法乐四联症相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:法乐四联症相关基因的筛选与鉴定
     【目的】:通过比较法乐四联症患儿心肌与发育正常心肌组织间的全基因组表达谱差异,进一步揭示法乐四联症发生、发展的内在分子机制。【方法】:采用含21 329条Oligo DNA的人类全基因组寡核苷酸表达谱芯片,对5例法乐四联症患儿心肌组织与5例发育正常的心肌组织配对检测差异表达基因,通过生物信息学分析,我们将上述差异表达基因进行分类并挑选出了与法乐四联症发生相关的差异表达基因,并采用实时定量PCR及免疫组化技术在更多样本中验证芯片的结果。鉴于与本组法乐四联症患儿年龄相匹配的正常心肌组织难以获取,在基因芯片的实验过程中我们采用了发育正常引产胎儿心肌组织作为对照,为弥补芯片实验中由于年龄不匹配及手术因素对实验结果的影响,在接下来的实时定量PCR及免疫组化验证实验中我们采用了法乐四联症患儿心肌、发育正常胎儿心肌、与TOF患儿年龄匹配的单纯室间隔缺损患儿心肌及发育正常的成人心肌组织各10例来进一步验证芯片结果。【结果】:共有242个基因在全部5张基因芯片中存在共同的差异表达,依据上述基因所参与的主要的生物学过程,我们将上述242个基因分为13类,在“发育相关基因”中我们发现圆锥动脉干畸形候选基因CSPG2与NTRK3的表达在TOF组患儿中存在明显的表达减低,在接下来的扩大样本量的实时定量PCR和免疫组织化学实验中我们发现NTRK3基因的表达在mRNA水平和蛋白水平TOF组患儿中均特异性表达减低,而CSPG2基因的表达则随年龄的增加而增加。【结论】:我们的研究结果提示,NTRK3基因的表达减低可能与人类法乐四联症右心室流出道畸形的发生,发展相关。
     第二部分法乐四联症候选致病基因HEY2突变的初步分析
     【目的】:探讨中国法乐四联症患儿HEY2基因突变的情况。【方法】:法乐四联症患者52例,其中男性30例,女性22例,年龄5.74±2.50(3个月~9岁),均为我院小儿外科中心住院患儿,其中心脏畸形为单发法乐四联症患者38例,伴发其他心脏畸形14例,其中5例合并动脉导管未闭+房间隔缺损,2例合并动脉导管未闭,2例合并卵圆孔未闭,1例合并房间隔缺损,合并单发右位心,单冠畸形、左肺动脉缺如、永存左上腔静脉患者各1例。经心脏超声检查和(或)心导管、心外科手术明确诊断。所有研究对象无血缘关系,均行全面完整的体格检查,合并其他心外畸形患儿在本研究中予以排除,以除外综合征型TOF患儿。50例健康人作为正常研究对照。征得患儿家长同意后,抽取患儿外周血3mL,以EDTA抗凝,—70℃保存,常规胍盐酸法抽提基因组DNA,应用递减聚合酶链反应结合DNA测序技术对上述患儿及对照者的HEY2基因全部外显子及其侧翼序列进行突变检测及单核苷酸多态性(SNP)分析,对所发现的突变位点或单核苷酸多态性位点在患者和健康人中的分布进行比较。【结果】:本组52例患者中,未发现可引起氨基酸序列改变的突变位点,但我们发现了2个新的杂合性突变位点:1例患者的cDNA 621位碱基为A→T杂合性突变,但其编码的氨基酸未发生改变,仍然为丝氨酸,为同义突变,另外,在3例患者的cDNA222位碱基存在一个T→G杂合性突变,也为同义突变,未引起编码氨基酸序列改变,仍然是亮氨酸,该突变也存在于3例对照组中【结论】:HEY2基因可能不是我国法乐四联症患儿的致病基因。
Section 1 Screening and Identification of Genes Associated with Human Tetralogy of Fallot
     Objective: To investigated the the molecular mechanism of the development of human Tetralogy of Fallot (TOF). Methods: To investigate the developmental mechanism of human TOF, we compared gene expression profiles of the right ventricular outflow tract myocardium tissues of TOF patients and normally developed fetuses by the DNA microarray technique. With the aid of bioinformatics, we classified the differentially expressed genes and picked out genes which may contribute to the occurrence of TOF. Then the TOF related genes were verified by quantitative real-time PCR and immunohistochemistry in more samples to neutralize the impacts brought by the mismatch of ages and surgical manipulations. Results: Totally, 242 genes were commonly differentially expressed in all the microarray cases. These genes were divided into 13 categories based on the biological process in which they were involved. In the category of developmental related genes, we found the expression level of two conotruncal defect candidate genes CSPG2 and NTRK3 were down-regulated in TOF patients. Ensuring verification procedures confirmed that the expression level of NTRK3 was specifically decreased in TOF patients at both mRNA and protein level, while the expression level of CSPG2 decreased with the increase of age. Conclusions: Our results, in combined with several other previous reports about NTRK3 in animal models, suggested that the insufficient expression of NTRK3 may contribute to the formation of the right ventricular outflow tract defect of human TOF.
     Section 2 Mutation Screening of HEY2 Gene in Chinese patients with Tetralogy of Fallot
     Objective: To screen the mutation of HEY2 gene in Chinese patients with sporadic tetralogy of Fallot (TOF) .Methods :52 patients with tetralogy of Fallot were selected from Fuwai hospital, After extracting the genomic DNA, the HEY 2 gene was amplified by the means of "touch down polymerase chain reaction"(touch down PCR). After being purified, the PCR products of HEY2 were conducted to the sequencing reaction to investigate whether there were mutations or SNPs or not .Results: No pathogenic mutation was identified in all TOF patients. Only 2 single nucleotide changes including C.222T—G in exon 3 and C.621A—T in exon 5 were found, however both of these 2 heterozygous changes do not alternate the amino acid of the HEY2 protein . Conclusions :The mutation of HEY2 gene might not be associated with tetralogy of Fallot in Chinese population.
引文
[1]Ferencz C,Rubin JD,McCarter RJ et al.Congenital heart disease:prevalence at livebirth.The Baltimore-Washington Infant Study.American journal of epidemiology 1985,121(1):31-36.
    [2]Ryan AK,Goodship JA,Wilson DI,et al.Spectrum of clinical features associated with interstitial chromosome 22q11 deletions:a European collaborative study.Journal of medical genetics 1997,34(10):798-804.
    [3]Schinzel A.Catalog of unbalanced chromosome aberrations in man.2000,Berlin:Walter de Gruyter 264p.
    [4]Hutson MR,Kirby ML.Neural crest and cardiovascular development:a 20-year perspective.Birth Defects Res C Embryo Today,2003,69(1):2-13.
    [5]Benson DW,Silberbach GM,Kavanaugh-McHugh A,et al.Mutations in the cardiac transcription factor NKX2. 5 affect diverse cardiac developmental pathways. The Journal of clinical investigation , 1999, 104(11): 1567-1573.
    
