抑郁症患者识别面部动态表情的时空模式磁源性影像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:抑郁症病因尚未清晰,其典型的临床症状是情绪障碍。抑郁症患者对情绪和环境刺激的感知加工障碍可能是导致其情绪异常的基础,在疾病的发病及维持中起重要作用;这种神经基础的异常是否长期存在,抗抑郁治疗能否改善这种异常尚不明确,了解这一问题对抑郁症的治疗具有重要的指导作用。因此,对情绪加工机制的了解有助于疾病的诊断、治疗及预防。
     目的:利用脑磁源性影像成像技术以及表情类型识别实验范式建立时空模式来探讨抑郁症患者识别动态表情的神经基础的特点。
     方法:利用275信道脑磁源性影像成像系统检测23例抑郁症患者和23例性别、年龄及教育程度与抑郁组相匹配,且精神疾病家族史为阴性的正常对照识别动态悲伤、喜悦及中性动态表情的神经基础特点。比较两组间激活脑区的差异、抑郁症组识别表情神经基础的性别差异、治疗疗效对抑郁症组识别表情神经基础的影响。图像数据经SPM8、Wfu、Marsbar、xjView等软件处理和统计分析,获得抑郁症患者识别面部动态表情时活动异常的脑区在不同时间段功能变化图。同时利用神经心理学测验评定其认知功能、临床量表评定临床症状严重程度,经SPSS11.5统计分析识别表情时的脑功能、认知功能、症状严重程度之间的关系。
     结果:
     1.威斯康星卡片分类测验(WCST)结果
     抑郁症患者组WCST成绩总体差于正常对照组,总应答数、错误应答数、明显多于正常对照组(P<0.05),而完成分类数、持续性应答数、持续性错误数以及概念化水平均明显少于正常对照组(P<0.05)。与治疗前相较,治疗后抑郁组WCST成绩显著提高。与治疗前相比,错误应答数明显少于治疗前(P<0.05),而完成分类数、持续性应答数以及概念化水平多于治疗前(P<0.05)。
     2.行为学数据
     与正常对照组相较,抑郁症组的总反应时明显延长(t=10.82, P<0.000),对中性、悲伤、喜悦、十字架的识别反应时均明显长于正常对照组,差异具有统计学意义(P<0.05)。
     与治疗前相比,患者治疗后总反应时间明显缩短(t=3.371, P=0.002)。其中悲伤、喜悦的识别反应时变化具有统计学意义(P<0.05);治疗后反应时长依次为中性>喜悦>悲伤>十字架。
     3.脑磁图结果
     3.1抑郁症患者与正常对照识别面部悲伤动态表情激活脑区的组间差异
     与正常对照组相比,抑郁症组在识别面部悲伤动态表情时其全脑区激活增强依次显示右钩回、右海马、右小脑顶→右颞上回→右钩回→右颞次回→右颞次回、右钩回、右梭状回→右颞下回、左胼胝下回→右钩回→右颞下回、右海马旁回→右钩回→右颞上回→右钩回→右钩回→右颞上回等脑区。
     与正常对照组相比,抑郁症组在识别面部悲伤动态表情时其全脑区激活减弱依次显示右颞上回→右屏状核、右岛叶、右颞上回、左岛叶、左楔叶→左楔叶、左颞上回、右颞上回、右屏状核、右岛叶→左枕中回、右颞上回、右岛叶→左楔叶、左枕中回、右枕中回→右颞横回、左中央前回→左颞中回、左岛叶、右颞中回、右楔叶→右颞上回→左楔前叶→左颞上回、左楔前叶→左颞上回、右颞中回→左颞横回→左颞横回、左颞中回、左岛叶→左颞上回等脑区。
     3.2抑郁症患者与正常对照识别面部喜悦动态表情激活脑区的组间差异
     与正常对照组相较,抑郁症识别喜悦表情时其全脑区激活增强依次显示左扣带回、右钩回→右颞下回→左前扣带回→左前扣带回→右颞下回、左钩回→右颞下回→左尾状核头、右尾状核头、左前扣带回→左额下回、左前扣带回、左额内侧回→左额下回→左额下回→左额下回等脑区。
     与正常对照组相较,抑郁症识别喜悦表情时其全脑区激活减弱依次显示左颞中回、右枕中回→左颞中回→右颞横回、左颞上回、左岛叶→左颞中回、右颞中回、右岛叶、左中央后回→右枕中回→右岛叶、左额下回→右岛叶、右颞上回→左颞中回、右屏状核、右颞上回→右屏状核、右豆状核、右楔前叶、右颞中回→左颞上回→右岛叶、左屏状核、左楔前叶→右屏状核、右岛叶、右楔前叶、左额下回、左颞中回→右岛叶→右屏状核等脑区。
     3.3抑郁症患者识别面部悲伤动态表情全脑激活的性别差异
     与男性抑郁症患者相较,女性抑郁症患者识别面部悲伤动态表情时其全脑区激活增强依次显示右额下回、左前扣带回、左额上回、左脑干→右额中回、右额上回→右额中回、左前扣带回→右额上回、左中央前回、左额下回→右额上回、左额上回、左前扣带回、右额下回→右中央前回、左前扣带回→右额中回、左脑干→右额中回、左额上回→右额中回、左海马、左海马旁回→右额下回→右额中回→右额中回→右额中回、右额下回→右额上回、左屏状核、右枕中回等脑区。
