fMRI用于伤害性刺激加工网络的可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过比较四种不同麻醉药物腹腔注射,对比观察麻醉效果及血流动力学、血气变化,探讨适合本研究的最佳腹腔注射麻醉药物;调试并建立大鼠全脑的fMRI扫描序列参数、鼠脑空间标准化的方法;运用fMRI脑功能成像技术观察在重复的伤害性电刺激下,中枢伤害性刺激加工网络的激活变化特点,为连续、动态的监测伤害性刺激加工网络提供方法学上的支持并奠定前期的试验基础,同时也为全麻药物、镇痛药物中枢效应的可视化监测提供前期方法学上的探索。
     第一部分不同全麻药物腹腔注射麻醉效果及血流动力学、血气变化
     目的比较四种麻醉药物腹腔注射麻醉效果及血流动力学、血气变化,确定适用本研究的最佳麻醉药物。
     方法随机表法将SD大鼠分为4组,每组12只。A组大鼠以丙泊酚腹腔注射麻醉,剂量80mg/kg;B组以氯胺酮腹腔注射麻醉,剂量75mg/kg;C组以2%戊巴比妥钠腹腔注射麻醉,剂量40mg/kg;D组大鼠以10%水合氯醛腹腔注射麻醉,剂量300mg/kg。行鼠尾连续伤害性电刺激,刺激参数:脉冲宽度300μs,恒定电流3.8mA(产生伤害性刺激电流),刺激频率3Hz。观察在麻醉后10min、刺激后15min、30min、清醒后5min记录体温(T)、呼吸(R)、平均动脉压(MAP)、心率(HR),经股动脉抽血0.3ml检测pH、PaO_2、PaCO_2,观察麻醉后、电刺激期间的呼吸、心率、MAP及血气的改变。
     结果
     1.四组大鼠麻醉前后体温均维持在37℃—38℃之间。A组呼吸频率在刺激后15min明显低于清醒后呼吸频率(P<0.05);C组、D组呼吸频率在麻醉后10min,均低于其他各时间点的呼吸频率(P<0.05);B组大鼠各时间点的呼吸频率稳定,差异无统计学意义(P<0.05)。A、C、D组大鼠麻醉后10min HR明显低于清醒后心率(P<0.05);B组麻醉后及刺激期间心率明显高于清醒后心率(P<0.05)。A、C、D组麻醉后10min的MAP明显低于刺激后15min、刺激后30min、清醒后30min的MAP(P<0.05);B组麻醉后及刺激期间MAP明显高于清醒后MAP(P<0.05)。
     2.各组pH值在各时间点均无明显变化,差异无统计学意义(P<0.05)。A、C、D组的PaO_2在麻醉后10min较清醒后明显降低,差异有统计学意义(P<0.05)。各组PaCO_2在各时间点比较,差异无显著性意义(P>0.05)。C组麻醉后10min于其他各组同时间点比较PaO_2明显降低,PaCO_2明显增高(P<0.05)。
     3.D组的起效时间为(3.56±1.01)min,明显较A、B、C组起效时间短,差异有统计学意义(P<0.01);C组的起效时间明显较A组和B组起效时间短,差异有统计学意义(P<0.05)。D组的苏醒时间为(76.54±15.48)min,明显长于A、B、C组,差异有统计学意义(P<0.01);C组的苏醒时间明显长于A组和B组(P<0.05)。
     结论四种麻醉药物腹腔注射,均安全有效,大鼠的HR、MAP、血气分析均在正常范围。10%水合氯醛300mg/kg腹腔注射麻醉效果确切,麻醉维持时间最长,麻醉期间呼吸、循环、血气分析结果稳定,是大鼠磁共振扫描的很好的麻醉方法。
     第二部分fMRI用于伤害性刺激加工网络的可视化研究
     目的本研究拟采用连续的fMRI成像方法,探讨在全麻状态不同麻醉间期伤害性电刺激时中枢加工网络的激活规律。
     方法根据经皮电刺激的部位将SD大鼠随机分为两组(n=24),T组刺激鼠尾,LF组刺激左前爪。10%水合氯醛腹腔注射麻醉后行fMRI脑功能成像。采用组块设计的fMRI试验方法,每次fMRI成像共扫描110个全脑图象,组成5个Block,每次扫描时间3分55秒。电刺激方由有静息和刺激交替进行(off-on-off-on-off),即:静息30个scan,刺激10个scan,静息30个scan,刺激10个scan,静息30个scan。每次扫描结束后,间歇5min,行下一次扫描,刺激方式相同,重复扫描4个循环。采用SPM统计软件行功能像分析处理,比较不同麻醉间期伤害性刺激中枢处理网络的激活情况。
     结果
     1各组试验前后HR、MAP、血气的变化
     2组试验大鼠均顺利完成试验,实验过程麻醉平稳,连续4个循环的伤害性刺激头动均在可以控制的范围之内。2组试验前HR、MAP、pH、PaO2、PaCO2均处于同一水平,试验结束时2组的HR、MAP均明显高于试验前,差异有统计学意义(P<0.05)。2组试验前后的pH、PaO2、PaCO2均在正常范围,差异无统计学意义(P>0.05)。表明2组MRI扫描期间生理指标处于稳定状态,大鼠脑血流的灌注均在同一水平,试验数据具有可比性。
     2不同麻醉间期鼠尾、左前爪伤害性刺激脑中枢激活情况
     本研究表明,在不同的麻醉间期,对大鼠尾、左前爪行伤害性电刺激,脑中枢的激活均不完全一致。SPM统计参数图在阈值0.005水平,伤害性电刺激在中枢激活的主要脑区包括:初级感觉皮质(primarysomatosensory cortex,SⅠ)、次级感觉皮质(sencondly somatosensorycortex,SⅡ)、运动皮质(Motor cortex,MC)、中脑(midbrain)、纹状体(caudate putamen(striatum),Cpu)、视觉皮质(visualcortex,VC)、前扣带回(anterior cingutate,Cg)、后扣带回皮质(retrosplenial granular cortex,RSG)、丘脑(thamulus,Th)、海马(Hippocamps,HIP)、杏仁核(amygdaloid nucleus,AN)、伏膈核(accumbens nucleus,Acb)、桥脑(Pons,Po)、延髓(medullaoblogata,MO)、下丘(inferior colliculus,IC)、小脑(Cerebellum)。
     3 2组不同时间段各脑区激活发生率及激活脑区数目比较
