复杂地下建筑群的仿真模拟研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程地质的建设已经成为我国国民经济建设的当务之急,工程地质行业的科技创新与管理水平的提升迫在眉睫,越来越受到人们的重视。数字水利水电工程就是指在工程区工作范围内建立以坐标信息为主线,将工程区的各种数据组合结合起来构建成三维地质模型。它可以描述工程区中每一点的全部信息,按坐标组织,存储起来,并提供有效、方便和直观的检索手段和显示手段,使有关人员都可以快速准确、充分和完整地了解及利用工程区的信息。在应用三维可视化技术之前,地质资料的分析解释都局限于二维、静态的表达方式,它人们直接、完整、准确的理解与感受地下地质情况造成了困难。三维地质建模运用科学计算可视化技术来对地层及其环境信息进行三维再现,可以直观地描述地下复杂的地质构造情况。三维地质建模运用科学计算可视化技术来对地层及其环境信息进行三维再现,可以直观地描述地下复杂的地质构造情况。在信息系统建设方面,三维地质信息系统中具有“五性四多”的特点:复杂性、海量性、异质性、不确定性和动态性,多源、多精度、多时相和多尺度,如果没有分析清楚信息系统建设的主要任务和功能需求,就不可能满足专业要求。
     本文是基于GeoView三维可视化地学平台开展的,三维地质建模软件是计算机技术在地质中应用的重点和发展方向,它将大量地质资料和地质人员分析判断结果抽象为可视化的地质模型,使复杂的空间关系可视化,通过对模型的旋转,从不同的角度观看模型,形象直观。
     GeoView平台具有强大的三维建模及分析功能,为本文的研究提供了基础平台,GeoView三维平台采用了一种改进的B-Rep(Boundary Representation)数据模型“二体式”数据结构(毛小平,2000),将空间三维实体分为线对象(Polyline Object)、多边形对象(Polygon Object)、曲面对象(Surface Object)、标注对象(Text Object)和体对象(Volume Object)等,实体的三维模型由大量的体单元组成,每个体单元不必都要有完全独立的各个面,所有相邻的体单元都有一个共同拥有的公共面,即在“二体式”数据结构中,相邻两个体单元接触部分的两个面被合并成为一个面。二体式结构的这种特点,既有利于三维实体内部各种空间位置和拓扑关系的保持,也有利于进一步对三维实体进行矢量剪切分析,为复杂地下施工洞室的空间分析提供了基本的保证。
     本论文在实际工程项目的基础上,详细论述了国内外三维地质建模的发展状况和趋势,分析了存在的问题,而后提出了基于GIS的几何建模的实施技术和系统构建方案。论文首先介绍了课题的意义,地质体三维建模相关技术背景,然后分析了本课题的国内外发展现状、发展趋势及存在的问题,并做出了相应的评述,总结和分析了进行几何建模的关键技术,包括基于几何建模的三维数据组织方法,以及在此基础上进行的几种应用分析,确立了几何建模应用的重点和难点所在。
     本文主要从以下几个方面进行了研究和讨论:
     1、基于二维轮廓线的复杂地下洞室建模
     二维轮廓线重构三维表面是几何建模的重要技术手段,本论文对此进行了详细的讨论,对几种重构中可能出现的问题:轮廓对应问题、轮廓拼接和轮廓分支问题分析了几种解决方法,提出了适合复杂地下洞室群建模使用的轮廓线重构算法,在数据的三维拓扑结构中引入了GIS属性数据的管理方法,区别出层状和非层状两种不同的使用手段,总结了行之有效的建模步骤。
     2、复杂地下洞室模型的三维地质分析
     地质体结构进行三维可视化模拟,并能分析复杂地下建筑群围岩块体稳定性情况,能对节理裂隙发育的岩石边坡搜索最小抗剪强度滑裂面,求解该滑裂面的稳定安全系数,用于指导实际的工程设计。
     本课题的两个研究内容前后相接,贯穿基于三维地质模型的水利水电勘探工程布置模块中。研发的总目标是在已有水利水电三维模型的基础上,结合复杂地下洞室群布置的特点,建立一套完整的复杂地下洞室建模与空间分析模块,以便用来提高工作效率,降低成本,提高地质勘探质量,减少盲目性,减少水利水电勘探布置的风险。
     本文通过总体论证和试验,在GeoView三维平台上研发了复杂地下洞室建模模块,并且在如下的水电水利工程三维地质信息系统中得到了应用:云南苗尾水电站、四川白鹤滩水电站、四川锦屏二级水电站,得到了预期的效果。本文的创新点如下:
     1.结合3DGIS的技术特点,利用复杂地下建筑群的三维模型和地质体的三维地质模型的空间分布关系,有效的解决复杂地下建筑群的围岩稳定性分析,通过空间分析,获取能够证明围岩是否稳定的直观数据。
     2.在“水电水利工程三维地质信息系统”中首次形成了一个独立的、完整的模块,可以方便的对地下洞室进行可视化管理。
     文章的最后介绍了论文的研究成果和存在的不足,展望了未来进一步研究和探索的方向。
Engineering geology of the building has become the most urgent task of China's national economic construction,engineering geology industry and management of scientific and technological innovation to enhance the level of imminent,more and more attention.Digital hydraulic and hydroelectric engineering refers to the scope of work in the project area in order to coordinate information to establish the main line,project area will be a variety of data sets combine to build into a three-dimensional geological model.It can describe every point in the project area all of the information,by the coordinates of organizations and stored,and provide effective,convenient and intuitive means of search and display means,so that the staff can be fast and accurate,full and complete understanding of the project area and the use of information. Applied 3D can see to turn numerical mineral mountain of the technique construction before,the analysis of the geology data explains to all limit at two expression method of the 3D,static states, its people are direct,integrity,accurate comprehension and feel the underground geology circumstance results in a difficulty.3D geology's setting up the mold usage science calculation can see to turn a technique to come to carry on 3D emersion to the geologic strata and its environment information,can keep the view ground to describe the underground complicated geology structure circumstance.
     This study is based on the GeoView3D visualization platform.3D geoscience modeling software is the computer technology in the geology the application key point and the development direction,it analyzes the massive geological data and the geological personnel the judgement result to abstract as the visible geological model,causes the complex spatial relations visible,through to model revolving,watches the model from the different angle,the image is direct-viewing.