    [6] Goldmuntz E, Geiger E, Benson DW. NKX2. 5 mutations in patients with tetralogy of fallot. Circulation, 2001,104(21):2565-2568.
    
    [7] Pizzuti A, Sarkozy A, Newton AL, et al. Mutations of ZFPM2/F0G2 gene in sporadic cases of tetralogy of Fallot. Human mutation,2003,22(5):372-377.
    
    [8] Nemer G, Fadlalah F, Usta J, et al. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Human mutation ,2006,27(3) :293-294.
    
    [9] Jay PY, Harris BS, Maguire CT, et al. 2004. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. The Journal of clinical investigation, 2004, 113(8):1130-1137.
    
    [10] Pashmforoush M, Lu JT, Chen H, et al. 2004. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell, 2004, 117(3):373-386.
    
    [11] Tevosian SG, Deconinck AE, Tanaka M, et al. 2000. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium.Cell,2004,101(7):729-739.
    
    [12] Watt AJ, Battle MA, Li J, et al. GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (34):12573-12578.
    
    [13] Zeisberg EM, Ma Q, Juraszek AL, et al. Morphogenesis of the right ventricle requires myocardial expression of Gata4. The Journal of clinical investigation ,2005, 115(6):1522-1531.
    
    [14] Kirby ML, Turnage KL, 3rd, Hays BM. Characterization of conotruncal malformations following ablation of "cardiac" neural crest. The Anatomical record , 1985,213(1):87-93.
    
    [15] Donovan MJ, Hahn R, Tessarollo L, et al. Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nature genetics, 1996, 14(2):210-213.
    
    [16] Gu H, Smith FC, Taffet SM, et al.. High incidence of cardiac malformations in connexin40-deficient mice. Circulation research 2003,93(3):201-206.
    
    [17] Tessarollo L, Tsoulfas P, Donovan MJ, et al. Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(26):14776-14781.
    
    [18] Washington Smoak I, Byrd NA, Abu-Issa R, et al. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development.Developmental biology,2005, 283(2):357-372.
    
    [19] Wu YJ, La Pierre DP, Wu J, et al. The interaction of versican with its binding partners. Cell research, 2005, 15(7):483-494.
    [20]Yamaguchi Y..Lecticans:organizers of the brain extracellular matrix.Cell Mol Life Sci,2000,57(2):276-289.
    [21]Mjaatvedt CH,Yamamura H,Capehart AA,et al..The Cspg2 gene,disrupted in the hdf mutant,is required for right cardiac chamber and endocardial cushion formation.Developmental biology,1998,202(1):56-66.
    [22]Lamballe F KR,Barbacid M.1991.trkC,a new member of the trk family of tyrosine protein kinases,is a receptor for neutrophin-3.Cell 66:967-979.
    [23]Youn YH,Feng J,Tessarollo L,et al.Neural crest stem cell and cardiac endothelium defects in the rrkC null mouse.Molecular and cellular neurosciences,2003,24(1):160-170.
    [24]Hutson MR,Kirby ML.Neural crest and cardiovascular development:a 20-year perspective.Birth Defects Res C Embryo Today,2003,69(1):2-13.
    1.Ferencz C,Rubin JD,McCarter RJ,et al.Congenital heart disease:prevalence at livebirtb:the Baltimore-Washington Infant Study.Am J Epidemiol,1985,121:31-36.
    2.Amati F,Mari A,Digilio MC,et al.22q11 deletions in isolated and syndromic patients with tetralogy of Fallot.Hum Genet,1995,95:479-482.
    3.Goldmuntz E,Clark BJ,Mitchell LE,et al.Frequency of 22q11deletions in patients with conotruncal defects.J Am Coll Cardiol,1998,32:492-498.
    4.Takahashi K,Kido S,Hoshino K,et al.Frequency of a 22q11deletion in patients with conotruncal cardiac malformations:a prospective study.Eur J Pediatr,1995,154:878-881.
    5.Trainer AH,Morrison N,Dunlop A,et al.Chromosome 22q11microdeletions in tetralogy of Fallot.Arch Dis Child,1996,74:62-63.
    6.Webber SA,Hatchwell E,Barber JC,et al.Importance of microdeletions of chromosomal region 22q11 as a cause of selected malformations of the ventricular outflow tracts and aortic arch:a three-year prospective study.J Pediatr,1996,129:26-32.
    7.Ferencz C,Correa-Villasenor A,Loffredo CA,et al.Malformations of the cardiac outflow tract.In:Genetic and Environmental Risk Factors of Major Cardiovascular Malformations:The Baltimore-Washington Infant Study: 1981 - 1989. Armonk, NY: Futura Publishing Co Inc; 1997, 59 - 102.
    
