大蒜有机硫化合物及其类似物的心血管保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】大蒜已被证实具有心脏保护作用,其活性成分主要为含硫化合物。本研究通过研究大蒜有机硫化合物及其类似物的心脏保护作用,比较不同的半胱氨酸衍生物对心肌细胞损伤的保护作用,筛选优势候选化合物,并探讨其对缺血性损伤心肌细胞的抗氧化和抗凋亡作用,进一步阐明其作用途径和机制,为临床有效治疗缺血性心脏病研发新药提供理论基础。
     【方法】1.以原代培养乳鼠心肌细胞为研究对象,细胞缺氧6 h复氧3 h制模,分为正常对照组、缺氧复氧模型组、七个半胱氨酸衍生物干预组。MTT法检测细胞存活率,检测细胞内及培养液中乳酸脱氢酶(lactate dehydrogenase,LDH)活性、细胞上清液H_2S浓度,并测定超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)、脂质过氧化产物(MDA)和凋亡相关因子Caspase-3活性,采用RT-PCR方法观察CuZn-SOD和Mn-SOD、Caspase-3及胱硫醚-γ-裂解酶(cystathione-γ-lyase,CSE)mRNA的表达,Hoechst染色观察凋亡形态学变化。2.结扎大鼠左冠状动脉制备急性心肌梗死(myocardial infarction,MI)模型,分为假手术组、MI模型组以及SPC、SAC和SPRC预处理组。观察死亡率及梗死面积,检测大鼠血浆H_2S浓度和心室肌组织CSE活性,观察血清酶学变化及心肌组织中抗氧化酶SOD和谷胱甘肽过氧化物(glutathione peroxidase,Gpx)活性、GSH和GSSG氧化还原状态以及MDA含量,采用RT-PCR法观察SOD各分型及CSE mRNA的表达。3.采用急性心肌梗死大鼠模型,分为假手术组、MI模型组、炔丙基甘氨酸(Propargylglycine,PAG)干预组、SPRC预处理组及SPRC+PAG干预组。伊文氏兰与TTC双染检测心肌梗死面积,定位心脏梗死区和梗死周边区,并监测鼠尾动脉压和心率观察心功能改变,通过RT-PCR和western blot的方法观察凋亡相关因子mRNA和蛋白表达;4.采用急性心肌梗死大鼠模型,随机分为SPRC组和对照组。分别给予SPRC 50mg/kg/d或生理盐水灌胃,6周后处死动物。经右颈总动脉插管检测心室内压及动脉压,观察体重变化及全心湿重、肺重与体重比值,检测血清中SOD活性及MDA水平,并观察凋亡相关因子和心室重构相关的蛋白和mRNA的表达。
     【结果】第1部分:七种半胱氨酸衍生物均能一定程度的提高细胞存活率,减少细胞内LDH的漏出,增加GSH水平和CAT活性;SAC显著提高Mn-SOD和CuZn-SOD活性,并上调其mRNA表达;SPC、SBC、SPEC和SAMC显著提高CuZn-SOD的活性;SEC和SPRC则增加Mn-SOD的活性和mRNA表达。SAC、SEC、SPC、SAMC和SPRC降低Caspase-3活性。七种化合物中除了SEC外,细胞上清液中H_2S浓度显著上升,细胞内CSE mRNA表达上调。第2部分:SPC、SAC和SPRC预处理大鼠死亡率和梗死面积显著降低,与模型组相比有统计学意义(P<0.05),并伴随血清中H_2S浓度升高。另外,三个化合物均可增加SOD和GPx活性、维持心肌细胞内GSH水平、并降低MDA浓度。PAG为CSE抑制剂,可阻断三个化合物对心肌的保护作用。第3部分:SPRC预处理可改善心功能,维持心肌细胞内ATP水平,减小梗死面积。SPRC增加Bcl-2蛋白表达,与模型组相比,分别是模型组梗死周边区的1.8倍和梗死区的3倍;SPRC还可下调Bax蛋白表达,是模型组梗死周边区的0.88倍和梗死区的0.65倍。SPRC对Bcl-2和Bax mRNA的表达与其对蛋白表达的影响趋势相同。SPRC还可诱导CSE在心脏梗死及周边组织的表达,尤其梗死区更为显著,与模型组相比有统计学意义。SPRC增加血清中H_2S浓度,其抗凋亡活性可被PAG阻断。第4部分:SPRC组与模型组比较全心湿重与体重的比值有减小趋势,但没有统计学意义(P>0.05)。模型组大鼠肺重与体重的比值较假手术组相比显著增加,SPRC组大鼠的肺重/体重较模型组明显降低(P<0.05),LVEDP升高程度减低,LVSP和±LVdp/dt_(max)较模型组均有升高,收缩功能改善;SPRC可增加血清中SOD活性,并降低MDA含量;形态学显示SPRC组心肌细胞变形与坏死改变程度较轻,范围较小,坏死周边区炎性细胞浸润明显减少;SPRC干预组大鼠血清H_2S浓度增加,在梗死周边区和非梗死区SPRC均呈现增加CSE活性的趋势。SPRC对大鼠梗死周边区和非梗死区凋亡相关因子Bax、Caspase-9和Caspase-3有显著的抑制作用;并下调心室重构相关的TGF-β1和胶原蛋白ⅠmRNA表达。
     【结论】1.半胱氨酸衍生物对乳鼠心肌细胞缺氧复氧诱导损伤具有保护作用,尤其是三碳化合物SPC、SAC和SPRC;2.SPC、SAC和SPRC对急性心肌梗死大鼠有预防性心脏保护作用,其作用机制与抗氧化和促进内源性H_2S生成相关,其中尤以SPRC心脏保护作用最为显著。3.SPRC的心脏保护作用与其调控线粒体凋亡途径关键酶和蛋白的表达、减少缺血心肌细胞凋亡有关;4.SPRC对心肌细胞凋亡的调控可能是通过激活CSE/H_2S通路,从而介导内源性H_2S生成所致。5.SPRC可介导内源性H2S生成,抑制心肌细胞凋亡和心室重构,对心肌梗死后心力衰竭的发生有治疗作用,值得深入研究。
Objectives:To find novel compound which is useful to treat ischemic heart diseases,we compared the protective effects of 7 cysteine-containing compounds on neonatal rat cardiomyocytes(NRCs) injury induced by hypoxia/reoxygenation(H/R), including S-allyl-L-cysteine(SAC),S-ethyl-L-cysteine(SEC),S-propyl-L-cysteine (SPC),S-allylmercapto-L-cysteine(SAMC) and their analogues S-butyl-L-cysteine (SBC),S-pentyl-L-cysteine(SPEC),and S-propargyl-L-cysteine(SPRC).Furthmore, to elucidate the role of SPRC,SAC and SPC on ischemic heart of rats and to explore the involved pathways,we evaluated the pharmacological effects of three cysteine containing compounds on H_2S production,apoptosis and antioxidant defences in an acute myocardial infarction(MI) rat model.Besides,we determined the therapeutical role of SPRC on chronic heart failure after myocardial infarction.This study will provide novel evidence for treatment of ischemic heart diseases.