     本研究表明,2组不同时间段的各脑区激活的发生率不是完全一致的,广义混合线性模型统计学分析可以得到:两组Cg、Cpu、Hip、SⅡ、Th在A时间段的激活率明显高于D时间段,差异有统计学意义(P<0.05);T组AN、Cerebellum在A时间段的激活率明显高于D时间段,差异有统计学意义(P<0.05);LF组VC的激活率在A时间段的激活率明显高于D时间段,差异有统计学意义(P<0.05);LF组Th的激活率在A时间段的激活率明显高于C时间段,差异有统计学意义(P<0.05)。广义混合线性模型统计学分析两组不同时间段激活数目情况:两组D时间段的总的激活数目明显低于A、B、C时间段,差异有统计学意义;两组C时间段总的激活数目明显低于A、B时间段,差异有统计学意义(P<0.05)。LF组的D时间段的激活数目明显低于同组A、B、C时间段,差异有统计学意义(P<0.05);LF组的C时间段的激活数目明显低于同组A、B时间段,差异有统计学意义(P<0.05);LF组的B时间段的激活数目明显低于同组A时间段,差异有统计学意义(P<0.05)。T组的D时间段的激活数目明显低于同组A、B、C时间段,差异有统计学意义(P<0.05)。
     4 2组不同麻醉间期fMRI图像的组分析结果
     SPM组分析结果:T组在不同麻醉间期均存在右侧SⅠ、SⅡ、后扣带回皮质(RSG)、杏仁核(AN)的激活,其中在A时间段还可以见到右侧腹后外侧丘脑核(ventral posterolateral thalamic nucleus,VPL)的激活;LF组在不同麻醉间期均存在伏膈核(AcASH)、右侧SⅠ、右侧腹后外侧丘脑核(ventral posterolateral thalamic nucleus,VPL)及后扣带回皮质(RSG)的激活;2组大鼠在D时间段各激活脑区的体积在四个时间段中比较最小,提示在连续3个时间段的电刺激后,中枢对电刺激引起的躯体感觉传导通路及加工网络的BOLD信号响应减弱。
     5 2组A、D时间段激活差异比较
     本研究运用SPM的减法原则,分析2组A、D时间段激活的差异,在threshhold 0.05水平,T组A时间段fMRI激活区减去D时间段fMRI激活区,有差异的激活区为苍白球(ventral pallidum,VP)、左侧SⅡ、海马CA1区(field CA1 of the hippocampus,CA1);LF组A时间段fMRI激活区减去D时间段fMRI激活区,有差异的激活区为基底外侧杏仁核(BLA)、导水管灰质(PAG)、中央杏仁核(CMe)、顶盖前核(anterior pretectal nucleus,APtn)。而2组D时间段fMRI激活区减去A时间段fMRI激活区,则基本没有差异的激活。
     结论
     不同麻醉间期、不同刺激部位大鼠中枢痛觉处理网络的激活不完全一致。刺激鼠尾以右侧SⅠ、SⅡ、后扣带回皮质(RSG)、杏仁核(AN)的激活为主,刺激左前爪以伏膈核(AcbSH)、右侧SⅠ、右侧腹后外侧丘脑核(ventral posterolateral thalamic nucleus,VPL)及后扣带回皮质(RSG)为主。在伤害性刺激的早期,即有中枢下行抑制系统的激活,这些区域包括:苍白球(ventral pallidum,VP)、左侧SⅡ、海马CA1区(field CA1 of the hippocampus,CA1);基底外侧杏仁核(BLA)、导水管灰质(PAG)、中央杏仁核(CMe)、项盖前核(anterior pretectal nucleus,APtN)。在连续的经皮电刺激后,中枢伤害性刺激加工网络BOLD信号响应会出现减弱的情况,这可能与中枢的痛觉下行调制系统的抗痛效应有关。
     SⅠ、SⅡ、后扣带回皮质(RSG)、杏仁核(AN)及伏膈核(AcbSH)、右侧SⅠ、右侧腹后外侧丘脑核(ventral posterolateral thalamicnucleus,VPL)及后扣带回皮质(RSG)可作为fMRI可视化监测麻醉状态下伤害性加工网络的主要脑区;做为一种为整体、动态的监测全麻状态下中枢伤害性刺激加工网络的可视化监测方法,有很好的开发应用前景。
Firstly,our researsh was to establish a stable methods for anaesthesia in rats during fMRI to compare the effects of diffirent anaesthetics;Secondly,rats fMRI scanning sequence and the methods of whole brain normalization were to be constructed;Finally,our research was to characterize the cerebral network of nociception stimulas proccessing with fMRI during diffirent anaesthetic intervals and to provide a new methods to monitor somatosensory pathway and establish prior research groundwork.
     Chapter 1 The comparison of the ananesthesia effects and the changes of hemodynamics and blood gas level in treatment with diffirent anesthetic agents in rats
     Objective
     To compare the ananesthesia effects and the changes of hemodynamics and blood gas level in treatment with diffirent anesthetic agents in rats for MRI scanning in this study.