    8. Donovan J, Kordylewska A, Jan Y, et al. Tetralogy of fallot and other congenital heart defects in hey2 mutant mice. Curr Biol ,2002,12:1605-1607.
    
    9.Kokubo H, Miyagawa-Tomita S, Tomimatsu H, et al. Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res,2004,95:540 - 547.
    
    10.Kokubo H, Miyagawa-Tomita S, Nakazawa M, et al. Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev Biol, 2005, 278:301 - 309.
    
    11.Steidl C, Leimeister, C, Klamt B. et al. Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene family. Genomics, 2000, 66: 195-203,
    
    12. Fischer A, Klamt B, Schumacher N. Phenotypic variability in Hey2-/- mice and absence of HEY2 mutations in patients with congenital heart defects or Alagille syndrome. Mamm Genome, 2004,15:711-716.
    
    13 . Sarkozy A, Conti E, D' Agostino R, et al. ZFPM2/FOG2 and HEY2 genes analysis in nonsyndromic tricuspid atresia. Am J Med Genet A, 2005,133:68-70.
    
    14 .Reamon-Buettner SM, Borlak, J. HEY2 mutations in malformed hearts. Hum. Mutat, 2006, 27: 118.
    [1]岳凤珍等,高发先天性心脏病家系的遗传学研究.中国的医学生物学研究.成都:四川科学技术出版社,1995.
    [2]Shiojima I,Komuro I,Inazawa J,et al.Assignment of cardiac homeobox gene CSX to human chromosome 5q34.Genomics 1995,27:204-206,.
    [3]Turbay D,Wechsler SB,Blanchard KM,et al.Molecular cloning,chromosomal mapping,and characterization of the human cardiac-specific homeobox gene hCsx.Molec Med,1996,2:86-96.
    [4]Hirota X,Sawamoto K,Okano H.linear encodes a novel iransmembrane protein expressed in the Tinman-expressing cardioblasts of Drosophila.Gene Expr Patterns,2002,2(3-4):323-327.
    [5] Komuro I. Izumo S. Csx: A murine homeobox-containing gene specifically expressed in the development. Proc Natl Acad Sci US A. 1993,90(17): 8145-8149.
    
    [6] Raff in M, Leong LM, Rones MS, et al. Subdivision of the cardiac Nkx2. 5 expression domain into myogenic and nonmyo genic compartments. Dev Biol,2000, 218(2):326-40.
    
    [7] Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2. 5 affect diverse cardiac developmental pathways. Clin Invest, 1999,104: 1567-1573.
    
    [8] Lyons I, Parsons LM, Hartley L, et al Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995, 9: 1654-1666.
    
    [9] Goldmuntz E, Geiger E, Benson D, et al. NKX2.5 mutations in pabents with tetralogy of Fallot. Circulation, 2001, 104: 2565-2568.
    [10] Kasahara H, Lee B, Schott JJ, et al. Loss of function and inhibi effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J Clin Invest, 2000, 106(2) ; 299-308
    [11] Wakimoto H, Kasahara H, Maguire CT,et al. Developmentally modulated cardiac conduction failure in transgenic mice with fetal or postnatal overexpression of DNA nonbinding mutant Nkx2.5. J Cardiovast Ixctrophysiol, 2002,13(7):682-688.
    
    [12] Kasahara H, Usheva A, Ueyama T, et al. Characterization of Homoand Heterodimerization of Cardiac Csx/Nkx2.5 Homeoprotein.J Eiol Chem, 2001, 276(7):4570-4580
    
    [13] Zhu W, Shiojima I, Hiroi Y,et al. Functional analyses of three Csx/Nkx2.5 mutations that cause human congenital heart disease.) Bio] Chem, 2000, 275(45):35291-35296
    [14] SepulvedaJL, Vlahopoulos S, Iyer D, et al. Combinatorial Expression of GATA4, Nkx2.5, and Serum Response Factor Directs Early Cardisc Gene Activity. J Biol Chem, 2002,277(28): 25775-25782
    
    [15] Small EM, Krieg PA. Transgenic analysis of the atrialnatriuretic facfor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev Biol, 2003, 261(1) :116-131
    
    [16] Yamagishi H, Yamagishi C, Nakagawa O, et al.The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev Biol, 2001, 239(2):190-203
    
    [17] Gangs M, Espinoza HM, Cox CJ,et al. PITX2 isofornrspecific regulation of atrial natriuretic factor expression: synergism and repression with Nkx2.5. J Biol Chem, 2003, 278(25) :22437-22445
    
    [18]Shiratori H, Sakuma R, Watanabe M, et al. Two-step regulation of left-right asymmetric expression of Pitx2: initiation by nodal signaling and maintenance by Nkx2. Mol Cell, 2001, 7:137-149.
    
    [19]White RA, Dowler LL, Pasztor IM, et al. Assignment of the ns ption factor GATA4 gene to human chtomosome 8 and mou chromosome 14:Gata4 is a candidate gene for Ds(disorganization). Genomics,1995. 27(1): 20-26.
    