     GeoView platform has the strong 3D modeling and analyzing functions which provides the basic platform for this paper.GeoView3D uses a modified B-Rep(Boundary Representation) data model "Two Entity " data structure which divides space 3D entities into Line Object, Polygon Object,Surface Object,Text Object,and Volume Object,etc.The 3D model entity consists of large number of modules.Each module must not have full independent faces.All adjacent modules have a public face,i.e.in the "Two Entity" data structure.The two faces of the two adjacent modules contact merger into a face.The characteristic of the "Two Entity" structure, not only benefits the inside space location and topological relations maintenance of 3D entities, but also the further 3D vector shear.It provides a basic guarantee for the geological profile making in this paper.
     This thesis at a great deal of investigation of foundation up,discussed the domestic and international 3D mineral mountain construction and 3D geology to set up the development condition and trend of the mold in detail,the existent problem,and then put forward is several according to the GIS mineral body set up the implement technique and system of the mold to set up a project.The thesis introduced the meaning of the topic first,the geology body 3D set up related technique background of mold,then analyze the domestic and international development present condition of this topic,develop the trend and existent problem,and did to correspond of comment,summary and analyze to carry on the mineral body several to set up the key technique of the mold,include several of the mineral body model,the mineral body several set up a 3D data of the mold mineral body organization a method,and in this foundation go forward several application for go analysis,establish the mineral body several set up the point and the crux place of with the mold application.Made sure the research contents of this thesis on this foundation.
     This paper has been studied and discussed in the following aspects:
     1.Based on 2D outline modeling of complex subsurface construction
     2D outline line heavy 3D surface is the mineral body is several set up a mold of important technique means,this thesis carried on a detailed discussion to this,to the problem of with possible emergence in a few heavy:Outline to should the problem,outline put together to connect to analyze several kinds to resolve a method with the outline branch problem,putting forward the in keeping with geology body section to set up heavy calculate way of the outline line of the mold usage,in the 3D Topo of the data rush toward the structure lead to go into the management method of the GIS attribute data,distinct the layer and the non- layer is two kinds of to make differently by artifice,tally up to go it to set up a mold step effectively.
     2、Complex subsurface construction's 3D geological model analysis
     Geological structure of 3D visual simulation,and analysis of the complex subsurface construction's block the stability of surrounding rock,the joints can fracture the rock slope minimum shear strength of the search slip surface,to solve the stability of slip surface safety factor,used to guide the actual design of the project.
     The two issues before and after the research phase,which will run research and development of exploration engineering module for water resources and hydropower arrangement based on the three-dimensional geological model for the late.The overall aim is to have hydraulic and hydroelectric engineering on the basis of three-dimensional model,combined with the complexity of the geological layout of the characteristics of caverns,to establish a complete module of the complex subsurface construction's model and analysis,a rapid method to improve the efficiency and lower development costs,so it has important practical significance.