     Methods
     48 SD rats were randomized into 4 groups(n=12),the rats of group A,B,C and D were intraperitoneally injected propofol(80mg/kg), ketamine(75mg/kg),2%sodium pentobarbital(40mg/kg) and 10%Chloral Hydrate(300mg/kg) respectively.A TENS supplied 3.8 mA,300μs,3Hz to the rat tail in the enviorment to simulate MRI scanning house.The body temprature,R,HR,MAP,pH,PaO2 and PaCO2 were monitored 10 min before anaesthesia,15 min after stimulation,30 min after stimulation and 5 rain after recovery.
     Results
     1.All rats rectal temprature were maintaned at 37℃-38℃.The ration of respiration of 15 min after stimulation of group A was significantly deceased when compared with those of other timepoints in same group (P<0.05).The ration of respiration of 10 min after anaesthesia of group C and D were deceased significantly when compared with those of other timepoints in same group(P<0.05).The HR of group A,C and D were inhibited significantly 10 min after anaesthesia when compared with those of 5 min after recovery(P<0.05).The HR of group B were increased significantly when compared those of 5 min after recovery (P<0.05).MAP of 10 min after anaesthesia in group A,C and D were decareased significantly when compared withe those of 15 min after stimulation,30 min after stimulation and 5 min after recobery (P<0.05),but MAP of 10 min after anaesthesia in group B were higher than those of 5 min after recobery(P<0.05)
     2.The pH of all rats had no significant changes in each timepoint(P<0.05).PaO2 of 10 min after anaesthesia in group A,C and D were decreased significantly when compared those of 10 min after recvery.PaCO2 of 10 min after anaesthesia in group A,B and D had not been influenced at the each timepoint(P>0.05).PaO2 of 10 min after anaesthesia in group C was lower than that of other timepoint whtin same group and PaCO2 of 10 min after anaesthesia in group C was increased at the same time(P<0.05).
     3.The onset time of 10%Chloral Hydrate was shorter than that of propofol,ketamine and 2%sodium pentobarbital(P<0.05).The onset time of 2%sodium pentobarbitalwas shorter than that of propofol,ketamine (P<0.05).The time of recovery of group D was longer than that of group A,B and C(P<0.05).The time of recovery of group C was longer than that of group A and B(P<0.05).
     Conlusions
     Four anesthetic agents are safe and effective in rats during magnetic resonance imaging.HR,MAP and blood gas datas are mantained in a normal level.Single intraperitoneal injection with 10%Chloral Hydrate(300mg/kg) is a nice method in rats during magnetic resonance imaging especialy longtime MRI scanning.
     Chapter 2 Functional MRI of the cerebral processing network of nociception stimulation at different anaesthesia intervals
     Objective
     To investigate the characterizations of cerebral processing network activation of nociception stimulation at different anaesthesia intervals using Functional MRI.
     Methods
     48 rats were randomized into 2 groups:the tail of nociceptive electric stimulus to rats in group T(n=24) and the left forepaw of nociceptive electric stimulus to rats in group LF n=24).All animals were anaesthetised with 10%Chloral Hydrate(300mg/kg) by single intraperitoneal injection.Using block design model,110 whole brain scanning imaging were acquired[Coil selection:SENSE-Torso;FOV: RL(mm) 50,AP(mm) 41,FH(mm) 20;TR:2000ms,TE:28ms, slice thickness:1mm;ACQ voxel matrix MPS(mm):0.63/0.49/2.0; REC voxel matrix MPS(mm):0.21/0.21/1.0;flip angle):90°]."rest" and "stimulation" were alternately carried out(off-on-off-on-off).Every tests included 30 rest whole brain scanning,10 stimulation whole brain scanning,30 rest whole brain scanning,10 stimulation whole brain scanning and 30 rest whole brain scanning.The same test was repeated 3 times 5 min later.Post-processed images were analysed with SPM2 using a multi-subject fixed effects general linear model to characterise brain specific activations and visualise cerebral processing network activation of nociception stimulation at different anaesthesia intervals.
     Results
     1 The changes of HR,MAP and blood gas analysis in 2 groups
     There were no significantly differences in HR、MAP、pH、PaO2、PaCO2 between 2 groups before fMRI sanning after anaesthesia (P>0.05).HR and MAP of both groups were higher than those of 2 groups before the test(P<0.05).There were no differences in pH、PaO2、PaCO2 which were all in normal ranges between those of before the test and after the test(P<0.05).The datas show the physiological index of all rats are stable and brain blood perfusion are in same level.
     2 The changes of brain activations of rats induced by nociceptive stimulation in different anaesthesia interval
     2.1 SPMs for nociceptive stimulation of tail and left fore paw
     The threshold of SPM was 0.005.Constant current electrical stimulation of the tail and forepaw produced rbust and localised BOLD contrast changes.These activation areas includes:primary somatosensory cortex(SⅠ),sencondly somatosensory cortex(SⅡ),Motor cortex(MC), midbrain,caudate putamen(striatum)(Cpu),visual cortex(VC),anterior cingutate(Cg),retrosplenial granular cortex(RSG),thamulus(Th), Hippoc-amps(HIP),amygdaloid nucleus(AN),accumbens nucleus(Acb), Pons(Po),medulla oblogata(MO),inferior colliculus(IC),Cerebellum.
     2.2 The comparision of incidence and numbers of brain activation in different anaesthesia interval
     The incidences of brain areas in 2 groups were not completely homologous.General linear mixed model determined that incidences of Cg、Cpu、Hip、SⅡ、Th of both groups during A stage were higher than those of D stage(P<0.05) and incidences of AN、Cerebellum of T group during A stage were higher than those of D stage(P<0.05) and incidences of Th of LF group during A stage were higher than those of C stage (P<0.05).The sum amounts of activation during C stage were deceased significantly after 2 stage-constant current electrical stimulationin in both group(P<0.05).The sum amounts of activation during D stage were deceased significantly after 3 stage-constant current electrical stimulationin in both group(P<0.05).The amounts of activation during D stage in LF group and D goup were deceased significantly after 3 stage-constant current electrical stimulationin(P<0.05).The amounts of activation during C stage in LF group were decreased significantly after 2 stage-constant current electrical stimulationin(P<0.05).The amounts of activation during B stage in LF group were lower than that of A stage (P<0.05).