    [20] HuangWY。 Heng HH, Liew CC. Assignment of the human GATA4 gene to 8p23. 1 p22 using fluorescence in situ hybridization analysis. Cytogenet Cell Genet, 1996, 72(2-3): 217—218.
    
    [21] Morrisey EE, Ip HS, Tang Z, et al. GATA-4 activates transcription via two novel domains that are conserved thin the GATA. 4/5/6 subfamily. J BiolChem, 1997, 272(13): 8515—8524.
    
    [22] Kuo CT, Morrisey EE, AnandappaR, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation.Genes Dev。 1997。 11(8): 1048-1060.
    
    [23]NaritaN. BielinskaM, Wilson DB. Cardiomyocyte diferentiation by GATA-4-deficient embryonic stem cells. Development, 1997, 124(19): 3755-3764.
    
    [24] Soudais C, Bielinska M, Heikinheimo M, etal. Targeted nilta~Lesi8 of the transcription factor GATA. 4 gene in mouse emb ryonic stem cells disrupts visceral endoderm difierentiation in vitro. Development. 1995,121(11): 3877-3888.
    
    [25] Patient RK, McGhee JD. The GATA family(vertebrates and invertebrates).Curr Oniu Cenet Des.2002. 12;416-422.
    [26] Nemer G, Fadlalah F, Usta J, et al. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat,2006 , 27(3) :293-294.
    
    [27] Tomita-Mitchell A, Maslen CL, Morris CD,et al. GATA4 sequence variants in patients with congenital heart defects. J. Med. Genet.2007,44: 779-783.
    
    [28] Lindsell CE, Shawber CJ, Boulter J, et al. Jagged: a mammalian ligand that activates Notchl. Cell ,1995,80: 909-917.
    
    [29] Oda T, Elkahloun AG, Meltzer PS, et al. Identification and cloning of the human homolog (JAGL1) of the rat Jagged gene from the Alagille syndrome critical region at 20pl2. Genomics ,1997,43: 376-379.
    [30] Loomes KM, Underkoffler LA, Morabito J, et al. The expression of Jaggedl in the developing mammalian heart correlates with cardiovascular disease in Alagille syndrome. Hum. Molec. Genet. 1999,8: 2443-2449.
    [31] Eldadah Z, Hamosh A, Biery N, et al. Familial tetralogy of Fallot caused by mutation in the jaggedl gene. Hum Molec Genet, 2001,10: 163-169.
    
    [32]Le Caignec C, Lefevre M, Schott J, et al. Familial deafness, congenital heart defects, and posterior embryotoxon caused by cysteine substitution in the first epidermal-growth-factor-like domain of Jagged 1. Am J Hum Genet, 2002,71: 180-186.
    
    [33] Svensson EC, Tufts RL, Polk CE, et al. Molecular cloning of FOG-2:a modulator of transcription factor GATA-4 in cardiomyocytes. Proc. Nat.Acad. Sci. 1999,96: 956-961.
    
    [34] Holmes M, Turner J, Fox A, et al. hFOG-2, a novel zinc finger protein,binds the co-repressor mCtBP2 and modulates GATA-mediated activation.J. Biol. Chem. 1999, 274:23491-23498.
    
    [35] Svensson EC, Huggins GS, Lin H, et al. A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nature Genet.2000,25: 353-356.
    
    [36] Tevosian SG, Deconinck A E, Tanaka M, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. 2000 ,Cell 101:729-739.
    
    [37] Crispino JD, Lodish M B, Thurberg BL, et al. Proper coronary vascular-development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 2001,15: 839-844.
    
    [38] Pizzuti A, Sarkozy A, Newton AL,et al.Mutations of ZFPM2/F0G2 gene in sporadic cases of tetralogy of Fallot. Hum. Mutat. 2003,22: 372-377.
    
    [39] Lee SJ. Identification of a novel member (GDF-1) of the transforming growth factor-beta superfamily. Molec Endocr, 1990,4: 1034-1040.
    [40] Rasooly RS, Personal Communication. Baltimore, Md.7/13/1998.
    [41] Rankin CT, Bunton T, Lawler AM, et al. Regulation of left-right patterning in mice by growth/differentiation factor-1. Nature Genet, 2000 ,24: 262-265.
    
    [42] Meno C, Ito Y, Saijoh Y, et al. Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells ,1997,2, 513-524.
    
    [43] Yoshioka H, Meno C, Koshiba K et al. Pitx2, a bicoichtype homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell ,1998,94, 299-305.
    
    [44] Piedra ME, Icardo JM, Albajar M, et al. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 1998, 94,319-324.
    
    [45] Karkera JD, Lee JS, Roessler E et al. Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet,2007, 81: 987-994.
    
    [46] Kanter HL, Saffitz JE, Beyer EC. Cardiac myocytes express multiple gap junction proteins. Circ Res 1992,70: 438-444.
    
    [47] Fishman GI, Spray DC, Leinwand LA, Molecular characterization and functional expression of the human cardiac gap junction channel. J Cell Biol 1990;111:589-598.
    
    [48] Van Kempen M J, Fromaget C, Gros D, et al. Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circ Res, 1991, 68 (6):1638-1651.
    
    [49] Fishman GI, Hertzberg EL, Spray DC, et al. Expression of connexin43 in the developing rat heart. Circ Res,1991, 68:782-787
    
    [50] Reaume AG,de Sousa PA,Kulkarni S, et al.Cardiac malformation in neonatal mice lacking connexin43.Science, 1995, 267:1831-1834.
    
    [51] Huang GY, Wessels A, Smith BR, et al. Alteration in connexin43 gap junction gene dosage impairs conotruncal heart development. Dev Biol,1998,198:32-44.
    