     Through the whole verification and test,the profile drawing module was made based on the GeoView3D.The module was applied in the following hydropower projects:Miao Wei Hydropower Station in Yunnan,Crane Ertan Hydropower Station in Sichuan,Jinping Hydropower Station in Sichuan.They have achieved the desired results.Innovation results have been made as following:
     1.Combination of technical characteristics of 3DGIS,the use of complex subsurface construction and geological body three-dimensional geological model of the spatial distribution of the relationship,effective solution of the complex subsurface construction surrounding rock stability analysis,through spatial analysis,access to be able to prove the stability of surrounding rock of the visual data.
     2.The module the first having formed a independent,entire exploration arrangement in "three-dimensional hydraulic and hydroelectric engineering information system ",can be easily carried out on the underground cavern visualization.
     The end of the article introduced the research result of the thesis and existence of shortage, prospect to will study further in the future with investigate of direction.
引文
[1]吴冲龙.地质信息技术导论[M].高等教育出版社,2007.
    [2]吴冲龙,刘刚,田宜平等.论地质信息科学[J].地质科技情报,2005,24(3):1-8.
    [3]吴冲龙.计算机技术与地矿工作信息化[J].地学前缘,1998,5:343-355.
    [4]吴冲龙,刘刚,田宜平等.地矿勘查信息化的理论与方法问题[J].地球科学,2005,30(3):359-365.
    [5]狄卫民.地质剖面图和平面图的计算机辅助绘制[J].黄金科学技术,2002:36-39.
    [6]Micheal F Geodchild.Geographical data Modeling[J].Computers and Geosciences,1992,18(4):401-408.
    [7]李建华,边馥苓.工程地质二维空间建模技术及其应用研究[J].武汉大学学报--信息科学版,2003,28(1):25-30.
    [8]张聚兴.三维地质建模在工程地质环境质量评价中的应用研究[D].北京:中国地质大学,2006.
    [9]钟登华,李明超.水利水电工程地质三维建模与分析理论与实践[M].北京:中国水利水电出版社,2008.
    [10]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利电力出版社,1980.
    [11]钟登华,李明超,杨建敏.复杂工程岩体结构三维可视化构造及其应用[J].岩石力学与工程学报,2005,24(4):575-580.
    [12]Caumon G.,Sword C.H.,Mallet J.L..Interactive Editing of Sealed Geological 3D Models[J].2002 Annual Conference of the IAMG,75-80.
    [13]鲍时全,郭锡伯.计算机绘制三维图形的数学模型及其实现[J].工科数学,1994,10(2):126-130.
    [14]李德仁,李清泉.一种三维GIS混和数据结构研究[J].测绘学报,1997,26(2):128-133.
    [15]毛小平,吴冲龙,袁艳斌.三维构造模拟方法--体平衡技术研究[J].地球科学,1999,24(6):505-508.
    [16]WU LI-XIN.Topological Relations Embodied in a Generalizes Tri-prism(GTP) Model for a 3D Geoscience Modeling System[J].Computers & Geosciences,2004,30(5):405-418.
    [17]符海芳,朱建军,崔伟宏.3D GIS数据模型的研究[J].地球信息科学,2002,4(2):45-49.
    [18]C.H.Lindenbecka,H.D.Ebertb,H.Ulmera.TRICUT:A Program to Clip Triangle Meshes Using the Rapid and Triangle Llibraries and the Visualization Toolkit[J].Computers &Geosciences,2002,28(6):841-850.
    [19]Pinto V.,Font X.,Salgot M.et al.Using 3D structures and their virtual representation as a tool for restoring opencast mines and quarries[J].Engineering Geology,2002.63(1-2):121-129.
    [20]田宜平,刘海滨,刘刚,等.盆地三维构造-地层格架的矢量剪切原理及方法[J].地球 科学,2000,25(3):306-310.
    [21]Berlioux A.Depth Migration of Complex Surface with GOCAD:Study of the curvature of a triangulated surface.Stanford Exploration Project,Report 82,2001:1-115.
    [22]Kaxnat V R,Mauinez J C.Visualizing Simulated Construction Operations in 3D [J].Journal of Computing in Civil Engineering,ASCE,2001,15(4):329-337.
    [23]Caumon G.,Sword C.H.,Mallet J.L..Interactive Editing of Sealed Geological 3D Models[J].2002 Annual Conference of the IAMG,75-80.