     2.3 SPM group analysis for brain activations of rats induced by nociception stimulation in different anaesthesia interval
     Random-effects analysises were conducted in SPM to accounts for inter-group variation.One Sample t-tests were conducted to evaluate all your subjects for having a zero effect.The brain activation of T group invluded SⅠand SⅡ(right),RSG,AN and VPL(only A stage activation).The brain activation of LF group invluded AcbSH, SⅠ(right),VPL and RSG.
     2.4 SPMs for A stage minus D stage(differential) changes
     One way Anova was conducted to test the fifference between A stage and B stage in 2 groups.The activation of T_A minus T_D included VP, SⅡ(left) and CA1;The activation of LF_A minus LF_D included included BLA,PAG,CMe and APtN.
     Conclusions
     The incidences of brain areas in 2 groups were not completely homologous in the different anaesthesia stage.The brain activation of T group invluded SⅠand SⅡ(right),RSG,AN and VPL(only A stage activation).The brain activation of LF group invluded AcbSH, SⅠ(right),VPL and RSG.In the early stage of nociceptive stimulation,The activations of T_A minus T_D include VP,SⅡ(left) and CA1 and the activation sof LF_A minus LF_D include included BLA,PAG;CMe and APtN,which is corelation with the pain descending inhibitory effects.fMRI is a good tool to monitor the central network invoving pain perception and processing,which shows perfect perspective to visualize the central effects of anaesthetics and analgesitcs.
引文
[1] Huschak G, Hoell T, Hohaus C, et al.Clinical evaluation of a new multiparameter neuromonitoring device: measurement of brain tissue oxygen, brain temperature, and intracranial pressure[J]. J Neurosurg Anesthesiol, 2009,21(2):155-160.
    [2]Norton J, Hedden D; Canadian Paediatric Spinal Deformity Study Group.Neuromonitoring during surgery for paediatric spinal deformity in Canada (2007)[J].Can J Neurol Sci,2009,36(1):47-50.
    [3] Bein B, Fudickar A, Scholz J.Anesthesia in vascular surgery-monitoring of cerebral function[J].Anasthesiol Intensivmed Notfallmed Schmerzther, 2009,44(2):126-132.
    [4]Bein B, Fudickar A, Scholz J.Anesthesia in vascular surgery—monitoring of cerebral function.Anasthesiol Intensivmed Notfallmed Schmerzther. 2009,44(2):126-132.
    [5]See JJ, Lew TW, Kwek TK, et al.Anaesthetic management of awake craniotomy for tumour resection.Ann Acad Med Singapore,2007,36(5):319-325.
    [6]Lilja J, Endo T, Hofstetter C,et al.Blood oxygenation level-dependent visualization of synaptic relay stations of sensory pathways along the neuroaxis in response to graded sensory stimulation of a limb J Neurosci,2006,26(23):6330-6336.
    [7]Geerts J, Martens M, Vandevenne JE,et al.Functional magnetic resonance imaging for preoperative localisation of eloquent brain areas relative to brain tumours:linical implementation in a regional hospital. 2007,90(4):258-263.
    [8]Ogawa S, Tank DW, Menon R, et al.Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992 ,89(13):5951-5955.
    [9]Kwong KK, Belliveau JW, Chesler DA,et al.Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation[J]. Proc Natl Acad Sci U S A,1992,89(12):5675-5679.
    [10]Davis KD.fMRI of Clinical Pain.In:Faro SH,Mohamed FB eds.Functional MRI Basic Principles and Clinical Applications. New York:Springer,2006,430.
    [11] International Association for the Study of Pain Subcommittee on Taxonomy.Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. Pain, 1986 (Suppl3).
    [12]Loeser JD, Treede RD.The Kyoto protocol of IASP Basic Pain Terminology[J].
    [13]D'Mello R, Dickenson AH.Spinal cord mechanisms of pain[J].Br J Anaesth. 2008,101(1):8-16.
    [14]Todd AJ. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp Physiol 2002; 87: 245-249.
    [15]Stucky CL, Gold MS, Zhang X.Mechanisms of pain[J].Proc Natl Acad Sci U S A,2001,98(21): 11845-11846.
    [16]Melzack R.From the gate to the neuromatrix,pain supplement6, 1999,sl21-sl26.
    [17]Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol, 1997,14(1): 2-31.
    [18]Peyron R, Laurent B, Garcia-Larrea L.Functional imaging of brain responses to pain. A review and meta-analysis (2000).Neurophysiol Clin,2000,30(5):263-288.
    [19]Apkarian AV, Bushnell MC, Treede RD, et al.Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain,9(4):463-484.
    [20]Spenger C, Josephson A, Klason T,et al.Functional MRI at 4.7 tesla of the rat brain during electric stimulation of forepaw, hindpaw, or tail in single- and multislice experiments[J].Exp Neurol,2000,166(2):246-253.
    [21]Tuor UI, Malisza K, Foniok T,et al.Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw.Pain,2000,87(3):315-324.
    [22]Chang C, Shyu BC.A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats.Brain Res,2001,897(1-2):71-81.
    [23]Keilholz SD, Silva AC, Raman M, et al.Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging.Magn Reson Med,2004,52(1):89-99.
    [24]Hess A, Sergejeva M, Budinsky L, et al.Imaging of hyperalgesia in rats by functional MRI.Eur J Pain,2007,11(1):109-119.
    [25]Lowe AS, Beech JS, Williams SC.Small animal, whole brain fMRI: innocuous and nociceptive forepaw stimulation.Neuroimage,2007,35(2):719-728.