    [52] Ya J, Jongsma H, Gros D, et al. Heart defects in connexin43~dedicient mice. Circ Res,1998, 82:360-366.
    
    [53] Ewart, JL, Cohen, MF, Meyer, RA et al. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene.Development, 124, 1281-1292.
    
    [54] Sullivan R, Huang GY, Meyer RA, et al. Heart malformations in transgenic mice exhibiting dominant negative inhibition of gap junctional communication in neural crest cells. Dev Biol, 1998, 204:224-234.
    
    [55] Plum A., Hallas G., Magin T, et al. Unique and shared functions of different connexins in mice. Curr Biol (2000) 10:1083-1091.
    
    [56] Creazzo TL, Godt RE, Leatherbury L, et al. Role of cardiac neural crest cells in cardiovascular development . Annu Rev Physiol. 1998,60:267 - 286.
    
    [57] Lo CW, Cohen MF, Huang GY, et al. Cx43 gap junction gene expression and gap junctional communication in mouse neural crest cells. Dev Genet 1997;20:119-132.
    
    [58] Levin M, Johnson RL, Stern CD, et al. A molecular pathway determining left-right asymmetry in chick embryogenesis .Cell, 1995,82:803-814.
    
    [59] Britz-Cunningham SH, Shah MM, Zuppan CW et al.Mutations in the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med ,1995:332:1323-1329
    
    [60] Levin M, Mercola M. Gap junctions are involved in the early generation of left-right asymmetry. Dev Biol 1998; 203 (1): 90-105.
    
    [61] Levin M, Mercola M. Gap junctions-mediated transfer of left-right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node. Development 1999;126:4703-4714
    
    [62] Kolcz J, Drukala J, Bzowska M et al.The expression of connexin 43 in children with Tetralogy of Fallot.Cell Mol Biol Lett. 2005;10(2):287-303.
    
    [63] Gelb BD,Zhang J, Cotter PD,et al.Physical mapping of the human connexin 40 (GJA5) flavin-containing monooxygenase 5, and natriuretic peptide receptor A genes on 1q21. Genomics 1997,39: 409-411.
    
    [64] Dupays L, Mazurais D, Rucker-Martin C, et al. Genomic organization and alternative transcripts of the human connexin40 gene. Gene, 2003, 305:79-90.
    
    [65] Kanter HL, Saffitz JE,Beyer EC. Molecular cloning of two human cardiac gap junction proteins, connexin40 and connexin45. J. Molec. Cell.Cardiol. 1994,26: 861-868.
    
    [66] Delorme B, Dahl E, Jarry-Guichard T, et al. Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res. 1997;81:423-437.
    
    [67] Gros DB, Jongsma HJ. Connexins in mammalian heart function.Bioessays. 1996:18:719-730.
    
    [68] Delorme B, Dahl E, Jarry-Guichard T, et al. Developmental regulation of connexin 40 gene expression in mouse heart correlates with the differentiation of the conduction system. Dev Dyn, 1995;204:358 - 371.
    
    [69] Gu H, Smith FC, Taffet SM,et al. High incidence of cardiac malformations in connexin40-deficient mice. Circ Res, 200393: 201-206.
    
    [70] Leung MK,Jones T,Michels CL,et al. Molecular cloning and chromosomal localization of the human CITED2 gene encoding p35srj/Mrgl.Genomics, 1999,61: 307-313.
    
    [71] Bamforth SD, Braganca J, Eloranta JJ,et al. Cardiac malformations,adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nature Genet, 2001, 29: 469-474.
    
    [72] Yin Z, Haynie J, Yang X, et al. The essential role of Cited2, a negative regulator for HIF-1-alpha, in heart development and neurulation. Proc Nat Acad Sci, 2002, 99:10488-10493.
    
    [73] Bamforth SD, Braganca J, Farthing CR,et al.Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nature Genet,2004,36:1189-1196.
    
    [74] Sperling S, Grimm CH, Dunkel I, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects.Hum Mutat,2005, 26: 575-582.
    
    [75] Hammerschmidt M, Brook A, McMahon AP. The world according to hedgehog. Trends Genet,1997, 13:14 - 21.
    
    [76] Hardcastle Z, Hui CC, Sharpe PT. The Shh signalling pathway in early tooth development. Cell Mol Biol. 1999,45:567-578.
    
    [77] Washington Smoak I, Byrd NA, Abu-Issa R, et al. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development.Dev Biol. 2005,283:357-372.
    
    [78] Garg V, Yamagishi C, Hu TD , et al. Tbx1, a DiGeorge syndrome candidate gene, is regulated by Sonic hedgehog during pharyngeal arch development.Dev Biol, 2001, 235, 62 -73.
    
    [79] Yamagishi H,Maeda J , Hu T,et al. Tbxl is regulated by tissue specific forkhead proteins through a common Sonic hedgehogresponsive enhancer. Genes Dev,2003,17,269 - 281.
    
    [80] Maisonpierre PC, Le Beau M M, Espinosa R, et al. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures,distributions and chromosomal localizations. Genomics, 1991. 10:558-568.
    
    [81] McGregor L M, Baylin S B, Griffin CA, et al. Molecular cloning of the cDNA for human TrkC (NTRK3), chromosomal assignment, and evidence for a splice variant. Genomics, 1994,22: 267-272.
    
    [82] Lamballe F KR, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neutrophin-3. Cell 1991,66:967-979.
    [83] Hiltunen JO, Arumae U, Moshnyakov M, et al. Expression of mRNAs for neurotrophins and their receptors in developing rat heart. Circulation research 1996,79:930-939.
    