     与男性抑郁症患者相较,女性抑郁症患者识别面部悲伤动态表情时其全脑区激活减弱依次显示右颞上回→右海马旁回→左楔叶→右颞中回→右颞上回→左楔前叶、左颞中回→右海马旁回等脑区。
     3.4抑郁症患者识别面部喜悦动态表情全脑激活的性别差异
     与男性抑郁症患者相较,女性抑郁症患者识别面部喜悦动态表情时其全脑区激活增强依次显示左分叶→右枕回→左分叶、左额内侧回→左脑干等脑区。
     与男性抑郁症患者相较,女性抑郁症患者识别面部喜悦动态表情时其全脑区激活减弱依次显示右海马旁回、右颞上回、左豆状核、左钩回→左额下回、左豆状核、右小脑前叶、左颞上回→右小脑前叶、左颞上回、左颞横回、左楔叶→右小脑前叶、左小脑前叶、左额下回→左舌回、左后扣带回、右海马旁回→左楔前叶→右颞上回、右小脑前叶、左角回、左岛叶→右小脑前叶、左颞上回、左岛叶、右外核→左颞上回→左颞上回、右梭状回→左颞上回→右梭状回、左颞上回、左小脑蚓部→左颞上回、左岛叶→右颞叶次回、左外核、左梭状回等脑区。
     3.5抑郁症患者治疗前后识别面部悲伤动态表情全脑的功能特点
     与治疗后相较,治疗前抑郁症患者识别面部悲伤动态表情时其全脑区激活增强依次显示右小脑后叶、右中央后回→左小脑后叶、右楔叶→左楔前叶、左楔叶→右楔叶、右钩回、右颞下回、右枕中回、右颞下回→右楔叶→右楔叶→右小脑后叶、右楔叶、左楔叶→左小脑后叶→左楔叶→左枕下回→左枕下回、左额内侧回→左枕下回、右楔叶→左梭状回、左枕中回、左颞下回、右楔叶、右舌回→左枕下回、左梭状回等脑区。
     与治疗后相较,治疗前抑郁症患者识别面部悲伤动态表情时其全脑区激活减弱依次显示左小脑前叶→左小脑前叶→右额下回、左颞上回、左小脑前叶→左额下回→右丘脑背侧内核、右丘脑前核、右苍白球、右颞中回→右颞中回→右颞中回→右颞中回→右颞中回→右海马旁回、右颞中回等脑区。
     3.6抑郁症患者治疗前后识别面部喜悦动态表情全脑的功能特点
     与治疗后相较,治疗前抑郁症患者识别面部喜悦动态表情时其全脑区激活增强依次显示右楔叶、左楔前叶、左楔叶→右后扣带回、左楔前叶→右楔前叶→左楔前叶→左楔叶、右舌回→右楔叶→左楔叶、右楔叶、右枕中回、右颞中回→楔叶→右楔叶→左楔叶等脑区。
     与治疗后相较,治疗前抑郁症患者识别面部喜悦动态表情时其全脑区激活减弱依次显示后扣带回、右额中回、右豆状核、左颞上回→右额中回、右额下回、左颞中回→右额叶、左颞上回→右额下回→右豆状核、右额中回、右额下回、左豆状核、左额中回→右额中回、左脑干→右豆状核、右额中回、右额下回、左豆状核、左额中回→右额中回等脑区。
     3.7抑郁症患者识别悲伤动态表情的双侧杏仁核功能特点
     与正常对照组相较,抑郁症组识别面部悲伤动态表情时双侧杏仁核依次显示:50~150ms,100~200ms,150~250ms,300~400ms,450~550ms,600~700ms如上几个时间段的激活水平过度增强。
     与正常对照组相较,抑郁症组识别面部悲伤动态表情时左侧杏仁核依次显示:50~150ms,100~200ms,150~250ms,300~400ms,750~850ms如上几个时间段的激活水平过度增强。
     与正常对照组相较,抑郁症组识别面部悲伤动态表情时右侧杏仁核依次显示:50~150ms,100~200ms,150~250ms,250~350ms,300~400ms,450~550ms,550~650ms,600~700ms,750~850ms如上几个时间段的激活水平过度增强。且右侧杏仁核功能激活水平始终显著高于左侧杏仁核。(设P<0.05时具有统计学意义)
     结论:相对于正常人,抑郁症患者在面部表情识别任务中存在异常连接的病理时空模式,影响其情绪加工的功能。有效地治疗可明显改善患者在悲伤表情识别中的异常表现,而对喜悦表情识别影响较小。提示抗抑郁治疗可改善患者的负性认知模式。情绪识别神经基础的性别差异提示疾病的发生可能与此有关。同时,杏仁核功能右侧化,可能与情绪障碍发生密切相关。这些异常可能提示了抑郁症情绪识别的功能网络特征,也进一步揭示了抑郁症临床症状的发生机制,为今后的治疗与预防提供了重要的线索。