    [26]Lawrence J, Stroman PW, Malisza KL.Functional MRI of the cervical spinal
    ?cord during noxious and innocuous thermal stimulation in the alpha-chloralose- and
    halothane-anesthetized rat.Magn Reson Imaging,2008,6(1):1-10.
    
    [27]Sicard K,Shen Q,Brevard ME,et al.Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions:implications for functional MRI studies.J Cereb Blood Flow Metab,2003,23(4):472-481.
    [28]Yasuda T,Takahashi S,Matsuki A.Tumor necrosis factor-alpha reduces ketamine- and propofol-induced anesthesia time in rats.Anesth Analg,2002,95(4):952-955.
    [29]胡玉红,恽时锋,周森妹,等.氯胺酮用于大鼠麻醉的效果观察.中国比较医学杂志,2007,17(6):348-350.
    [30]周昆,屈彩芹.动物实验常用麻醉剂的比较与选择.实验动物科学,2008,25(2):41-44.
    [31]李志勇,孙建宁,张硕峰.水合氯醛和戊巴比妥钠对SD大鼠麻醉效果的比较.四川动物,2008,27(2):300-303.
    [32]Hanusch C,Hoeger S,Beck GC.Anaesthesia of small rodents during magnetic resonance imaging.Methods,2007,43(1):68-78.
    [33]Danneman PJ.Preoperative,Intra-operative,and Post-operativeCare of Rabbits and Rats with Emphasis on Anesthesia and Analgesia.Oral Presentation and Proceedings of the 1995 Michigan Veterinary Conference,1995.107-114.
    [34]Petrie J,Glass P.Intravenous anesthetics.Curr Opin Anaesthesiol,2001,14(4):393-397.
    [35]沙爱龙.三种麻醉剂对动物组织器官生理特性影响的探讨.北京联合大学学报(自然科学版),2007,21(3):72-74.
    [36]Kohn KF,Wixson SK,White WJ,et al,Anaesthesia and Analgesia in Laboratory Animals,Academic Press,New York,1997.
    [37]Kannurpatti SS,Biswal BB.Effect of anesthesia on CBF,MAP and fMRI-BOLD signal in response to apnea.Brain Research,2004(1011):141-147.
    [38]王跃春,王子栋,孙黎明,等.动物学习记忆能力的Y-型迷宫测试法.暨南大学学报(自然科学版),2001,22(5):137-140.
    [39]Leegsma-Vogt G,Venema K,Korf J.Evidence for a lactate pool in the rat brain that is not used as an energy supply under normoglycemic conditions.J Cereb Blood Flow Metab,2003,23(8):933-41.
    [40]刘昌,翁旭初.人脑功能成像在认知神经科学中的应用.生理科学进展,1999,30(1):84-90.
    [41]Paxinos G,Watson C.The Rat Brain in Stereotaxic Coordinates,4th ed.San Diego,Academic Press,1998.
    [42]Schwarz AJ,Danckaert A,Reese T,et al.A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas:application to pharmacological MRI.Neuroimage,2006,32(2):538-550.
    [43]Price RR,Allison J,Massoth RJ,et al.Practical aspects of functional MRI (NMR Task Group #8).Med Phys,2002,29(8):1892-1912.
    [44]罗非,王锦琰.伤害性躯体感觉的中枢网络动态编码过程.心理科学进展,2006,14(4):517-521.
    [45]Catania KC,Remple MS.Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain.Proc Natl Acad Sci U S A,2002,99(8):5692-5697.
    [46]Gauriau C,Bernard JF.Pain pathways and parabrachial circuits in the rat.Exp Physiol,2002,87(2):251-258.
    [47]Vogt BA,Sikes RW.The medial pain system,cingulate cortex,and parallel processing of nociceptive information.Prog Brain Res,2000,122(6):223-235.
    [48]Schnitzler A,Ploner M.Neurophysiology and functional neuroanatomy of pain perception.J Clin Neurophysiol,2000,17(1):592-603.
    [49]Coghill RC,Sang CN,Maisog JM,et al.Pain intensity processing within the human brain:a bilateral,distributed mechanism.J Neurophysiol,1999,82(4):1934-1943.
    [50]罗非,王锦琰.伤害性躯体感觉的中枢网络动态编码过程.心理科学进展,2006,14(4):517-521.
    [51]Shih YY,Chen YY,Chen JM,et al.Exploring nociceptive response by BOLD fMRI in alpha-chloralose anesthetized rats.Conf Proc IEEE Eng Med Biol Soc,2006,1:33-36.
    [52]王锦琰,罗非,韩济生.内、外侧痛觉系统-伤害性信息处理的并行通路.中国神经科学杂志,2003,19(6):416-419.
    [53]Ploner M,Freund HJ,Schnitzler A.Pain affect without pain sensation in a patient with a postcentral lesion[J].Pain,1999,81:211-214.
    [54]Jia H,Xie YF,Xiao DQ,Tang JS.Involvement of GABAergic modulation of the nucleus submedius(Sm) morphine-induced antinociception.Pain,2004,108(1-2):28-35.
    [55]王锦琰,罗非,韩济生.前扣带回在痛感知中的作用.中国疼痛医学杂志,2004,10(2):113-116.
    [56]Lamprea MR,Cardenas FP,Vianna DM,et al.The distribution of fos immunoreactivity in rat brain following freezing and escape responses elicited by electrical stimulation of the inferior colliculus.Brain Res.2002 Sep 20;950(1-2):186-194
    [57]李云庆.中脑边缘镇痛环路.中国疼痛医学杂志.2000.6(2):104-108.
    [58]Mena NB,Mathur R,Nayar U.Amygdalar involvement in pain.India J Physiol Pharmacol,1995,39(4):339-346.