    [84] Tessarollo L, Tsoulfas P, Donovan MJ, et al. Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proc Natl Acad Sci USA,1997,94(26):14776-14781.
    
    [85] Youn YH, Feng J, Tessarollo L, et al. Neural crest stem cell and cardiac endothelium defects in the TrkC null mouse. Molecular and cellular neurosciences, 2003, 24:160-170.
    
    [86] Steidl C, Leimeister, C, Klamt B. et al. Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene family. Genomics, 2000, 66: 195-203.
    
    [87] Donovan J, Kordylewska A, Jan Y, et al. Tetralogy of fallot and other congenital heart defects in hey2 mutant mice. Curr Biol,2002,12:1605-1607.
    
    [88] Kokubo H, Miyagawa-Tomita S, Tomimatsu H, et al. Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res,2004,95:540 - 547.
    
    [89] Johnson MC, Hing A,Wood M K et al. Chromosome abnormalities in congenital heart disease. Am. J. Med. Genet, 1997,70:292-298.
    
    [90] Devriendt K, Fryns JP, Mortier G, et al. The annual incidence of syndrome. J Med Genet, 1998, 35(9):789-790.
    
    [91] Burn J. Closing time for CATCH 22. J Med Cenet, 1999, 36:737-738.
    
    [92] Conti E, Giifone N, Sarkozy A, et al. EhGeorge subtypes of nonsyndromic conotruncal detects: evidence against a major role ofTBXI gene. Eur J Hum Genet, 2003,11(4):349-351.
    
    [93] Stoller JZ, Epstein JA. Identification of a novel nuclear localization signal in Tbxl that is deleted in DiGeorge syndrome patients harboring the 1223delCmutation. HumMol Genet, 2005, 14(7):885-892.
    [94] Jerome I., Papaioannou V. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbxl. Nature Genet, 2001, 27: 286-291.
    [95] Lindsay EA, Vitelli F, Su H, et al. Tbxl haploinsu}ciency in the DiGeorge syndrome region causes aortic arch defects in mice. Natore, 2001,410 (6824): 97-101.
    
    [96]Vitelli F,Morishima M, Taddei L, et al.Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratorypathways. Hum Mol Genet, 2002, 11(8):915-922
    [97]Kelly RG,Jerome-Majewska LA, Papaioannou VE. The de122q11.2 candidate gene Tbxl regulates branchiomeric myogenesis. Hum Mol Genet, 2004, 13(22):2829-2840
    
    [98]Mahadevan NR, Morton AC, Gibson-Brown JJ. Developmental expression of the amphioxus Tbx1/10 gene illuminates the evolution of vertebrate branchial arches and sclerotome. Dev Genes Evol,2004,214 (11):559-566.
    
    [99] Amati F, Conti E, Botta A, et al. Functional characterization of the 5' flanking region of human ubquitin fusion degradation 1 like gene (UFDlL).Cell BiochemFunct,2002, 20(2):163-170.
    
    [100]Amati F, Condo I,Conti E,et al.Analysis of intracellular distribution and apoptosis involvement of the Ufdll gene product by over- expression studies. Cell BiochemFunct, 2003, 21(3):263-267.
    [101] De Luea A, Pasini A, Amati F, et al. Association sudy of a promoter polymorphism of UFE1L gene with schizophrenia. Am J Med Genet,2001, 105(6): 529-533.
    
    [102] Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature, 1999,401:379-382.
    
    [103]Yamagishi C, Hierck BP, Gittenberger-de Groot AC, et al. Functional attenuation of Ufd11, a 22q11.2 deletion syndrome candidate gene, leads to cardiac outflow septation defects in chicken embryos. Pediatric Research, 2003, 53 (4):546-553.
    [104] Hall C, Nelson DM, Ye X,et al.HIRA, the Human Homologue of Yeast Hir1p and Hir2p, Is a Novel Cyclin-cdk2 Substrate Whose Expression Blocks S-Phase Progression.Mol Cell Biol, 2001,21 (5):1954-1865
    
    [105] Roberts C.Sutherland HF, Farmer H, et al.Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivaties prior to early embryonic lethality. Mol Cell Biol,2002,22(7):2318-2328.
    
    [106] Guris D, Fantes J, Tara D, et al. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nature Genet, 2001, 27: 293-298.
    
    [107] Berti L, Mittler G, Przemeck GK. Isolation and characterization of a novel gene from the DiGeorge chromosomal region that encodes for a mediator subunit. Genomics, 2001, 74(3):320-332.
    
    [108]De Luca A,Conti E, Grifone N,et al. Association studybetween CAG trinucleotide repeats in the PCQAP gene(PC2 Glutamine/Q-Rich-associated protein)and schizophrenia. Am J Med Genet,2003,116B (1): 32-35.
    
    [109] Schinzel A. 2000. Catalog of unbalanced chromosome aberrations in man. Berlin: Walter de Gruyter 264p.
    
    [110] Fuentes JJ, Pritchard MA, Planas A M, et al. A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum Molec Genet 1995,4: 1935—1944.
    
    [111] Fuentes J, Genesca L, Kingsbury T, et al. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum Molec Genet, 2000, 9: 1681 — 1690.
    [112] Kingsbury T, Cunningham K. A conserved family of calcineurin regulators. Genes Dev, 2000, 14: 1595-1604.
    
    [113]Strippoli P, Petrini M, Lenzi L, et al. The murine DSCR1-like ( Down syndrome candidate region 1)gene family: conserved synte- ny with the human orthologous genes. Gene, 2000, 257: 223-232.
    [114] Yamakawat K,Huot YK,Haendelt MA, et al. DSCAM: a novel member of the immunoglobulin superfaimily maps in a Down syndrome region and is involved in the development of the nevours sys- tem. Hum Mol-Genet, 1998, 7(2) :227-37.
    