Background: The mechanism of depression is still unclear, the typical clinical character presents emotion disorder. These impairments and biases in the processing of emotional and social stimuli may underlie problems in mood and interpersonal behavior, and contribute to the onset and maintenance of mood disorders. For these reasons,understanding the mechanisms of the emotion processing abnormalities and identifying brain functional correlates of antidepressant treatment may prove to be helpful in the diagnosis, treatment, and prevention of mood disorders.
     Objective: To explore the features of functional networks about recognizing dynamical expression with using the spatial and temporal model with magnetoencephalography (MEG) technology and the paradigm of expressional experiment, and further to examine its neurological basis.
     Methods: 23 Chinese right-handed patients with major depression and 23 volunteers underwent MEG while recognizing dynamical expression videos. Healthy individuals were matched for age, sex and educational levels with major depression,and negative family history. When examined by MEG, all subjects were assessed by WCST. The datas are processed by the softwares as SPM8, Wfu, Marsbar, xjView, SPSS11.5 to statistical analyze.
     Results:
     1. The scores of WCST
     Depression performance overall worse than the control group, total responses, error responses, significantly more than the healthy comparison participants (P<0.05), and completed categories, sustained responses, significant and persistent errors conceptualize levels were less than the normal control group (P<0.05). Compared with depression without antidepressant treatment, depression with antidepressant treatment performance improved significantly. Compared with depression without antidepressant treatment, the number of error responses of depression with antidepressant treatment is significantly less (P<0.05), and completed categories, the number of sustained response and the conceptual level are more (P<0.05).