    [59]Hudson JA.Pain perception and response:central nervous system mechanisms.Le J Canadien Des Sciences Neurologiques,2000,27(1):2217.
    [60]Shih YY,Chen YY,Chen CC,et al.Whole-brain functional magnetic resonance imaging mapping of acute nociceptive responses induced by formalin in rats using atlas registration-based event-related analysis.J Neurosci Res,2008,86(8):1801-1811.
    [61]Lewis ME,Pert A,Pert CB,et al.Opiate receptor localization in rat cerebral cortex.J Comp Neurol,1983,216(3):339-358.
    [62]Wang Z,Bradesi S,Maarek JM,et al.Regional brain activation in conscious,nonrestrained rats in response to noxious visceral stimulation.Pain,2008,138(1):233-243.
    [63]de Zwart JA,Ledden PJ,Kellman P,et al.Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging.Magn Reson Med,2002,47(6):1218-1227.
    [64]de Zwart JA,van Gelderen P,Kellman P,et al.Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging.Magn Reson Med,2002,48(6):1011-1020.
    [65]Hess A,Sergejeva M,Budinsky L,et al.Imaging of hyperalgesia in rats by functional MRI.Eur J Pain,2007,1(1):109-119.
    [66]Price DD,Verne GN,Schwartz JM.Plasticity in brain processing and modulation of pain.Prog Brain Res,2006,157:333-352.
    [67]Christmann C,Koeppe C,Braus DF,et al.A simultaneous EEG-fMRI study of painful electric stimulation.Neuroimage,2007,34(4):1428-1437.
    [68]Rushton DN.Electrical stimulation in the treatment of pain.Disabil Rehabil,2002,24(8):407-415.
    [69]吴国冀,陈正秋.痛觉调制通路的研究现状.针刺研究,2001,26(4):314-320.
    [70]Anagnostakis Y,Zis V,Spyraki C.Analgesia induced by morphine injected into the pallidum.Behav Brain Res.1992,48(2):135-143.
    [71]吴国冀,陈正秋,石宏.苍白球在电针镇痛及兴奋尾壳核镇痛中的作用.中国神经科学杂志,2002,18(3):621-626.
    [72]Yang XF,Xiao Y,Xu MY.Both endogenous and exogenous ACh plays antinociceptive role in the hippocampus CA1 of rats.J Neural Transm,2008,115(1):1-6.
    [73]Manning BH,Martin WJ,Meng ID.The rodent amygdala contributes to the production of cannabinoid-induced antinociception.Neuroscience,2003,120(4):1157-1170.
    [74]王跃秀,袁斌,唐敬师.丘脑中央下核和顶盖前区前核分别参与介导强电针和弱电针的镇痛效应.中国神经科学杂志,1999,15(2):125-130.
    [75]Wilson DG,Rees H,Roberts MH.The antinociceptive effects of anterior pretectal stimulation in tests using thermal,mechanical and chemical noxious stimuli.Pain,1991,44(2):195-200.
    [76]王小民.顶盖前区前核痛觉调制作用的研究.生理科学进展,1994,25(4):329-332.
    [77]Ji G,Neugebauer V.Pro- and anti-nociceptive effects of corticotropinreleasing factor(CRF) in central amygdala neurons are mediated through different receptors.J Neurophysiol,2008,99(3):1201-12.
    [78]Cui XY,Lundeberg T,Yu LC.Role of corticotropin-releasing factor and its receptor in nociceptive modulation in the central nucleus of amygdala in rats.Brain Res,2004,995(1):23-8.
    [79]Hasanein P,Mirazi N,Javanmardi K.GABAA receptors in the central nucleus of amygdala(CeA) affect on pain modulation.Brain Res,2008,241:36-41.
    [80]Coenen VA,Huber KK,Krings T,et al.Diffusion-weighted imaging-guided resection of intracerebral lesions involving the optic radiation.Neurosurg Rev,2005,28(3):188-195.
    [81]Ramani R,Wardhan R.Understanding anesthesia through functional imaging.Curr Opin Anaesthesiol,2008,21(5):530-536.
    [82]Peeters RR,Tindemans I,De Schutter E,et al.Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation[J].Magn Reson Imag,2001,19(3):821-826.
    [1] Melzack R.Pain: past, present and future. Can J Exp Psychol,1993,47(4):615-629.
    [2] Peyron R, Laurent B, Garcia-Larrea L.Functional imaging of brain responses to pain. A review and meta-analysis (2000).Neurophysiol Clin,2000,30(5):263-288.
    [3]Forss N, Raij TT, Sepp M, Hari R.Common cortical network for first and second pain. Neuroimage,2005,24(1):132-142.
    [4]Ingvar M, Eriksson L, Greitz T, et al.Methodological aspects of brain activation studies: cerebral blood flow determined with [15O]butanol and positron emission tomography.J Cereb Blood Flow Metab,1994,14(4):628-638.
    [5]Talbot JD, Marrett S, Evans AC,et al.Multiple representations of pain in human cerebral cortex.Science,1991,251(4999):1355-1358.
    [6]Treede RD, Kenshalo DR, Gracely RH, et al.The cortical representation of pain.Pain, 1999,79(2-3): 105-111.
    [7]Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol,1997,14(l): 2-31.
    [8]Apkarian AV, Bushnell MC, Treede RD, et al.Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain,9(4):463-484.
    [9]Hsieh JC, Hannerz J, Ingvar M.Right-lateralised central processing for pain of nitroglycerin-induced cluster headache.Pain,1996,67(l):59-68.
    [10]Casey KL, Minoshima S, Berger KL et al.Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol, 1994,71 (2): 802-807.
    [11]Jones AK, Friston K, Frackowiak RS.Localization of responses to pain in human cerebral cortex. Science, 1992,255(5041):215-216.