    [24]杨必胜.数字城市的三维建模与可视化技术研究[D].武汉大学博士学位论文,2002.
    [25]钟登华,秦朝霞,李明超等.三维地质模型支持下的滑坡体稳定性分析[J].应用基础与工程科学学报,2007,15(1):65-73.
    [26]庞正江.地质体的三维建模及工程应用[D].南京:河海大学,2005.
    [27]Houlding.S.W.3D Geoscience Modeling:Computer Techniques for Geological Characterization[M].Berlin:Springer-Verlag,1994.
    [28]钟登华,李明超.水利水电工程地质三维建模与分析理论与实践[M].北京:中国水利水电出版社,2008.
    [29]吴冲龙.资源信息系统教程[M].北京:地质出版社,2004.7.
    [30]冯玉才.数据库系统基础(第二版)[M].武汉:华中理工大学出版社,1993.
    [31]刘云生,卢正鼎,卢炎生.数据库系统概论[M].武汉:华中理工大学出版社,1992.
    [32]Kidnera D.B.,Smith D.H..Advances in the Data Compression of Digital Elevation Models [J].Computers & Goesciences,2003.29(8):985-1002.
    [33]Scoff Morehouse.The ARC/INFO geographic information system[J].Computers and Geosciences,1992,18(4):435-442.
    [34]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.
    [35]A.Lehmann,J.-B.Lachavanne.Geographic Information Systems and Remote Sensing in Aquatic Botany.Aquatic Botany,1997,58(3)195-207.
    [36]Richard Brath,Mike Peters.Information Visualization for Business Past & Future[J].DM Review,2005,15(1):40-43.
    [37]朱良峰,吴信才,刘修国,等.基于钻孔数据的三维地层模型的构建[J].地理与地理信息科学,2004,20(3):27-30.
    [38]吴慧欣,薛惠锋.基于块段模型的三维GIS混合数据结构模型研究[J].计算机应用研究,2007,24(10):273-275.
    [39]李培军.层状地质体的三维模拟与可视化[J].地学前缘,2000,8(7):271-277.
    [40]Y.P.Luo,Z.D.Jiang,B.Li,et al.Surface Reconstruction Based on Laser Scan Data[J].Key Engineering Materials,2005,295/296:693-698.
    [41]毛小平,李绍虎,刘刚.复杂条件下的回剥反演方法--最大深度法[J].地球科学,1998a,23(3):277-280.
    [42]李绍虎,吴冲龙,田宜平,等.铲状断层三维可视化建模及矢量剪切[J].岩石力学与工程学报,2006,25(2):3841-3846.
    [43]Wang Xiao-Ping,Zhou Ru-Rong,Yu Zhan-Yue.Interpolation and Blending on Parametric Surfaces[J].Journal of Software,2004,15(3):453-459.
    [44]Zhang Hong,Jonathan J.Shi,C.M.Tam.Visual modeling and simulation for construction operations[J].Automation in Construction.2002.(11):47-57.
    [45]李勇,郝向阳,西勤.三维地理信息系统相关技术研究[J].测绘科学,2001,26(4):25.
    [46]田宜平.盆地三维数字地层格架的建立与研究[D].中国地质大学博士论文,2001.
    [47]赵攀,田宜平,刘军旗等.三维地质建模及其在水利水电工程中的应用[J].工程地球物理学报,2007,4(5):520-522.
    [48]I.D.Aleksandrov,M.V.Aleksandrova,N.S.Zaikin,et al.Three-dimensional Modeling of Genome Macroarchitecture on the basis of Itsstructural Changes After the Action of Radiation[J].Physics of Particles & Nuclei letters,2006,3(6):375-384.
    [49]梁宇君,唐斌,邓斌,等.基于GIS技术地质环境三维模型的构建与可视化[J].国土资源科技管理,2007,(2):92-96.
    [50]邱祝礼,李有利,南峰.断层崖演化建模及动态三维可视化探讨[J].水土保持研究,2007,14(4):343-347.
    [51]Janos Kalmar.DEM_based Surface and Volume Approximation -- Geographical Applications[J].Computer & Geosciences,1995,21(2):147-163.
    [52]毛小平.盆地构造三维动态演化模拟系统研制[D],中国地质大学硕士学位论文,2000.
    [53]Mao Xiao-ping,Huang Yan-hu,Wu Chong-long.Application of Volume Elelment Model in 3-D Seismic Forward Simulation[J].ACTA GEOPHYSICA SINICA(Chinese Journal of GEOPHYSICS),1998,41(4):573-583.