     Methods:1.Methylthiazol tetrazoium(MTT) assay for cell viability,lactate dehydrogenase(LDH) release as an index of cytotoxicity and malondialdehyde(MDA) content indicating lipid peroxidation were measured.To study the mechanism, intracellular glutathione(GSH) level in NRCs,OH radical scavenging activity and activities of antioxidant enzymes including superoxide dismutase(SOD),catalase (CAT)were determined.Hoechst 33342 staining was performed to observe apoptosis. Reverse transcriptional PCR(RT-PCR) were used to detect mRNA expression.2.SD rats were subjected to left coronary artery occlusion.Infarct size and mortality were determined.Plasma H_2S level and cystathionase-γ-lyase(CSE) activity in the ventricular tissues were determined spectrophotometrically.The enzymatic activities of SOD and glutathione peroxidase(Gpx),glutathione redox status and MDA content were also determined.3.The infarct size was measured by Evan's blue and TTC double staining and myocardial function reflected by blood pressure.The myocardial tissues in peri-infarct and infarct areas were used for gene and protein expression studies as well as myocardial metabolites analysis.4.Hemodynamic indexes including LVSP,LVEDP and±dp/dtmax were eassayed in each group after operation 6 weeks.The hearts and lungs were harvested to test heart weight index or lung weight index.HE staining was used to evaluate the pathological changes of heart following ischemia.
     Results:Part 1:Intervention with seven cysteine-containing compounds significantly protected the cardiomyocytes against H/R injury.All of the 7 compounds increased GSH level,and CAT activities.SAC restored both SODs activities and mRNA expression.SPC,SBC,SPEC and SAMC significantly preserved CuZn-SOD activity.And SEC and SPRC increased Mn-SOD activity and gene expression.SAC, SEC,SPC,SAMC and SPRC inhibit caspase-3 activity and apoptosis.These agents, except SEC,also significantly increased CSE mRNA expression and H_2S concentration in culture media.Part 2:SPC,SAC and SPRC treated animals demonstrated reduced mortality and infarct size as compared to the MI vehicle control group(P<0.05);this correlating with an increase in plasma H_2S concentrations.In addition,all three compounds were found to preserve SOD and GPx activities and tissue GSH content whilst reducing the formation of the lipid peroxidation product MDA in ventricular tissues.Propargylglycine,a selective inhibitor of CSE,abolished the protective effects of each compound in the current model.Part 3:The protective effects of SPRC were confirmed by significant reduction in infarct size,improvement in cardiac function and well preserved myocardial ATP level.Interestingly,SPRC was shown to increase Bcl-2 protein expression by 1.8- fold in peri-infarct area and 3.0-fold in infarct area and decrease Bax protein expression by 0.88-fold in peri-infarct and 0.65-fold in infarct region when compared to MI rats.The mRNA expressions of Bcl-2 and Bax showed similar patterns as the protein expressions. SPRC induced CSE in both areas,especially in infarct area compared with MI rats. Moreover,Plasma H_2S concentration was significantly higher in SPRC-pretreated group.These effects of SPRC were abolished by PACt Part 4:Heart weight index of SPRC-treated rats was decreased,but had no significant difference when compare with CHF vehicle rats(P<0.05).But the lung weight index was increased when compared to Sham group,and SPRC sharply decreased the lung weight index when compare with CHF vehicle group(P<0.05).Experimental results showed the increase of LVSP and±LVdp/dt_(max) in SPRC treated group.Cardiac function improved in SPRC-treated rats.SPRC preserved SOD activity and decreased MDA level with an increase in plasma H_2S concentrations in the plasma.There was no significant difference of Bcl-2 protein and mRNA expression in all treated groups.But SPRC decreased Bax,Caspase-9 and Caspase-3 mRNA expression in peri-infarct and remote area.And SPRC could inhibit the expression of TGF-β_1 and Collagen I,there are obvious statistical differences compared with CHF vehicle group(P<0.05)
     Conclusion:1.The present study demonstrated that the cysteine-containing compounds have protective effects on NRCs H/R injury via the antioxidant and anti-apoptotic pathway,modulated by endogenous H_2S.The cysteine-containing compounds may be considered as valuable agents for ischemia heart disease, especially the three carbon chain compounds,such as SPC,SAC and SPRC.2.SPC, SAC and SPRC have cardioprotective effects in MI by reducing the deleterious effects of oxidative stress and by modulating the endogenous levels of H_2S and preserving the activities of antioxidant defencive enzymes like SOD.3.SPRC is efficacious in response to MI by inhibiting apoptosis.The properties are associated with the modulation of H_2S signaling pathways.4.The results indicated that SPRC have the cardioprotective effects on chronic heart failure after myocardial infarction, which was showed by improved heart function,decreased apoptosis in remote and peri-infarct area,and inhibit ventricular remodeling.Endogenous H_2S have partly involved in the cardioprotective effects of SPRC.
引文
1. Culi(?) V. Acute risk factors for myocardial infarction [J]. Int J Cardiol, 2007,25, 117(2): 260-269.
    2. Yang Z, Min Zhou D. Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction [J]. Clin Biochem, 2006, 39(8): 771-780.
    3. Bonomini F, Tengattini S, Fabiano A, et al. Atherosclerosis and oxidative stress [J]. Histol Histopathol, 2008, Mar, 23(3): 381-390.
    4. Hausenloy DJ. Signalling pathways in ischaemic postconditioning [J]. Thromb Haemost, 2009,101(4): 626-634.
    5. Andreadou I, Iliodromitis EK, Koufaki M, et al. Alternative pharmacological interventions that limit myocardial infarction [J]. Curr Med Chem, 2008,15(30):3204-3213.
    6. Gurevich RM, Regula KM, Kirshenbaum LA, et al. Serpin protein CrmA suppresses hypoxia-mediated apoptosis of ventricular myocytes. Circulation,2001,103(15):1984-1991.
    7. Agarwal KC. Therapeutic actions of garlic constituents [J]. Med Res Rev, 1996, 16: 111-124.
    8. Yamasaki T, Ki L, Lau BH. Garlic compounds protect vascular endothelial cells from hydrogen peroxide-induced oxidant injury [J]. Phytother Res, 1994, 8:408-412.
    9. Lewin G, Popov I. Antioxidant effects of aqueous garlic extract. Second communication: Inhibition of the Cu (2+)-initiated oxidation of low density lipoproteins [J]. Arzneim.-Forsch, 1994,44: 604-607.
    10. Numagami Y, Ohnishi ST. S-allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia [J]. J Nutr, 2001, 131: 1100S-1105S.
    11. Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat [J]. Biochem J, 1982,206 (2):267-77.
    12. Cheng Y, Joseph FN, Tang GH, et al. Hydrogen sulfide induced relaxation of resistance mesenteric artery beds of rats [J]. Heart Circ Physiol, 2004,287(5):H2316-H2323.
    13. Zhao WM, Zhang J, Lu YJ, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener [J]. EMBO J, 2001,20(21): 6008-6016.
    14. Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol [J]. Biochem Biophys Res Commun, 2004,318 (3): 756-763.
    15. Hosoki R, Matsuki N, kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide [J]. Biochem Biophys Res Commum, 1997,273(3): 527-531.
    16. Cooper AJL and Pinto JT, 2006. Cysteine S-conjugate β-lyases. Amino Acids. 30:1-15.
    17. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW, 2007. Hydrogen sulfide mediates the vasoactivity of garlic. PNAS, 104(46): 17977-17982.
