候变化特征及区内5站对比分析[J].干旱地区农业研究,2011,29(5):259-267.
    [86]王秋红,杨波.甘肃省能源消耗情况与结构[J].甘肃科技,2011(8):58-62.
    [87]于随然,陶璟.产品生命周期设计与评价[M].北京:科学出版社,2011.
    [88]黎恢山,楼静,张学文等空气源热泵热水系统补水方式对机组制热系数的影响[J].给水排水,2008(5):197-200.
    [89]王平利.空调冷热源方案选择方法的研究[D].成都:西南交通大学,2002.
    [90]迟春洁,黎永亮.能源安全影响因素及测度指标体系的研究[J].哈尔滨工业大学学报(社会科学版),2004,6(4):80-84.
    [91]孟军.居住建筑供热采暖方式的比较研究(以西安为例)[D].西安:西安建筑科技大学,2009.
    [92]冷如波.产品生命周期3E+S评价与决策分析方法研究[D].上海:上海交通大学,2007.
    [93]郭师虹,呼志远,刘培峰.基于德尔菲法的质量挣值法[J].水利与建筑工程学报,2011,9(2):44-47.
    [94]林甦,任泽平.模糊德尔菲法及其应用[J].中国科技论坛,2009(5):102-104.
    [95]郭金玉,张忠彬.层次分析法的研究与应用[J].中国安全科学学报,2008,18(5):148-152.
    [96]孙娓娓.BP神经网络的算法改进及应用研究[D].重庆:重庆大学,2009.
    [97]杨春燕,蔡文等.可拓工程[M].北京:科学出版社,2007,161-166.
    [98]韩月丽.极值统计与分位数回归理论及其应用[D].天津:天津大学,2009.
    [99]周艳美,李伟华.改进模糊层次分析法及其对任务方案的评价[J].计算机工程与应用,2008,44(5):212-215.
    [100]刘李霞,毕华兴等.基于改进层次分析法的GIS公共服务设施选址[J].地理与地理信息科学,2011,27(5):46-49.
    [101]李炎峰,高辉等.国内几种供暖方式的技术经济比较与分析[J].建筑热能通风空调,2004,23(4):84-89.
    [102]李琰琰,马媛媛等.几种供热、制冷方式的技术经济分析[J].区域供热,2011(4):1-3.
    [103]李鸿,张潇.低碳背景下北方寒冷地区供热方式的技术经济分析[J].暖通空调,2010,12(9):22-23.
    [104]张治江,陶进等.几种能源供暖方式的技术经济比较[J].暖通空调,2004,34(1):8-10.
    [105]李丽.集中供热系统的研究与优化[D].保定:华北电力大学,2008.
    [106]俞熬元,郭占庚,赵刚.我国采暖散热器的发展和市场前景[J].中国建筑金属结构,2007,124(7):28-33.
    [107]杨金田,王金男.中国排污收费制度改革与设计[M].北京:中国环境科学出版社,1998.
    [108]吕崇德.热工参数测量与处理[M].清华大学出版社.2001:69-87.
    [109]王池.流量测量不确定度分析[M].中国计量出版社.2002:73-77.
    [110]陈娜.严寒地区太阳能-土壤源热泵供暖系统关键设备的优化[D].哈尔滨:哈尔滨工业大学,2010.
    [111]刘玉涵.跨临界二氧化碳热泵热水系统动态特性研究[D].长沙:中南大学,2009.
    [112]严启森.空气调节用制冷技术[M].中国建筑工业出版社,2004.
    [113]Pitla S S, Robinson D M, Groll E A and Ramadhyani S. New correlation for the heat transfer coefficient during in-tube cooling of turbulent supercritical carbon dioxide.4th Gustav Lorentzen Conference at Purdue University, USA,2000:259-267.
    [114]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [115]Gnileinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Internation Chemical Engineering.1976(16):359-368.
    [116]Huang Y. Comprehensive investigation of carbon dioxide refrigeration system.Ph. D. Dissertation. University of Maryland, College Park, MD, USA.1997.
    [117]Wang C C, Lee C J. Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers.[J].Heat and Mass Transfer.1999(42):1945-1956.
    [118]朱国梅.单管中超临界二氧化碳换热特性研究[D].长沙:湖南科技大学,2008.
    [119]Delsante A E. Steady-state heat lossed from the core and perimeter regions of a slab-on-ground floor[J]. Building and Environment,2009,24(3):253-257.
    [120]王荣光,宗杰.低温地板辐射采暖的调节[J].煤气与热力,2003,30(11):689-700.
    [121]赵磊磊.低温地板辐射采暖系统的传热性能研究[D].北京:北京化工大学,2010.
    [122]Span R and Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point to 1100K at pressures up to 800MPa. J. Phys. Chem. Data.1996(25):1509-1594.
    [123]吉尔C W著,费景高等译.常微分方程初值问题的数值解法[M].北京:科学出版社,1978.
    [124]Brenan K, Campbell S and Petzold L. Numerical solution of initial-Value problems in differential-algebraic equations.Philadelphia:SIAM,1996.
    [125]文世鹏.应用数值分析[M].北京:科学出版社,2001.
    [126]林兴斌,潘毅群,黄治钟.基于TRNSYS的HVAC控制系统的仿真[J].建筑节能,2010(2):44-49.
    [127]胡玮,陈立定.基于TRNSYS的水冷型中央空调系统建模与仿真[J].系统仿真技术,2011(3):218-222.
    [128]田晓飞,杨海洋,周慧.光伏发电中光电转换效率问题的探讨[J].科技创新导报,2008(11):115-119.
    [129]Atia, Doaa M, Ahemed, et al. Optimal sizing of a solar water heating system based on a genetic algorithm for an aquaculture system[J]. Mathematical and Computer Modelling, 2011(1):258-273.
    [130]潘云钢.拉萨火车站太阳能热水供暖系统实测与分析[J].暖通空调,2009(7):121-127.
    [131]侯卫华,沈亮峰.那曲物流中心太阳能集中供暖系统设计[J].暖通空调,2010(7):12-14.
    [132]李常河,李永安.地板辐射供冷系统地面温度的确定[J].低温建筑技术,2005(2):94-97.