    [115]Korenberg JR,Barlow GM,Chen XN,et al. Down syndrome congenital heart disease:a strong candidate gene maps within a narrowed region. Cytogenet Cell Genet,1999,86:7.
    
    [116] Fairbrother UL,Baptista MJ,Davies GB,et al.Functional variations in COL6A1 coding region associated with congenital heart defects in Down syndrome. Cytogenet Cell Genet, 1999, 86. 7.
    [117]Domhnech A,Arbones ML, Estivill X, et al.Cloning of the KCNF-2:a new putative voltage-dependent K+channel subunit.Cytogenet Cell Genet,1999, 86:15.
    [118] Garcia-Heras J, Corley N, Garcia MF, Kukolich MK, Smith KG, Day DW. De novo partial duplications 1p: report of two new cases and review. Am J Med Genet 1999;82:261 -264.
    
    [119] Tabata H, Sone K, Kobayashi T et al. Short arm deletion of chromosome 1: del (1)(p13. 3 p22. 3) in a female infant with an extreme tetralogy of Fallot. Clin Genet,1991,39:132-135.
    
    [120] Lundbech PE, Thogersen T. Unbalanced translocation between chromosomes 2 and 7 with de novo deletion of band 35 on the long arm of chromosome 2. Hum Genet 1989;82:92-3.
    
    [121] Johnson MC, Hing A, Wood MK, et al. Chromosome abnormalities in congenital heart disease. Am J Med Genet. 1997,70:292-298.
    
    [122] Chen CP, Chern SR, Lee CC, et al.Clinical, cytogenetic, and molecular findings of prenatally diagnosed mosaic trisomy 4. Prenat Diagn 2004;24:38-44.
    
    [123]Chen CP, Chern SR, Chang TY, et al. Prenatal diagnosis of de novo terminal deletion of chromosome 7q. Prenat Diagn 2003;23:375-379.
    
    [124] Barber JC, Maloney VK, Huang S, et al. 8p23. 1 duplication syndrome;a novel genomic condition with unexpected complexity revealed by array CGH. Eur J Hum Genet, 2008 ,16:18-27.
    
    [125] Gelb BD, Towbin JA, McCabe ER,et al.San Luis Valley recombinant chromosome 8 and tetralogy of Fallot: a review of chromosome 8 anomalies and congenital heart disease. Am J Med Genet. 1991,40(4):471-476.
    
    [126] Tansatit M, Kongruttanachok N, Kongnak W, et al. Tetralogy of Fallot with absent pulmonary valve in a de novo derivative chromosome 9 with duplication of 9pl3 —> 9pter and deletion of 9q34. 3. Am J Med Genet A.2006, 140:1981-1987.
    
    [127] Yamamoto T, Ueda H, Kawataki M, et al. A large interstitial deletion of 17p13. 1p11.2 involving the Smith-Magenis chromosome region in a girl with multiple congenital anomalies. Am J Med Genet A,2006, 140:88-91.
    
    [128] Smith SA, Martin KE, Dodd KL, et al.Severe microphthalmia,diaphragmatic hernia and Fallot's tetralogy associated with a chromosome 1;15 translocation. Clin Dysmorphol,1994,3(4):287-291.
    
    [129] Podraza J, Fleenor J, Grossfeld P. An 11q terminal deletion and tetralogy of Fallot. Am J Med Genet A, 2007, 143(10):1126-1128.
    
    [130] Chang CM, Yang MJ, Lin CC,et al.Partial trisomy 3p and monosomy 7p associated with tetralogy of Fallot and infantile seizure. Taiwan J Obstet Gynecol,2007, 46:288-292.
    
    [131] Bernardini L, Palka C, Ceccarini C, et al.Complex rearrangement of chromosomes 7q21. 13—q22.1 confirms the ectrodactyly-deafness locus and suggests new candidate genes. Am J Med Genet A, 2008, 146:238-244.
    
    [132] Rosias P, Sijstermans J, Theunissen P, et al. Phenotypic variability cat eye syndrome, case report and review of the literature. Counsel, 2001,12: 273-282.
    
    [133] Mears AJ,Duncan AMV, Biegel JA,et al. Molecular characterization of the marker chromosome associated with cat eye syndrome. Am J Hum Genet,1994, 55: 134-142.
    
    [134] Mears AJ, El-Shanti H, Murray J C, et al. Minute supernumerary ring chromosome 22 associated with cat eye syndrome: further delineation of the critical region. Am J Hum Genet, 1995, 57:667-673.
    
    [135] McTaggart KE, Budarf ML, Driscoll DA,et al. Cat eye syndrome chromosome breakpoint clustering: identification of two intervals also associated with 22qll deletion syndrome breakpoints. Cytogenet Cell Genet, 1998,81:222-228.
    