    18. Chuah SC, Moore PK, Zhu YZ. S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway [J]. Am J Physiol Heart Circ Physiol, 2007,293(5): H2629-H2630.
    19. Fillmore Freeman, Bao-Guo Huang. Garlic chemistry. Nitric oxide oxidation of S-(2-Propenyl)cysteine and (+)-S-(2-Propenyl)-L-Cysteine sulfoxide [J]. J Org Chem, 1994, 59: 3227-3229.
    20. Agarwal KC. Therapeutic actions of garlic constituents [J]. Med Res Rev, 1996, 16: 111-124.
    21. Anthony YHW, Mary MW, Stephen KW, et al. Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury [J]. J Pharmacol Exp Ther, 2008, 325: 226-235.
    22. Wang YL, Wang CY, Zhang BJ, et al. Shenfu injection suppresses apoptosis by regulation of Bcl-2 and caspase-3 during hypoxia/reoxygenation in neonatal rat cardiomyocytes in vitro [J]. Mol Biol Rep, 2009, 36: 365-370.
    23. Turdi S, Xu P, Li Q, et al. Amidization of doxorubicin alleviates doxorubicin-induced contractile dysfunction and reduced survival in murine cardiomyocytes [J]. Toxicol Lett, 2008,178(3): 179-201.
    24. Soares SS, Henao F, Aureliano M, et al. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization [J].Chem Res Toxicol, 2008, 21(3): 607-618.
    25. Wang HC, Zhang HF, Guo WY, et al. Hypoxic postconditioning enhances the
    survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation [J]. Apoptosis, 2006,11(8): 1453-1460
    26. Chen HP, He M, Huang QR, et al. Sasanquasaponin protects rat cardiomyocytes against oxidative stress induced by anoxia-reoxygenation injury [J]. Eur J Pharmacol, 2007, 575(1-3): 21-27.
    27. Qiu T, Xie P, Liu Y, et al. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat [J]. Toxicology, 2009,257(1-2): 86-94.
    28. Hong-Li S, Lei L, Lei S, et al. Cardioprotective effects and underlying mechanisms of oxymatrine against myocardial injuries of rats [J]. Phytother Res, 2008,22(7): 985-989.
    29. Das S, Khan N, Mukherjee S, et al. Redox regulation of resveratrol-mediated switching of death signal into survival signal [J]. Free Radic Biol Med, 2008, 44(1): 82-90.
    30. Garcia-Dorado D, Agullo L, Sartorio CL, et al. Myocardial protection against reperfusion injury: The cGMP pathway. Thromb Haemost, 2009,101(4):635-642.
    31. Maddika S, Elimban V, Chapman D, et al. Role of oxidative stress in ischemia-reperfusion-induced alterations in myofibrillar ATPase activities and gene expression in the heart. Can J Physiol Pharmacol, 2009, 87(2): 120-9.
    32. Luis DA, Aller R. Garlic and cardiovascular risk [J]. An Med Interna, 2008,25(5): 237-240.
    33. Rahman K. Effects of garlic on platelet biochemistry and physiology [J]. Mol Nutr Food Res, 2007, 51(11): 1335-1344.
    34. Han SY, Hu Y, Anno T, et al. S-Propyl Cysteine Reduces the Secretion of Apolipoprotein B100 and Triacylglycerol by HepG2 Cells [J]. Nutrition, 2002, 18(6): 505-509.
    35. Liu L, Yeh YY. Water-soluble organosulfur compounds of garlic inhibit fatty acid and triglyceride synthesis in cultured rat hepatocytes [J]. Lipids, 2001, 36(4): 395-400.
    36. Maurice J, Lucien L, Gabriel M, et al. L-Cysteine derivatives for arteriosclerosis treatment [J]. Ger Offen, 1974,18 pp. Patent, German.
    37. Li Y, Ge X, Liu X. The cardioprotective effect of postconditioning is mediated by ARC through inhibiting mitochondrial apoptotic pathway [J]. Apoptosis, 2009, 14(2):164-172.
    81
    38. Panda VS, Naik SR. Cardioprotective activity of Ginkgo biloba Phytosomes in isoproterenol-induced myocardial necrosis in rats: A biochemical and histoarchitectural evaluation [J]. Experimental and Toxicologic Pathology, 2008, 60(4-5): 397-404
    39. Hsu CC, Huang CN, Hung YC, et al. Five cysteine-containing compounds have antioxidative activity in Balb/cAmice [J]. JNutr, 2004,134(1): 149-152.
    40. Pan YX, Ren AJ, Zheng J, et al. Delayed cytoprotection induced by hypoxic preconditioning in cultured neonatal rat cardiomyocytes: role of GRP78 [J]. Life Sci,2007,81(13):1042-1049.
    41. Van Remmen H, Williams MD, Guo Z, et al. Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis [J]. Am J Physiol Heart Circ Physiol, 2001,281(3): 1422-1432.
    42. Zobalova R, Swettenham E, Chladova J, et al. Daxx inhibits stress-induced apoptosis in cardiac myocytes [J]. Redox Rep, 2008,13(6):263-270.
    43. Liu X, Ren Z, Zhan R, et al. Prohibitin protects against oxidative stress-indued cell injury in cultured neonatal cardiomyocyte [J]. Cell Stress Chaperones, 2009, 14(3):311-319.
    44. Nakanishi C, Yamagishi M, Yamahara K, et al. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cell [J]. Biochem Biophys Res Commun, 2008, 374(1): 11-16
    45. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia [J]. J Nucl Med, 2008,49suppl2:129S-148S.
    46. Ozkan Y, Ozkan E and Simsek B. Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease [J]. Int J Cardiol, 2002, 82(3): 269-277.
    47. Ferri K F, Kroemer G Organdie-specific initiation of cell death pathways [J]. Nat Cell Biol, 2001,3(4): E255-E263.
    48. Wei HL, Zhang CY, Jin HF, et al. Hydrogen sulfide regulates lung tissue oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats [J]. Acta Pharmacol Sin, 2008,29(6): 670-679.
    49. Sodha NR, Clements RT, Feng J, et al. The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury [J]. Eur J Cardiothorac Surg, 2008, 33(5): 906-913.
    50. Zhu YZ, Zhu YC, Li J, et al. Effects of losartan on haemodynamic parameters and
    82 angiotensin receptor mRNA levels in rat heart after myocardial infarction[J].J Renin Angiotensin Aldosterone Syst,2000,1(3):257-262.
    51.Zhu YZ,Chong CL,Chuah SC,et al.Cardioprotective effects of nitroparacetamol and paracetamol in the acute phase of myocardial infarction in experimental rats [J].Am J Physiol Heart Circ Physiol,2006,290z:H517-H524.
    52.Nienhuis MB,Ottervanger JP,Dambrink JH,et al.Comparative predictive value of infarct location,peak CK,and ejection fraction after primary PCI for ST elevation myocardial infarction[J].Coron Artery Dis,2009,20(1):9-14.
    53.Lowicka E,Beltowski J.Hydrogen sulfide(H2S)-the third gas of interest for pharmacologists[J].Pharrnacol Rep,2007,59(1):4-24.