     2. The Data of Behavior
     Compared with healthy comparison participants, the total time in recognition of dynamical expression in depression was significantly longer (t=10.82, P<0.000), the time in recognition of dynamically neutral, sadness, happiness, the cross reaction time was significantly longer than healthy comparison participants (P<0.05). the total time in recognition of dynamical expression in depression with antidepressant treatment was significantly shorter (t=3.371, P = 0.002). Including, the times in recognition of dynamically sadness, happiness changes significantly (P<0.05); the length of reaction times after antidepressant treatment were followed neutral>happiness>sadness> cross.
     3. The result of MEG
     3.1 The differences of brain activation between patients with depression and healthy comparison participants in recognition of dynamically sadness expression
     In comparison with healthy comparison participants, depression showed increased activation during different time periods were separately as follows: right uncus gyrus, right hippocampus→right superior temporal gyrus→right uncus gyrus→right temporal sub-gyrus→right temporal sub-gyrus, right uncus gyrus, right fusiform gyrus→right inferior temporal gyrus, left corpus callosum→right uncus gyrus→right inferior temporal gyrus, right parahippocampal gyrus→right uncus gyrus→right superior temporal gyrus→right uncus gyrus→right uncus gyrus→right superior temporal gyrus in recognition of dynamically sadness expression.
     In comparison with healthy comparison participants, depression showed decreased activation during different time periods were separately as follows: right superior temporal gyrus→right claustrum, right insula, right superior temporal gyrus, left insula, left cuneus→left cuneus, left superior temporal gyrus, right superior temporal gyrus, right claustrum, right insula→left middle occipital gyrus, right superior temporal gyrus, right insula→left cuneus, left middle occipital gyrus, right middle occipital gyrus→right temporal transverse gyrus, left precentral gyrus→left middle temporal gyrus, left insula, right middle temporal gyrus, right cuneus→right superior temporal gyrus→left precuneus→left superior temporal gyrus, left precuneus→left superior temporal gyrus, right middle temporal gyrus→left transverse gyrus→left transverse gyrus, left middle temporal gyrus, left insula→left superior temporal gyrus in recognition of dynamically sadness expression.
     3.2 The differences of brain activation between patients with depression and healthy comparison participants in recognition of dynamically happiness expression
     In comparison with healthy comparison participants, depression showed increased activation in during different time periods were separately as follows: left cingulate gyrus, right uncus gyrus→right inferior temporal gyrus→left anterior cingulate gyrus→left anterior cingulate→right inferior temporal gyrus→left head of the caudate nucleus, right head of the caudate nucleus, left anterior cingulate gyrus→left inferior frontal gyrus, left anterior cingulate gyrus, left medial frontal gyrus→left inferior frontal gyrus→left inferior frontal gyrus→left inferior frontal gyrus in recognition of dynamically happiness expression.
     In comparison with healthy comparison participants, depression showed decreased activation in during different time periods were separately as follows: left middle temporal gyrus, right middle occipital gyrus→left middle temporal gyrus→right transverse temporal gyrus, left superior temporal gyrus, left insula→left middle temporal gyrus, right middle temporal gyrus, right insula, left postcentral gyrus→right middle occipital gyrus→right insula, left inferior frontal gyrus→right insula, right superior temporal gyrus→left middle temporal gyrus, right claustrum, right superior temporal gyrus→right claustrum, right putamen, the right precuneus , right middle temporal gyrus→left superior temporal gyrus→right insula, left claustrum, left precuneus→right claustrum, right insula, right precuneus, left inferior frontal gyrus, left middle temporal gyrus→right insula→right claustrum in recognition of dynamically happiness expression.