    [54]翁正平,吴冲龙,毛小平.基于平面图的盆地三维构造-地层格架建模技术[J].地球科学—中国地质大学学报,2001,16(增刊):135-138.
    [55]张庆春,石广仁,田在艺.盆地模拟技术的发展现状与未来展望[J].石油实验地质,2001,23(3):312-317.
    [56]Wei-Hsiang Lai,Chun-I Cheng,Mon-U Huang.Model support algorithm in powder based three dimensional printer[J].Materials Science Forum,2006,505/507:1255-1260.
    [57]Tsai,Delaunay V J D.Triangulations in TIN Creation:an Overview and a Linear_time Algorithm.Int.J.of GIS,1993,7(6):501-524.
    [58]朱响斌,唐敏,董金祥.一种基于八叉树的三维实体内部可视化技术[J].中国图象图形学报,2002,7(3):230-233.
    [59]张爱军,薛勇.基于规则的曲面体三维重建[J].计算机集成制造系统,2004,10(16):715-719.
    [60]武强,徐华.三维地质建模与可视化方法研究[J].中国科学(D辑,地球科学),2004,34(1):54-60.
    [61]田宜平,刘刚,韩志军,等,三维地理信息系统中纹理的非参数映射及矢量剪切[J].地质科技情报,2000,19(2):103-106.
    [62]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003.
    [63]张丽莉,吴健生,刘波.地学三维曲面动态显示软件的设计与实现[J].计算机工程,2003,29(12):13-14.
    [64]张煜,温国强,王笑海,等.三维体绘制技术在工程地质可视化中的应用[J].岩石力学与工程学报,2002,4:563-567.
    [65]Farin G.Curves and Surface for Computer Aided Geometric Design A Practical Guide[M].3rd Edition.Acedemic Press,1993.
    [66]De Donatis M.Three-dimensional Visualization of the Neogene Structures of an External Sector of the Northern Apennines,Italy.American Association of petroleum Geologists (AAPG) Bulletin,2001,85(3):419-431.
    [67]Auerbach S,Schaeben H.Computeraided Geometric Design of Geologic Surfaces and Bodies[J].Mathematical Geology,1990,22(8):957-988.
    [68]王涛,陈晓玲,杨建.基于3DGIS和3DEC的地下洞室围岩稳定性研究[J].岩石力学与工程学报,2005,24(19):3476-3481.
    [69]贺怀建,白世伟,赵新华,等.三维地学地层模型中地层划分的探讨[J],岩土力学,2002,23(5):637-639.
    [70]SL251.水利水电工程天然建筑材料勘察规范[S].2000.
    [71]张聚兴.三维地质建模在工程地质环境质量评价中的应用研究[D].北京:中国地质大学,2006.
    [72]侯恩科,吴立新.三维地学模拟几个方面的研究现状与发展趋势[J],煤田地质与勘探,2000.28(6):5-8.
    [73]Meentemeyer R.K.,Moody A..Automates Mapping of Conformity Between Topographic and Geological Surfaces[J].Computers & Goesciences,2000.26(7):815-829.
    [74]谢和平,陈忠辉,周宏伟,等.基于工程体和地质体相互作用的两体力学模型初探[J].岩石力学与工程学报,2005,24(9):1457-1464.
    [75]GB50287,水利水电工程地质勘察规范[S].1999.
    [76]Farin G..Curves and Surfaces for Computer Aided Geometric Design[J].4~(th) Edition.San Diego:Academic Press,1997.
    [77]Dorninger P.,Jansa J.,Briese Ch..Visualization and topographical analysis of the Mars surface[J].Planetary and Space Science,1999.30(9-11):741-751.
    [78]Kidnera D.B.,Smith D.H..Advances in the data compression of digital elevation models [J].Computers & Goesciences,2003.29(8):985-1002.
    [79]C.H.Lindenbecka,H.D.Ebertb,H.Ulmera.TRICUT:a program to clip triangle meshes using the rapid and triangle libraries and the visualization toolkit[J].Computers &Geosciences,2002,28(6):841-850.
    [80]Marschallinger R..A method for three-dimensional reconstruction of macroscopic features in geological materials[J].Computers & Goesciences,1998.24(9):875-883.
    [81]Pinto V.,Font X.,Salgot M.et al.Using 3D structures and their virtual representation as a tool for restoring opencast mines and quarries[J].Engineering Geology,2002.63(1-2):121-129.