    54.Zhu YZ,Wang ZJ,Ho P,et al.Hydrogen sulfide and its cardioprotective effects in myocardial ischemia in experimental rats[J].J Appl Physiol,2007,102:261-268.
    55.Luqman N,Sung RJ,Wang CL,et al.Myocardial ischemia and ventricular fibrillation:pathophysiology and clinical implications[J].Int J Cardiol,2007,119(3):283-290.
    56.Prabhu S,Jainu M,Sabitha KE,et al.Role of mangiferin on biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats[J].J Ethnopharmacol,2006,107(1):126-133.
    57.Prince PS,Rajadurai M.Preventive effect of Aegle marmelos leaf extract on isoprenaline-induced myocardial infarction in rats:biochemical evidence[J].J Pharm Pharmacol,2005,57(10):1353-1357.
    58.Okada DR,Liu Z,Beju D,et al.Monocationic radiotracer kinetics and myocardial infarct size:a perfused rat heart study[J].Ann Nucl Med,2008,22(7):617-627.
    59.Wang Z,Li M,Wu WK,et al.Ginsenoside Rb1 preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduction[J].Cardiovasc Drugs Ther,2008,22(6):443-452.
    60.Whiteman M,Cheung NS,Zhu YZ,et al.Hydrogen sulphide:a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain[J].Biochem Biophys Res Commun,2005,326:794-798.
    61.Yong QC,Lee SW,Foo CS,et al.Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning[J].Am J Physiol Heart Circ Physiol, 2008,295(3): H1330-H1340.
    62. Zhang Z, Huang H, Liu P, et al. Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening KATP channels [J]. Can J Physiol Pharmacol, 2007, 85(12): 1248-1253.
    63. Hu Y, Chen X, Pan TT, et al. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and P13K/Akt pathways [J]. Pflugers Arch, 2008,455(4): 607-616.
    64. Bian JS, Yong QC, Pan TT, et al. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes [J]. J Pharmacol Exp Ther, 2006, 316(2): 670-678.
    65. Greenlund LJ, Deckwerth TL, Johnson EM. Superoxide dismutase delays neuronal apoptosis: A role for reactive oxygen species in programmed neuronal death [J]. Neuron, 1995,14: 303-315.
    66. Banerjee SK, Maulik SK. Effect of garlic on cardiovascular disorders: a review [J]. Nutrition Journal, 2002,1,4.
    67. Remmen HV, and Williams MD. Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis [J]. Am J Physiol Heart Circ Physiol, 2001,281:1422-1432.
    68. Frantz S, Calvillo L, Tillmanns J, et al. Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose [J]. FASEB J, 2005,19: 591-593.
    69. Mason MG, Nicholls P, Wilson MT, et al. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase [J]. Proc Natl Acad Sci, 2006,103: 708-713.
    70. Zanardo RC. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation [J]. FASEB J, 2006,20: 2118-2120.
    71. Sharikabad MN, Aronsen JM, Haugen E, et al. Cardiomyocytes from postinfarction failing rat hearts have improved ischemia tolerance [J]. Am J Physiol Heart Circ Physiol, 2009,296(3): H787-H795.
    72. Timmis AD. Early diagnosis of acute myocardial infarction [J]. British Medical Journal, 1990,301: 941-942.
    73. Holland RP, Brooks H. TQ-ST segment mapping: critical review and analysis of current concepts [J]. American Journal of Cardiology, 1977,40: 110-129.
    74. Jilaihawi H, Greaves S, Rouleau JL, et al. Left ventricular hypertrophy and the risk of subsequent left ventricular remodeling following myocardial infarction [J]. Am J Cardiol. 2003 Mar 15;91(6):723-6.
    75. Veinot JP, Gattinger DA, Fliss H. Early apoptosis in human myocardial infarcts [J]. Hum Pathol, 1997,28: 485-492.
    76. Jackson BM, Gorman JH, Moainie SL, et al. Extension of border zone myocardium in postinfarction dilated cardiomyopathy [J]. J Am Coll Cardiol, 2002,40:1160-1167.
    77. Palojoki E, Saraste A, Eriksson A. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats [J]. Am J Physiol, 2001,280: H2726-H2731.
    78. Abbate A, Biondi-Zoccai G, Petrolini A, et al. Clinical relevance of apoptosis in early and late post-infarction left ventricular remodeling [J]. Ital Heart J, 2002, 3(12): 699-705.
    79. Hofstra L, Liem IH, Dumont EA, et al. Visualisation of cell death in vivo in patients with acute myocardial infarction [J]. Lancet, 2000,356(9225): 209-212.
    80. Abbate A, Biondi-Zoccai GG, Baldi A. Myocardiocyte loss due to apoptosis [J]. Eur Heart J, 2002,23(23): 1889-1890.
    81. Baldi A, Modina S, Cheli F, et al. Bovine somatotropin administration to dairy goats in late lactation: effects on mammary gland function, composition and morphology [J]. J Dairy Sci, 2002, 85(5): 1093-1102.
    82. Smit JW, Romijn JA. Acute insulin resistance in myocardial ischemia: causes and consequences [J]. Semin Cardiothorac Vase Anesth, 2006,10(3): 215-219.
    83. Abbate A, Bussani R, Amin MS, et al. Acute myocardial infarction and heart failure: role of apoptosis [J]. Int J Biochem Cell Biol. 2006,38(11): 1834-40.
    84. Kumar D, Kirshenbaum LA, Li T, et al. Apoptosis in adriamycin cardiomyopathy and its modulation by probucol [J]. Antioxidant Redox Signal, 2001, 3: 135-145.
    85. Schwarz K, Simonis G, Yu X, et al. Apoptosis at a distance: remote activation of caspase-3 occurs early after myocardial infarction [J]. Mol Cell Biochem. 2006 Jan;281(1-2):45-54.
    86. Warm BP, Boucher M, Kaloustian S, et al. Apoptosis detected in the amygdala following myocardial infarction in the rat [J]. Biol Psychiatry. 2006 Mar 1;59(5):430-3.
    87. Misao J, Hayakawa Y, Ohno M, et al. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction [J]. Circulation, 1996, 94(7): 1506-1512.
    88. Capano M, Crompton M. Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases [J]. Biochem J. 2006 Apr1;395(1):57-64.
    89. Hochhauser E, Cheporko Y, Yasovich N, et al. Bax deficiency reduces infarct size and improves long-term function after myocardial infarction [J]. Cell Biochem Biophys,2007,47(1):11-20.
    90. Zidar N, Jera J, Maja J, et al. Caspases in myocardial infarction [J]. Adv Clin Chem, 2007,44: 1-33.
    91. Szab(?) C. Hydrogen sulphide and its therapeutic potential [J]. Nat rev drug discov, 2007,6(11): 917-935.
    92. Biagi P, Abate L. Heart failure, oxidative stress and alloprinol [J]. Monaldi Arch Chest Dis, 2005,64(1): 33-37.
    93. Kumar D, Lou H, Singal PK. Oxidative stress and apoptosis in heart dysfunction [J]. Herz, 2002,27(7): 662-668.
    94. Singal PK, Khaper N, Farahmand F, Bello-Klein A. Oxidative stress in congestive heart failure [J]. Curr Cardiol Rep, 2000,2(3): 206-211.