     3.3 The gender differences of brain activation between patients with depression in recognition of dynamically sadness expression
     In comparison with male depression, female depression showed increased activation in during different time periods were separately as follows: right inferior frontal gyrus, left frontal gyrus, left anterior cingulate gyrus, the left brainstem→right superior frontal gyrus, right middle frontal gyrus→right middle frontal gyrus, left anterior cingulate gyrus→right superior frontal gyrus, left inferior frontal gyrus, left precentral gyrus→right superior frontal gyrus, right inferior frontal gyrus, left superior frontal gyrus, left anterior cingulate gyrus→right precentral gyrus, left anterior cingulate gyrus→right middle frontal gyrus, left brainstem→right middle frontal gyrus, left superior frontal gyrus→right middle frontal gyrus, left hippocampus, left parahippocampal gyrus→right inferior frontal gyrus→right middle frontal gyrus→right middle frontal gyrus→right middle frontal gyrus, right inferior frontal gyrus→right superior frontal gyrus, left claustrum, right middle occipital gyrus in recognition of dynamically sadness expression.
     In comparison with male depression, female depression showed decreased activation in during different time periods were separately as follows: right superior temporal gyrus→right parahippocampal gyrus→left cuneus→right middle temporal gyrus→right superior temporal gyrus→left precuneus, left middle temporal gyrus→right parahippocampal gyrus in recognition of dynamically sadness expression.
     3.4 The gender differences of brain activation between patients with depression in recognition of dynamically happiness expression
     In comparison with male depression, female depression showed increased activation in during different time periods were separately as follows: left brain lobe→right occipital gyrus→left brain lobe, left medial frontal gyrus→left brainstemin in recognition of dynamically happiness expression.
     In comparison with male depression, female depression showed decreased activation in during different time periods were separately as follows: right parahippocampal gyrus, right superior temporal gyrus, left putamen, left uncus gyrus→left inferior frontal gyrus, left putamen, right anterior cerebellum, left superior temporal gyrus→right cerebellar anterior lobe, left superior temporal gyrus, left transverse temporal gyrus, left cuneus→right cerebellar anterior lobe, left cerebellar anterior lobe, left inferior frontal gyrus→left lingual gyrus, left posterior cingulate gyrus, right parahippocampal gyrus→left precuneus→right superior temporal gyrus, right cerebellum anterior lobe, left lingual gyrus, left insula→right cerebellar anterior lobe, left superior temporal gyrus, left insula, right extra unclear→left superior temporal gyrus→left superior temporal gyrus, right fusiform→left superior temporal gyrus→right fusiform gyrus, left superior temporal gyrus, left cerebellar vermis→left superior temporal gyrus, left insula→right temporal sub-gyrus, left extra unclear, left fusiform gyrus in recognition of dynamically happiness expression.
     3.5 The differences of brain activation between patients without antidepressant treatment and patients with antidepressant treatment in recognition of dynamically sadness expression
     In comparison with patients without antidepressant treatment, patients with antidepressant treatment showed increased activation in during different time periods were separately as follows: right cerebellar posterior lobe, postcentral gyrus→left cerebellar posterior lobe, right cuneus→left precuneus, left cuneus→right cuneus, right uncus gyrus, right inferior temporal gyrus, right middle occipital gyrus, right inferior temporal gyrus→right cuneus→right cuneus→right cerebellar posterior lobe, right cuneus, left cuneus→left cerebellar posterior lobe→left cuneus→left inferior occipital gyrus→left inferior occipital gyrus, left medial frontal gyrus→left inferior occipital gyrus, right cuneus, right lingual gyrus→left fusiform gyrus, left middle occipital gyrus, left inferior occipital gyrus, right cuneus, right lingual gyrus→left inferior occipital gyrus, left fusiform gyrus in recognition of dynamically sadness expression.
     In comparison with patients without antidepressant treatment, patients with antidepressant treatment showed decreased activation in during different time periods were separately as follows: left cerebellar anterior lobe→left cerebellar anterior lobe→right inferior frontal gyrus, left superior temporal gyrus, left cerebellar anterior lobe→left inferior frontal gyrus→right dorsal thalamus core, right anterior thalamic nucleus, right pallidus, right middle temporal gyrus→right middle temporal gyrus→right middle temporal gyrus→right middle temporal gyrus→right middle temporal gyrus→right parahippocampal gyrus, right middle temporal gyrus in recognition of dynamically sadness expression.