    [136] Bridgland L, Footz TK, Kardel MD et al. Three duplicons form a novel chimeric transcription unit in the pericentromeric region of chromosome 22q11.Hum Genet,2003,112:57-61.
    [137]Emanuel BS,Budarf ML,Sellinger B,et al.Detection of microdeletions of 22q11.2 with fluorescence in situ hybridization(FISH)diagnosis of DiGeorge syndrome(DGS),velo-cardio-facial(VCF) syndrome CHARGE association and conotruncal cardiac malformations.(Abstract) Am J Hum Genet,1992,51(suppl.):A3 only.
    [138]North K N,Wu B L,Cao BN,et al.CHARGE association in a child with de novo inverted duplication(14)(q22-q24.3).Am J Med Genet,1995,57:610-614.
    [139]Van Meter TD,Weaver DD.Oculo-auriculo-vertebral spectrum and the CHARGE association:clinical evidence for a common pathogenetic mechanism.Clin Dysmorph,1996,5:187-196.
    [140]Kuster W,Lenz W,Kaariainen H,et al.Congenital scalp defects with distal limb anomalies(Adams-Oliver syndrome):report of ten cases and review of the literature.Am J Med Genet,1988,31:99-115.
    [141]Slavotinek AM,Durra A,Kpodzo D,et al.A female with complete lack of mullerian fusion,postaxial polydactyly,and tetralogy of Fallot:genetic heterogeneity of McKusick-Kaufman syndrome or a unique syndrome?Am J Med Genet,2004,129A:69-72.
    [142]Hutson MR,Kirby ML.Neural crest and cardiovascular development:a 20-year perspective.Birth Defects Res C Embryo Today,2003 69(1):2-13.
    1 Fisher A,Caudy M.The function of hairy-related bHLH repressor proteins in cell fate decisions.Bioessays,1998,20;298-306.
    2 Jan YN,Jan LY.HLH proteins,fly neurogenesis,and vertebrate myogenesis.Cell,1993,75:827-830.
    3 Skeath JB,Carroll SB.The achaete-scute complex:Generation of cellular pattern and fate within the Drosophila nervous system.FASEB J,1994 8:714-721.
    4 Campos-Ortega JA.Genetic mechanisms of early neurogenesis in Drosophila melanogaster.Mol Neurobiol,1995,10:75-89.
    5 BateM Development of sensory systems in arthropods. In Jacobson M (ed) :Handbook of Sensory Physiology. Berlin: Springer-Verlag, 1978, pp 1 - 53.
    
    6 Hartenstein V, Posakony JW. Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development . 1989 , 107:389 - 405.
    
    7 Paroush Z, Finley RL Jr, Kidd T, et al. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins.Cell ,1994,79:805-815.
    
    8 Leimeister C, Bach A , Woolf A, et al. Screen for genes regulated during early kidney morphogenesis. Dev. Genet, 1999, 24: 273-283.
    
    9 Steidl C, Leimeister, C, Klamt B, et al. Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene family. Genomics, 2000, 66: 195-203.
    
    10 Leimeister C. Externbrink A. Klamt B, et al. Hey genes: a novel subfamily of hairy- and enhancer of split related genes specifically expressed during mouse embryogenesis. Mech. Dev, 1999, 85: 173-177.
    
    11 Armstrong EJ, Bischoff J. Heart valve development: Endothelial cell signaling and differentiation. Circ Res, 2004,95:459-470.
    
    12 Abdelwahid E, Pelliniemi LJ, Jokinen E. Cell death and differentiation in the development of the endocardial cushion of the embryonic heart.Microsc Res Tech, 2002,58:395-403.
    13 De Lange FJ, Moorman AF, Anderson RH, et al. Lineage and inorphogenetic analysis of the cardiac valves. Circ Res, 2004, 95:645 - 654.
    
    14 Kokubo H, Miyagawa-Tomita S, Nakazawa M, et al. Mouse hesrl and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev Biol , 2005, 278:301-309.
    
    15 Donovan J, Kordylewska A, Jan Y, et al. Tetralogy of fallot and other congenital heart defects in hey2 mutant mice. Curr Biol ,2002,12:1605-1607.
    
    16 Kokubo H, Miyagawa-Tomita S, Tomimatsu H, et al. Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res, 2004,95:540-547.
    
    17 Gessler M, Knobeloch K, Helisch A, et al. Mouse gridlock. No aortic coarctation or seficiency, but fatal cardiac defects in Hey2 -/- mice. Curr Biol ,2002,12:1601 -1603.
    
    18 Sakata, Y. ; Kamei, C. N. ; Nakagami, H, et al. Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2.Proc. Nat. Acad. Sci2002. 99: 16197-16202,.
    
    19 Weinstein BM, Stemple DL, Driever W, et al. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med ,1995 ,1:1143-1147.
    20 Zhong TP, Rosenberg M. Mohideen M, et al. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science ,2000, 287:1820-1824.
    
    21 Sakata Y, Xiang F, Chen Z, et al. Transcription factor CHF1/Hey2 regulates neointimal formation in vivo and vascular smooth muscle proliferation and migration in vitro. Arterioscler Thromb Vasc Biol ,2004,24:2069-2074.
    
    22 Fischer A, Schumacher N, Maier M, et al. The Notch target genes Heyl and Hey2 are required for embryonic vascular development. Genes Dev, 2004,18:901-911.
    
    23 Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev , 2000,14:1343-1352.
    
    24 Uyttendaele H, Closson V, Wu G, et al. Notch4 and Jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc Res 2000 60:91 - 103.
    
    25 Shawber CJ, Kitajewski J. Notch function in the vasculature: Insights from zebrafish, mouse and man. Bioessays ,2004, 26:225-234.
    
    26 Fischer A, Klamt B, Schumacher N. Phenotypic variability in Hey2 -/-mice and absence of HEY2 mutations in patients with congenital heart defects or Alagille syndrome. Mamm Genome, 2004 ,15:711-716.
    27 Sarkozy A,Conti E,D'Agostino R,et al.ZFPM2/FOG2 and HEY2 genes analysis in nonsyndromic tricuspid atresia.Am J Med Genet A.2005,133:68-70.
    28 Reamon-Buettner SM,Borlak J.HEY2 mutations in malformed hearts.Hum.Murat,2006,27:118 only,