    95. Rebrova TIu, Kondrat'eva DS, Afanas'ev SA, Barzakh El. Activity of lipid peroxidation and functional state of the myocardium in remodeling of rat heart after experimental myocardial infarctionl [J]. Kardiologiia, 2007,47(6): 41-45.
    96. Chatterjee K. Congestive heart failure: what should be the initial therapy and why [J]. Am J Cardiovasc Drugs, 2002,2(1): 1-6.
    97. van Empel VP, Bertrand AT, Hofstra L, et al. Myocyte apoptosis in heart failure [J]. Cardiovasc Res, 2005, 67(1): 21-29.
    98. Lee Y, Gustafsson AB. Role of apoptosis in cardiovascular disease [J]. Apoptosis, 2009,14(4): 536-548.
    99. Chen QM, Tu VC. Apoptosis and heart failure: mechanisms and therapeutic implications [J]. Am J Cardiovasc Drugs, 2002,2(1): 43-57.
    100.Sharov VG, Todor AV, Sabbah HN. Left ventricular histomorphometric finding in dogs with heart failure treated with the Acorn Cardiac Support Device [J]. Heart Fail Rev, 2005,10(2): 141-147.
    101.Nemec KN, Khaled AR. Theraputic modulation of apoptosis: targeting the BCL-2 family at the interface of the mitochondrial membrane [J]. Yonsei Med J, 2008,49(5): 689-97.
    102.Abbate A,Biondi-Zoccai GG,Baldi A.Pathophysiologic role of myocardial apoptosis in post-infarction left ventficular remodeling[J].J Cell Physiol,2002,193(2):145-153.
    103.Movassagh M,Foo RS.Simplified apoptotic cascades.Heart Fail Rev.2008;13(2):111-9.
    104.Cutler MJ,Rosenbaum DS,Dunlap ME.Structural and electrical remodeling as therapeutic targets in heart failure[J].J Electrocardiol,2007,40(6 Suppl):S1-7.
    105.Lim H,Zhu YZ.Role of transforming growth factor-beta in the progression of heart failure[J].Cell Mol Life Sci,2006,63(22):2584-2596.
    106.Sun Y,Zhang J,Lu L,et al.Tissue angiotensin Ⅱ in the regulation of inflammatory and fibrogenic components of repair in the rat heart[J].J Lab Clin Med,2004,143(1):41-51.
    1. Kahn G History of garlic. In: Koch HP, Lawson LD, eds. Garliv: the Science and Therapeutic Application of Allium Sativum L and Related Species [J]. New York: Williams & Wilkins, 1996: 25-36.
    2. Bordia A. Effect of garlic on human platlet aggregation in vitro [J]. Atherosclerosis 1978,29: 355-360.
    3. Bordia A, Verma SK, Vyas AK, et al 1977. Effect of essential oil of onion and garlic on experimental atherosclerosis in rabbits [J]. Atherosclerosis, 1977, 26: 379-386.
    4. Chutani SK, Bordia A, 1981. The effect of fried versus raw garlic on fibrinolytic activity in man [J]. Atherosclerosis, 1981, 38: 417-421.
    5. Moyers S. Garlic in Health, History and World Cuisine [J]. St Petersburg, FL: Suncoast Press, 1996,1036.
    6. Brace LD. Cardiovascular benefits of garlic (Allium sativum L.) [J]. J Cardiovasc Nurs, 2002,16(4): 33-49.
    7. Rajaram S. The effect of vegetarian diet, plant foods, and phytochemicals on hemostasis and thrombosis [J]. Am J Clin Nutr, 2003, 78 (3 Suppl.): 552S-558S.
    8. Borek C. Garlic reduces dementia and heart-disease risk [J]. J Nutr, 2006, 136: 810S-812S.
    9. Augusti KT, Mathew PT. Lipid lowering effect of allicin (diallyl disulfide oxide) on long-term feeding in normal rats [J]. Experientia, 1974, 30:468-470.
    10. Block E. The organosulfur chemistry of the genus Allium -implications for the organic chemistry of sulfur [J]. Angew Chem Int Ed Engl, 1992,31: 1135-1178.
    11. Benavides GA, Squadrito GL, Mills RW, et al. Hydrogen sulfide mediates the vasoactivity of garlic [J]. PNAS, 2007,104(46): 17977-17982.
    12. Chuah SC, Moore PK, Zhu YZ. S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway [J]. Am J Physiol Heart Circ Physiol, 2007,293(5): H2629-30.
    13. Maslin DJ, Brown CA, Das I, et al. Nitric oxide, a mediator of garlic action [J]? Biochemical Society Transactions, 1997,25: 408.
    14. Sooranna SR, Hirani J, Das I., 1995. Garlic induce both GTP cyclohydrase and nitric oxide synthase activity in choriocarcinoma cells [J]. Biochemical Society Transactions, 1995,23: 543S.
    15. Lancaster JE, Shaw ML. G-Glutayl peptides in the biosynthesis of S-alk(en)yl-L-cysteine sulfoxides (flavor precursors) in Allium [J]. Phytochemistry, 1989,28: 455-460.
    16. Lanzotti, V. The analysis of onion and garlic [J]. Journal of Chromatography A, 2006,1112-1122.
    17. Amagase H, Petesch BL, Matsuura H, et al. Intake of garlic and its bioactive components [J]. The Journal of Nutrition, 2001,131: 955S-962S.
    18. Amagase H. Clarifying the real bioactive constituents of garlic. Journal of Nutrition, 2006,136: 716S-725S.
    19. Amagase H. Intake of garlic and its components. Nutritional and Health Benefits of Garlic as a Supplement Conference, 1998, Newport Beach, CA, p. 4 (abs.).
    20. Moriguchi T, Saito H, Nishiyama N. Anti-aging effect of aged garlic extract in the inbred brain atrophy mouse model [J]. Clin Exp Pharmacol Physiol, 1997,24: 235-242.
    21. Amagase H. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. In: Antioxidants and Disease, 6th Congress on Clinical Nutrition, 1997, Banff, Alberta, Canada, p. 28 (abs.).
    22. Ide N, Lau BHS. Garlic compounds protect vascular endothelial cells from oxidized low density lipoprotein-induced injury [J]. J Pharm Pharmacol, 1997, 49:908-911.
    23. Imai J, Ide N, Nagae S, et al. Antioxidants and free radical scavenging effects of aged garlic extract and its constituents [J]. Planta Med, 1994, 60: 417-420.
    24. Amagase H, Milner JA. Impact of various sources of garlic and their constituents on 7, 12-DMBA binding to mammary cell DNA [J]. Carcinogenesis,1993,14: 1627-1631.
    25. Awazu S, Horie T. Antioxidants in garlic. Ⅱ. Protection of heart mitochondria by garlic extract and diallyl polysulfide from the doxorubicininduced lipid peroxidation. In: Nutraceuticals: Designer Foods Ⅲ Garlic, Soy and Licorice (Lanchance, P. P., ed.), 1997, pp. 131-138. Food & Nutrition Press, Trumbull,CT.
    26. Horie T, Awazu S, Itakura Y, et al. Identified diallyl polysulfides from an aged garlic extract which protects the membranes from lipid peroxidation [J]. Planta Med, 1992, 58: 468-469.