    [12]Rosen SD, Paulesu E, Frith CD et al.Central nervous pathways mediating angina pectoris. Lancet,1994,344(8916): 147-150.
    [13] Coghill RC, Talbot JD, Evans AC,et al.Distributed processing of pain and vibration by the human brain. J Neurosci,1994,14 (7) :4095-4108.
    [14] Minoshima S, Morrow TJ, Koeppe RA,et al.Involvement of the insular cortex in central autonomic regulation during painful thermal stimulation. J Cereb Blood Flow Metab, 1995,15 (Suppl1) :859.
    [15]Hsieh JC, Stahle Backdahl M, et al.Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study.Pain,1996,64 (2) :303-314.
    [16]Derbyshire SW, Jones AK, Devani P,et al.Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J Neurol Neurosurg Psychiatry, 1994,57 (10) :1166-1172.
    [17]Goadsby PJ, Zagami AS, Lambert GA.Neural processing of craniovascular pain: a synthesis of the central structures involved in migraine. Headache, 1991,31(6) :365-371.
    [18]Bingel U, Quante M, Knab R,et al.Single trial fMRI reveals significant contralateral bias in responses to laser pain within thalamus and somatosensory cortices. Neuroimage,2003,l8 (3) :740-748.
    [19]Bingel U, Quante M, Knab R,et al.Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain,2002,99 (1-2) :313-321.
    [20]Coghill RC, Gilron I, Iadarola MJ.Hemispheric lateralization of somatosensory processing. J Neurophysiol,2001,85 (6) :2602-2612
    [21]Bingel U, Glascher J,Weiller C, et al.Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb Cortex,2004,14 (12) :1340-1345.
    [22]Kupers R, Faymonville ME, Laureys S. The cognitive modulation of pain: hypnosis- and placebo-induced analgesia. Prog Brain Res,2005,150: 251-269.
    [23]Petrovic P, Kalso EA, Petersson KM, et al. Placebo and opioid analgesia:imaging a shared neuronal network. Science,2002,295 (5560) : 1737-1740.
    [24]Wager TD, Rilling JK, Smith EE, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science,2004,303 (5661) : 1162-1167.
    [25]Kong J, Gollub RL, Rosman IS,et al. Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J Neurosci,2006,26 (2) : 381-388.
    [26]Klein T, Magerl W, Rolke R, et al. Human surrogate models of neuropathic pain.Pain,2005,115(3): 227-233.
    [27]Witting N, Kupers RC, Svensson P, et al. A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain,2006,120(1-2): 145-154.
    [28]Ducreux D, Attal N, Parker F,et al. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain,2006, 129:963-976.
    [29]Schweinhardt P, Glynn C, Brooks J, et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage,2006,32(1): 256-265.
    [30]Kupers RC, Gybels JM, Gjedde A. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation.Pain, 2000, 87 (3) : 295-302.
    [31]Willoch F, Gamringer U, Medele R, et al. Analgesia by electrostimulation of the trigeminal ganglion in patients with trigeminopathic pain: a PET activation study.Pain,2003,103(1-2): 119-130.
    [32]Albuquerque RJ, de Leeuw R, Carlson CR,et al. Cerebral activation during thermal stimulation of patients who have burning mouth disorder: an fMRI study.Pain,2006,122 (3) : 223-234.
    [33]Di Piero V, Jones AK, Iannotti F, et al. Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy.Pain, 1991,46(1): 9-12.
    [34]Hsieh JC, Belfrage M, Stone-Elander S, et al.Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain,1995,63(2): 225-236.
    [35]Cesaro P, Mann MW, Moretti JL, et al. Central pain and thalamic hyperactivity: a single photon emission computerized tomographic study. Pain, 1991,47(3): 329-336.
    [36]Llinas RR, Ribary U, Jeanmonod D, et al.Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography.Proc Natl Acad Sci USA,1999,96(26): 15222-15227.
    [37]Schulman JJ, Ramirez RR, Zonenshayn M, et al.Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain. Thalamus Relat Syst,2005,3(1): 63-70.
    [38]Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med,1995,1 (7) : 658-660.
    [39]Bahra A, Matharu MS, Buchel C, et al.Brainstem activation specific to migraine headache. Lancet,2001,357 (9261) : 1016-1017.
    [40]Matharu MS, Bartsch T, Ward N, et al. Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain,2004,127 (1) :220-230.
    [41]Afridi SK, Matharu MS, Lee L, et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain,2005,128 (4) :932-939.
    [42] Afridi SK, Giffi n NJ, Kaube H, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol,2005,62 (8) :1270-1275.
    [43]Sprenger T, Valet M, Platzer S, et al.SUNCT: bilateral hypothalamic activation during headache attacks and resolving of symptoms after trigeminal decompression. Pain,2005,113 (3) : 422-426.
    [44]Leone M, Franzini A, Broggi G,et al. Long-term follow-up of bilateral hypothalamic stimulation for intractable cluster headache. Brain,2004,127 (10) :2259-2264.
    [45]Schoenen J, Di Clemente L, Vandenheede M, et al. Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action.Brain ,2005,128 (4) : 940-947.
    [46]May A, Leone M, Boecker H, et al. Hypothalamic deep brain stimulation in positron emission tomography. J Neurosci,2006,26 (13) : 3589-3593.
    [47]Peyron R, Laurent B, Garcia-Larrea L, et al. Allodynia after lateralmedullary (Wallenberg) infarct: a PET study. Brain, 1998,121 (pt2) : 345-356.
    [48]Peyron R, Schneider F, Faillenot I, et al. An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain.Neurology,2004,63 (10) : 1838-1846.
    [49]Petrovic P, Ingvar M, Stone-Elander S, et al.A PET activation study of dynamic mechanical allodynia in patients wih mononeuropathy.Pain, 1999,83 (3) :459-470.