     3.6 The differences of brain activation between patients without antidepressant treatment and patients with antidepressant treatment in recognition of dynamically happiness expression
     In comparison with patients without antidepressant treatment, patients with antidepressant treatment showed increased activation in during different time periods were separately as follows: right cuneus, left precuneus, left cuneus→right posterior cingulate, left precuneus→right precuneus→left precuneus→left cuneus, right lingual gyrus→right cuneus→left cuneus, right cuneus, right middle occipital gyrus, right middle temporal gyrus→cuneus→right cuneus→left cuneus in recognition of dynamically happiness expression.
     In comparison with patients without antidepressant treatment, patients with antidepressant treatment showed decreased activation in during different time periods were separately as follows: posterior cingulate, right middle frontal gyrus, right putamen, left superior temporal gyrus→right middle frontal gyrus, right inferior frontal gyrus, left middle temporal gyrus→right frontal lobe, left superior temporal gyrus→right inferior frontal gyrus→right lenticular nucleus, right middle frontal gyrus, right inferior frontal gyrus, left lenticular nucleus, left middle frontal gyrus→right middle frontal gyrus, left brainstem→right lenticular nucleus, right middle frontal gyrus, right inferior frontal gyrus, left lenticular nucleus, left middle frontal gyrus→right middle frontal gyrus in recognition of dynamically happiness expression.
     3.7 The feature of amygdala between patients with depression and healthy comparison participants in recognition of dynamically sadness expression
     In Comparison with healthy comparison participants, the function of amygdala of depression showed abnormal activation were separately as follows: in 50 ~ 150ms, 100 ~ 200ms, 150 ~ 250ms, 300 ~ 400ms, 450 ~ 550ms, 600 ~ 700ms several time periods.
     In Comparison with healthy comparison participants, the function of left amygdala of depression showed abnormal activation were separately as follows: 50 ~ 150ms, 100 ~ 200ms, 150 ~ 250ms, 300 ~ 400ms, 750 ~ 850ms several time periods.
     In Comparison with healthy comparison participants, the function of right amygdale of depression showed abnormal activation were separately as follows: 50 ~ 150ms, 100 ~ 200ms, 150 ~ 250ms, 250 ~ 350ms, 300 ~ 400ms, 450 ~ 550ms, 550 ~ 650ms, 600 ~ 700ms, 750 ~ 850ms several time periods.
     Conclusions: The results of this study indicate that abnormal pathology spatial-temporal model in the emotion processing of facial expressions in depressed patients. The cortical mood regulating regions in patients improved activation in following antidepressant treatment for the response to sadness. But no much difference was found in recognition of happy faces. And the function of right amygdala may be closely associated with mood disorders. These abnormalities may indicate the characteristics of emotional circle in depression, but also further revealed the mechanism of clinical symptoms in depression, to provide the clues for the treatment, prevention in future.
引文
1 Fava M,Kendler KS. Major depressive disorder. Neuron, 2000, 28(2): 335-341.
    2 Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci, 1997, 9(3): 471-481.
    3 Kendler KS, Thornton LM, Gardner CO. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry, 2001, 158(4): 582-586.
    4 Ishai A, Schmidt CF, Boesiger P. Face perception is mediated by a distributed cortical network. Brain Res Bull, 2005, 67(1-2): 87-93.
    5 Martinot JL, Hardy P, Feline A, et al. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry, 1990, 147(10): 1313-1317.
    6 Bench CJ, Friston KJ, Brown RG, et al. The anatomy of melancholia: focal abnormalities of cerebral blood flow in major depression. Psychol Med, 1992, 22(3): 607-615.
    7 Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psyc- hiatry, 2003 , 54(3) : 338-352.