    27. Jose M. Baena Diez, Jose L, et al. Cardiovascular disease epidemiology and risk factors in primary care [J]. Epidemiology and prevention, 2005, 58(4): 367-373.
    28. Steyn K, Steyn M, Swanepoel AS, et al. Twelve-year results of the coronary risk factor study (CORIS) [J]. Int J Epidemiol, 1997,26: 964-971.
    29. Howard G, Wagenknecht LE, Burke GL, et al. Cigarette smoking and progression of atherosclerosis: the atherosclerosis risk in communities (ARIC) study [J]. J Am Med Assoc, 1998,279: 119-124.
    30. Villeneuve PJ, Morrison HI, Craig CL, et al. Physical activity, physical fitness, and risk of dying [J]. Epidemiology, 1998,9: 626-631.
    31. Schwartz CJ, Valente AJ, Sprague EAA. Modern view of atherogenesis [J]. Am J Cardiol, 1993, 71: 9b-14b.
    32. Fuster VF, Badimon L, Badimon JJ, et al. Mechanisms of disease: the pathogenesis of coronary artery disease and the acute coronary syndromes [J]. N Engl J Med, 1992,326: 242-250.
    33. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s [J]. Nature (Lond), 1993, 362: 801-809.
    34. Dusting GJ, Fennessy P, Yin Z-L, et al. Nitric oxide in atherosclerosis: vascular protector or villain j [J]. Clin Exp Pharmacol Physiol, 1998,25: S34-S41.
    35. Luscher TF, Noll G. The pathogenesis of cardiovascular disease: role of the endothelium as a target and mediator [J]. Atheroslerosis, 1995,118: S81-S90.
    36. Tappel A. Lipid peroxidation and damage to cell components [J]. Fed Proceedings, 1973,32:1870.
    37. Saravanan G, Prakash J, 2004. Effect of garlic (Allium sativum) on lipid peroxidation in experimental myocardial infarction in rats [J]. Journal of Ethnopharmacology, 2004,94: 155-158.
    38. Banerjee SK, Sood S, Dinda AK, et al. Chronic oral administration of raw garlic protects against isoproterenol-induced myocardial necrosis in rat [J]. Comparative Biochemistry and Physiology Part C, 2003b, 136: 377-386.
    39. Ernst E, Stevinson C, Pittler MH. Meta-analyses of garlic for hypercholesterolemia, in: Schulz, Ⅶ, Rietbrock, N., Roots, Ⅰ., Loew, D. (Eds.) Phytopharmaka Ⅶ. Forschung und klinische Anwendung, Steinkopff Verlag, Darmstadt, 2002, pp. 129-136.
    40. Peleg A, Hershcovici T, Lipa R, et al. Effect of garlic on lipid profile and psychopathologic parameters in people with mild to moderate hypercholesterolemia [J]. Isr Med Assoc J, 2003, 5: 637-640.
    41. Satitvipawee P, Rawdaree P, Indrabhakti S, et al. No effect of garlic extract supplement on serum lipid levels in hypercholesterolemic subjects [J]. J Med Assoc Thai, 2003, 86: 750-757.
    42. Van Doom MB, Espirito Santo SM, Meijer P, et al. Effect of garlic powder on C-reactive protein and plasma lipids in overweight and smoking subjects [J]. Am J ClinNutr, 2006, 84: 1324-1329.
    43. Zhang L, Gail MH, Wang YQ, et al. A randomized factorial study of the effects of long-term garlic and micronutrient supplementation and of 2-wk antibiotic treatment for Helicobacter pylori infection on serum cholesterol and lipoproteins [J]. Am J Clin Nutr, 2006, 84: 912-919.
    44. Lau BHS. Suppression of LDL oxidation by garlic compounds is a possible mechanism of cardiovascular health benefit [J]. J Nutr, 2006,136: 765S-768S.
    45. Gardner DC, Lawson LD, Block E, et al. Effect of raw garlic vs commercial garlic supplements on plasma lipid concentrations in adults with moderate hypercholesterolemia [J]. Archives of Internal Medicine, 2007,167: 346-353.
    46. Rahman K, Lowe GM. Garlic and cardiovascular disease: a critical review [J]. Journal of Nutrition, 2006,136: 736S-740S.
    47. Gupta N, Porter TD. Garlic and garlic-derived compounds inhibit human squalene monooxygenase [J]. The Journal of Nutrition, 2001,131: 1662-1667.
    48. Singh DK, Porter TD. Inhibition of sterol 4 alpha-methyl oxidase is the principal mechanism by which garlic decreases cholesterol synthesis [J]. Journal of Nutrition, 2006,136(3): 759S-764S.
    49. Srinivasan K, Sambaiah K. The effect of spices on cholesterol 7-alpha-hydroxilase activity and on serun and hepatic cholesterol levels in rats [J]. International Journal of Vitamin and Nutrition Research, 1991, 61: 364-369.
    50. Yeh YY, Yeh SM. Garlic reduces plasma lipids by inhibiting hepatic cholesterol and triaglycerol synthesis [J]. Lipids, 1994,29:189-193.
    51. Freeman F, KoderaY. Garlic chemistry: stability of S-(2-propenyl)-2- propene-1-sulfothiate (allicin) in blood, solvents, and simulated physiological fluids [J]. J Agric Food Chem, 1995,43: 2332-2338.
    52. Ide N, Lau BHS. S-allylcysteine attenuates oxidative stress in endothelial cells [J]. Drug Dev Ind Pharm, 1999,25: 619-624.
    53. Silagy C, Neil A. A meta-analysis of the effect of garlic on blood pressure [J]. J Hypertens, 1994a, 12: 463-468.
    54. Silagy C, Neil A. Garlic as a lipid lowering agent-a meta-analysis [J]. J Royal Coll Phys, 1994b, 28: 39-45
    55. Mcrae MP, Dacbn MC. A review of studies of garlic (Allium sativum) on serum lipids and blood pressure before and after 1994: Does the amount of allicin released from garlic power tablets play a role [J]? Journal of Chiropractic Medicine, 2005,4(4): 182-191.
    56. Sharifi A, Darabi R, Akbarloo N. Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat [J]. J Ethnopharm, 2003, 86: 219-224.
    57. Capraz M, Dilek M, Akpolat T. Garlic hypertension and patient education [J]. Cardiology, 2006,121:130-131.
    58. Das I, Khan N, Sooranna S. Potent activation of nitric oxide synthase by garlic: a basis for its therapeutic applications [J]. Curr Med Res Opin, 1995,13: 257-63.
    59. Pedraza-Chaverri J, Tapia E, Medina-Campos O, et al. Garlic prevents hypertension induced by chronic inhibition of nitric oxide synthesis [J]. Life Sci, 1998,62: 71-77.
    60. Liu L, Yeh Y. S-Alk(en)yl cysteines of garlic inhibit cholesterol synthesis by deactivating HMG-CoA reductase in cultured rat hepatocytes [J]. J Nutr, 2002, 132: 1129-1134.
    61. Yeh Y, Lin R, Yeh S, et al. Garlic reduces plasma cholesterol in hypercholesterolemic men maintaining habitual diets. In: Ohigashi H, Osawa T, et al, editors. Food factors for Cancer Prevention. Tokyo, Japan: Springer-Verlag,1997, p. 226-230.