    [50]Witting N, Kupers RC, Svensson P, Jensen TS. A PET activation study of brush-evoked allodynia in patients with nerve injury pain.Pain,2006,120 (1-2) :145-154.
    [51]Schweinhardt P, Glynn C, Brooks J, et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage,2006,32 (1) : 256-265.
    [52]Maihofher C, Forster C, Birklein F, et al. Brain processing during mechanical hyperalgesia in complex regional pain syndrome: a functional MRI study.Pain,2005,114 (1-2) :93-103.
    [53]Maihofner C, Handwerker HO, Birklein F. Functional imaging of allodynia in complex regional pain syndrome. Neurology,2006,66 (5) : 711-717.
    [54]Albuquerque RJ, de Leeuw R, Carlson CR, et al. Cerebral activation during thermal stimulation of patients who have burning mouth disorder: an fMRI study.Pain,2006,122 (3) : 223-234.
    [55]Garraghty PE, Kaas JH. Large-scale functional reorganization in adult monkey cortex after peripheral nerve injury.Proc Natl Acad Sci USA,1991,88 (16) :6976-6980.
    [56]Florence SL, Hackett TA, Strata F.Thalamic and cortical contributions to neural plasticity after limb amputation.J Neurophysiol,2000,83 (5) : 3154-3159.
    [57]Maihofner C, Handwerker HO, Neundorfer B, et al. Cortical reorganization during recovery from complex regional pain syndrome.Neurology,2004,63 (4) :693-701.
    [58]Pleger B, Ragert P, Schwenkreis P, et al. Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome.Neuroimage,2006,32 (2) : 503-510.
    [59]Shyu BC, Kiritsy-Roy JA, Morrow TJ,et al.Neurophysiological, pharmacological and behavioral evidence for medial thalamic mediation of cocaine-induced dopaminergic analgesia.Brain Res, 1992,572 (1 -2) : 216-223.
    [60]Millan MJ. Descending control of pain. Prog Neurobiol,2002,66 (6) :355-474.
    [61]Fleetwood-Walker SM, Hope PJ, Mitchell R. Antinociceptive actions of descending dopaminergic tracts on cat and rat dorsal horn somatosensory neurones. J Physiol,1988,399: 335-348.
    [62]Garraway SM, Hochman S.Modulatory actions of serotonin,norepinephrine, dopamine, and acetylcholine in spinal cord deep dorsal horn neurons.J Neurophysiol,2001, 86 (5): 2183-2194.
    [63]Jaaskelainen SK, Rinne JO, Forssell H, et al. Role of the dopaminergic system in chronic pain: a fluorodopa-PET study.Pain.2001,90 (3) : 257-260.
    [64]Hagelberg N, Forssell H, Aalto S, et al. Altered dopamine D2 receptor binding in atypical facial pain.Pain,2003,106 (1-2) : 43-48.
    [65]Zubieta JK, Smith YR, Bueller JA, et al. Regional mu opioid receptor regulation of sensory and aff ective dimensions of pain. Science,2001,293 (5528) :311-315.
    [66]Zubieta JK, Smith YR, Bueller JA, et al. mu-opioid receptormediated antinociceptive responses diff er in men and women.J Neurosci,2002,22 (12) :5100-5107.
    [67]Bencherif B, Fuchs PN, Sheth R, et al. Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain,2002,99 (3) : 589-598.
    [68]Sprenger T, Valet M, Boecker H, et al. Opioidergic activation in the medial pain system after heat pain. Pain,2006,122 (1 -2) : 63-67.
    [69]Jones AK, Watabe H, Cunningham VJ,et al. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C] diprenorphine binding and PET. Eur J Pain,2004,8 (5) : 479-485.
    [70]Willoch F, Schindler F, Wester HJ, et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain,2004,108 (3) : 213-220.
    [71]Sprenger T, Willoch F, Miederer M, et al. Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology,2006,66(7) :1108-1110.
    [72]Mullins PG, Rowland LM, Jung RE, et al. A novel technique to study the brain's response to pain: proton magnetic resonance spectroscopy. Neuroimage,2005,26 (2) :642-646.
    [73]Grachev ID, Fredrickson BE, Apkarian AV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study.Pain,2000,89 (1) : 7-18.
    [74]Siddall PJ, Stanwell P, Woodhouse A, et al.Magnetic resonance spectroscopy detects biochemical changes in the brain associated with chronic low back pain: a preliminary report. Anesth Analg,2006,102: (4) : 1164-1168.
    [75]Mori S, van Zijl PC.Fiber tracking: principles and strategies: a technical review. NMR Biomed,2002,15 (7-8) : 468-480.
    [76]Seghier ML, Lazeyras F, Vuilleumier P, et al.Functional magnetic resonance imaging and diffusion tensor imaging in a case of central poststroke pain. J Pain,2005,6 (3) : 208-212.
    [77]Hadjipavlou G, Dunckley P, Behrens TE, et al.Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diff usion tensor imaging study in healthy controls. Pain,2006,123 (1-2) :169-178.
    [78]Ashburner J, Friston KJ. Voxel-based morphometry-the methods.Neuroimage, 2000,11(6 Pt 1): 805-821.
    [79]Apkarian AV, Sosa Y, Sonty S, et al.Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci,2004,24(46) :10410-10415.
    [80]De Lange FP, Kalkman JS, Bleijenberg G, et al.Gray matter volume reduction in the chronic fatigue syndrome. Neuroimage,2005,26(3): 777-781.
    [81]Walsh V, Cowey A. Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci,2000,l (1) : 73-79.
    [82]Tamura Y, Okabe S, Ohnishi TN, et al.Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Pain, 2004,107 (1-2) :107-115.
    [83]Schwenkreis P, Janssen F, Rommel O, et al.Bilateral motor cortex disinhibition in complex regional pain syndrome (CRPS) type I of the hand.Neurology,2004,62 (9) : 1654-1655.