    62. Harauma A, Moriguchi T. (2006). Aged Garlic Extract improves blood pressure in spontaneously hypertensive rats more safely than raw garlic [J]. Journal of Nutrition, 2006,136: 769S-773S.
    63. Aqel M B, Gharaibah MN, Salva AS. Direct relaxant effects of garlic juice on smooth and cardiac muscles [J]. Journal Ethnopharmacology, 1991, 33: 13-19.
    64. Das I, Khan NS, Sooranna SR. Nitric oxide synthase activation is a unique mechanism of garlic action [J]. Biochem Soc Trans, 1995,23:136S.
    65. Kaye AD, Witt BJD, Anwar M, et al. J Appl Physiol, 2000, 89: 353-358.
    66. Al-Qattan KK, Khan I, Alnaqeeb MA, et al. Thromboxane-B2, prostaglandin-E2 and hypertension in the rat 2-kidney 1 -clip model: a possible mechanism of the garlic induced hypotension [J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2001, 64(1): 5-10.
    67. Al-Qattan KK, Khan I, Alnaqeeb MA, et al. Mechanism of garlic induced reduction of hypertension in 2K-1C rats: a possible mediation of Na/H exchanger isoform-1 [J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2003, 69: 217-222.
    68. Thomson M, Mustafa T, Ali M. Thromboxane-B(2) levels in serum of rabbits receiving a single intravenous dose of aqueous extract of garlic and onion, Prostaglandins Leukot. Essent. Fatty Acids, 2000, 63(4): 217-221.
    69. Rahman K, Billington D. Dietary supplementation with aged garlic extract inhibits ADP-induced platelet aggregation in humans [J]. J Nutr, 2000, 130:2662-2665.
    70. Steiner M, Li W. Aged garlic extract, a modulator of cardiovascular risk factors: a dose-finding study on the effects of AGE on platelet functions [J]. J Nutr, 2001, 131 (3S): 980S-984S.
    71. Chan KC, Yin MC, Chao WJ. Effect of diallyl trisulfide-rich garlic oil on blood coagulation and plasma activity of anticoagulation factors in rats [J]. Food and Chemical Toxicology, 2007,45: 502-507.
    72. Izzo AA. Herb-drug interactions: an overview of the clinical evidence [J]. Fundam Clin Pharmacol, 2005,19: 1-16.
    73. Saw JT, Bahari MB, Ang HH, et al. Potential drug-herb interaction with antiplatelet/anticoagulant drugs [J]. Complement Ther Clin Pract, 2006, 12: 236-241.
    74. Sunter WH. Warfarin and garlic. Pharm J, 1991,246: 772.
    75. Macan H, Uykimpang R, Alconcel M, et al. Aged garlic extract may be safe for patients on warfarin therapy [J]. J Nutr, 2006,136: 793S-795S.
    76. Harenberg J, Giese C, Zimmermann R. Effect of dried garlic on blood coagulation, fibrinolysis, platelet aggregation and serum cholesterol levels in patients with hyperlipoproteinemia [J]. Atherosclerosis, 1988, 74(3): 247-249.
    77. Allison GL, Lowe GM, Rahman K. Aged garlic extract and its constituents inhibit platelet aggregation through multiple mechanisms [J]. J Nutr, 2006,136(3 Suppl): 782S-788S.
    78. Bordia A, Verma SK, Srivastava KC. Effect of garlic (Allium sativum) on blood lipids, blood sugar, fibrinogen and flbrinolyic activity in patients with coronary artery disease [J]. Prost Leukot Essent Fatty Acids, 1998, 58 (4): 257-263.
    79. Chan KC, Hsu CC, Yin MC. Protective effect of three diallyl sulfides against glucose induced erythrocyte and platelet oxidation, and ADP-induced platelet aggregation[J].Thromb Res,2003,108(4):317-322.
    80.Briggs WH,Xiao H,Parkin KL,et al.Differential inhibition of human platelet aggregation by selected Alliurn thiosulfinates[J].J Agric Food Chem,2000,48:5731-5735.
    81.Mohammad SF,Woodward SC.Charactedsation of a potent inhibitor of platelet aggregation and release reaction isolated from Allium sativum(garlic)[J].Thrombosis Research,1986,44:793-806.
    82.Ali M,Thomson M,Afzal M.Garlic and onions:their effect on eicosanoid metabolism and its clinical relevance[J].Prostaglandins Leukotrienes and Essential Fatty Acids,2000,62(2):55e73.
    83.Apitz-Castro R,Badimon JJ,Badimon L.Effect of ajoene,the major antiplatelet compound from garlic,on platelet thrombus formation[J].Thromb Res,1992,68(2):145.
    84.Apitz-Castro R,Cabrera S,Cruz MR,et al.Effects of garlic extract and of three pure components isolated from it in human platelet aggregation,arachidonate metabolism,release reaction and platelet ultrastructure[J].Thromb Res,1983,32:155.
    85.Block E,Ahmad S,Jain M,et al.(E,Z)-Ajoene:a potent antithrombotic agent from garlic[J].J Am Chem Soc,1984,106:8295.
    86.Villar R,Alvarino MT,Flores R.Inhibition by ajoene of protein tyrosine phosphatase activity in human platelets[J].Biochim Biophys Acta,1997,1337:233-240.
    87.Apitz-Castro R,Badimon JJ,Badimon LA.Garlic derivative ajoene,inhibits platelet deposition on severely damaged vessel wall in an in vivo porcine experimental model[J].Thromb Res,1994a,75:243-249.
    88.Apitz-Castro R,Jain MK,Bartoli F,et al.Evidence for direct coupling of primary agonist-receptor interaction to the exposure of functional Ⅰb-Ⅲa complexes in human blood platelets:results from studies with the antiplatelet compound ajoene[J].Biochim Biophys Acta,1994b,1094:269-280.
    89.Qi R,liao F,Inoue K,et al.Inhibition by diallyl tdsulfide,a garlic component of intracellular Ca~(2+) mobilization without affecting inositol-1,4,5-trisphosphate(IP_3)formation in activated platelets[J].Biochemical Pharmacology,2000,60:1475-1483.
    90.Abby SL,Harris IM,Harris KM.Homocysteine and cardiovascular disease[J].J Am Board Fam Pract, 1998,11: 391-398.
    91. Welch GN, Upchurch GR, Loscalzo J. Homocysteine, oxidative stress, and vascular disease [J]. Hosp Pract, 1997,32: 81-92.
    92. Banerjee SK, Mukherjee PK, Maulik SK. Garlic as an antioxidant: the good, the bad and the ugly [J]. Phytother Res, 2003a, 17: 97-106.
    93. Ide N, Lau BHS. Aged garlic extract attenuates intracellular oxidative stress [J]. Phytomedicine, 1999,6: 125-131.
    94. Morihara N, Sumioka I, Ide N, et al. Aged garlic extract maintains cardiovascular homeostasis in mice and rats [J]. J Nutr, 2006,136: 777S-781S.
    95. Herrera-Mundo MN, Silva-Adaya D, Maldonado PD, et al. S-allylcysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers f oxidative stress and mitochondrial dysfunction [J]. Neurosci Res, 2006, 56:39-44.
    96. Maldonado PD, Barrera D, Rivero I, et al. Antioxidant S-allylcysteine prevents gentamicin-induced oxidative stress and renal damage [J]. Free Radic Biol Med,2003,35:317-324.
    97. Numagami Y, Ohnishi ST. 5-allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia [J]. J Nutr, 2001, 131:1100S-1105S.
    98. Perez-Severiano F, Rodriguez-Perez M, Pedraza-Chaverri J, et al. 5-allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acidinduced neurotoxicity and oxidative damage in rats [J]. Neurochem Int, 2004a, 45: 1175-1183.
    99. Perez-Severiano F, Salvatierra-Sanchez R, Rodriguez-Perez M, et al. S-allylcysteine prevents amyloid-_ peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits [J]. Eur J Pharmacol, 2004b, 489: 197-202.
    100. Kim JM, Lee JC, Chang N, et al. S-allyl-L-cysteine attenuates cerebral ischemic injury by scavenging peroxynitrite and inhibiting the activity of extracellular signal-regulated kinase [J]. Free Radic Res, 2006, 40: 827-835.
    101. Kim KM, Chun SB, Koo MS, et al. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine [J]. Free Radic Biol Med, 2001, 30: 747-756.
    102. Medina-Campos ON, Barrera D, Segoviano-Murillo S, et al. S-allylcysteine scavenges singlet oxygen and hypochlorous acid and protects LLC-PK1 cells of potassium dichromate-induced toxicity [J]. Food Chem Toxicol, 2007, 45:2030-2039.
    103. Morihara N, Ide N, Sumioka I, et al. Aged garlic extract inhibits peroxynitrite-induced hemolysis [J]. Redox Rep, 2005,10: 159-165.
    104. Eghbal MA, Moridani MY, Pennefather PS, et al. A protective role toward atherosclerosis by hydrogen sulfide and natural organosulfur compounds derived from garlic and onion. XIV International symposium on atherosclerosis, 2000 (Abstract).
    105. Weiss N, Ide N, Abahji T, et al. Aged garlic extract improves homocysteine-induced endothelial dysfunction in macro- and microcirculation [J].J Nutr,2006,750s-754s.
    106. Anderoli TE, Carpenter CCJ, Gariggs RC, et al. Cecil Essential of Medicin [J], Saunders, Philadelphia, 2004, p. 583.
    107. Johnson L, Strich H, Taylor A, et al. Use of herbal remedies by diabetic Hispanic women in the Southwestern United States [J]. Phytotherapy Research, 2006,20: 250-255.
    108. Hosseini M, Shafiee SM, Baluchnejadmojarad T. Garlic extract reduces serum angiotensin converting enzyme (ACE) acivity in nondiabetic and streptozotocin-diabetic rat [J]s. Pathophysiology, 2007,14: 109-112.
    109. Mansell P, Leatherdale B, Lloyd J, et al. (1995). Garlic, serum lipids and cardiovascular risk factors in diabetes. Zeitschrift fur Phytotherapie, 1995, 16. (abstract).
    110. Srinivasan K. Plants food in the management of diabetes mellitus: spices as beneficial antidiabetic food adjuncts [J]. International Journal of Food Science and Nutrition, 2005, 56: 399-414.
    111. Blumenthal M, BusseWR, Goldberg A, et al. The Complete German ommission E Monographs-Therapeutic Guide to Herbal Medicine, 1998,American Botanical Council, Austin TX.
    112. Tamaki T, Sonoki S. Volatile sulfur compounds in human expiration after eating raw or heat-treated garlic [J]. J Nutr Sci Vitaminol, 1999,45: 213-222.
    113. Schulz V, Hansel R, Blumenthal M, et al. Rational phytotherapy, 2004, Springer-Verlag, Berlin Heidelberg.
    114. Barnes J, Anderson LA, Phillipson JD. Herbal medicine, Parmaceutical Press, 2002, London Chicago.
    115. Hoshino T, Kashimoto N, Kasuga S. Effects of garlic preparations on the gastrointestinal mucosa [J]. JNutr, 2001,131: 1109S-1113S.
    116. Sinha SM, Pasricha JS, Sharma R, Kandhari KC. Vegetables responsible for contact dermatitis of the hands [J]. Arch Dermatol, 1977,113: 776-779.
    117. Anibarro B, Fontela J L, De La Hoz F. Occupational asthma induced by garlic dust [J]. J Allergy Clin Immunol, 1997,100: 734-738.
    118. Ghazafari T, Hassan ZM, Ebtekar M, et al. Garlic induces a shift in cytokine pattern in Leishmania major-infected BALB/c mice [J]. Scandinavian Journal of Immunology, 2000, 52(5): 491-495.
    119. Moore PK, Bhatia M, Moochhala S. Hydrogen sulfide: from the smell of the past to the mediator of the future [J]? Trends Pharmacol Sci, 2003, 24(12): 609-611.
    120. Cooper AJL, Pinto JT, 2006. Cysteine S-conjugate β-lyases [J]. Amino Acids, 2006,30:1-15.
    121. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology [J]. Pharmacol Rev, 1991,43: 109-142.
    122. Palmer RM, Ferrodge AG, Moncada S. Nitric oxide release accounts for the biologic activity of endothelium-derived relaxing factor [J]. Nature, 1987, 327: 524-526.
    123. Breithaupt-Gr(?)gler K, Ling M, Boudoulas H, et al. Protective effect of chronic garlic intake on elastic properties of aorta in the elderly [J]. Circulation, 1997,96: 2649-2655.
    124. Das I, Hirani J, Sooranna S. Arginine is not responsible for the activation of nitric oxide synthase by garlic [J]. J Ethnophamacol, 1996, 53: 5-9.
    125. Morihara M, Sumioka I, Moriguchi T, et al. Aged garlic extract enhances production of nitric oxide [J]. Life Sciences, 2001, 71: 509-517.
    126. Anim-Nyame N, Sooranna SR, Johnson MR, et al. Garlic supplementation increases peripheral blood flow: a role for interleukin-6 [J]? Journal of Nutritional Biochemistry, 2004,15: 30-36.
    127. Ashraf MZ, Hussain ME, Fahim M. Endothelium mediated vasorelaxant response of garlic in isolated rat aorta: role of nitric oxide [J]. Journal of Ethnopharmacology, 2004, 90: 5-9.
    128. Dirsch VM, Kiemer A K, Wagner H, Vollmar AM, 2000. Effect of allicin and ajoene, two compounds of garlic, on inducible nitric oxide synthase [J]. Atherosclerosis, 2000,139: 333-339.
    129. Williams MJ, Sutherland WH, McCormick MP, et al. Aged garlic extract improves endothelial function in men with coronary artery disease [J]. Phytother Res, 2005,19:314-319.
    130. Mousa AS, Mousa SA. Cellular effects of garlic supplements and antioxidant vitamins in lowering marginally high blood pressure in humans: pilot study [J]. Nutrition Research, 2007,27:119-123.
    131. Chang HP, Chen YH. Differential effects of organosulfur compounds from garlic oil on nitric oxide and prostaglandin E2 in stimulated macrophages [J]. Nutrition, 2005,21:530-536.