    8张培林.神经解剖学.北京:人民卫生出版社, 1987: 477-492.
    9许绍芬.神经生物学.上海:上海医科大学出版社, 1999: 370-410.
    10杨天祝.临床应用神经解剖.北京:中国协和医科大学出版社, 2002: 433-447.
    11 Ledoux JE. Emotion circuits in the brain. Annu Rev Neurosci, 2000, 23: 155-184.
    12 Bechara A. The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain Cogn, 2004, 55(1): 30-40.
    13 Rudrauf D, Lachaux JP, Damasio A, et al. Enter feelings: somatosensory responses following early stages of visual induction of emotion. Int J Psychophysiol, 2009, 72(1): 13-23.
    14 Anand A, Li Y, Wang Y, et al. Activity and connectivity of brain mood regulatingcircuit in depression: a functional magnetic resonance study. Biol Psychiatry, 2005, 57(10): 1079-1088.
    15杜经纶,姚志剑,谢世平等.动态表情情绪识别相关脑区的fMRI研究.中国心理卫生杂志, 2007, 8(21): 558-562.
    16姚志剑,杜经纶,谢世平等.动态面部表情情绪不明确识别的fMRI研究.中国行为医学科学, 2007, 16(8): 685-687.
    17姚志剑,杜经纶,谢世平等.女性重性抑郁症患者识别动态面部表情的神经基础的fMRI研究.中国心理卫生杂志, 2008, 4(22): 258-264.
    18 Martinez AM. Matching expression variant faces. Vision Res, 2003, 43(9): 1047-1060.
    19孙吉林,尹岭,赵文清.脑磁图.北京:科学技术文献出版社, 2005. 1-10.
    20魏景汉,罗跃嘉.认知事件相关脑电位教程.北京:经济日报出版社, 2002: 10-30.
    21扬丽,徐辰,扬文革.抑郁症与焦虑症的视听反应时间对照研究.上海精神医学, 2004, 16(1): 24 -25.
    22 Kilts CD, Egan G, Gideon DA, et a1. Dissociable neural pathways are involved in the recognition of emotion in static and dynamic facial expressions. Neuroimage, 2003, 18(1): 156-168.
    23 Satoa W, Kochiyamab T, Yoshikawab S, et a1. Enhanced neural activity in response to dynamic facial expressions of emotion: an fMRI study. Cogn Brain Res, 2004, 20(1): 81-91.
    24杜经纶,姚志剑,谢世平等.中国面部表情视频系统的初步建立.中国心理卫生杂志, 2007, 21(5): 333-337.
    25 Beck At. Thinking And Depression.Ⅱ.Theory And Therapy. Arch Gen Psychiatry, 1964, 10: 561-571.
    26中华医学会精神科分会.中国精神障碍分类与诊断标准(CCMD-3).第3版.济南:山东科学技术出版社, 2000: 87.
    27 First MB, Spitzer RL, Gibbon M, et al. Structured clinical interview for DSM-IV-TR Axis I disorders-patient edition (SCID-I/P, 2/2001 revision). Washington, DC: American Psychiatric Press. Inc, 1997: 317-320.
    28汤毓华.心理卫生评定量表手册(增刊).中国心理卫生杂志社, 1999: 220-223.
    29张明园.精神科评定量表手册第2版.长沙:湖南科学技术出版社, 1998 : 8.
    30吴文源.焦虑自评量表.见汪向东,王希林,马弘,著.心理卫生评定量表手册(增刊).中国心理卫生杂志, 1999: 235-238.
    31舒良.抑郁自评量表.见汪向东,王希林,马弘,著.心理卫生评定量表手册(增刊).中国心理卫生杂志, 1999: 194-196.
    32 Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002, 15(1): 273-289.
    33 Talairach J, Toumoux P. Co-planar stereotaxic atlas of human brain. Thieme Medical, l998: 1-120.
    34 Veiel HO. A preliminary profile of neuropsychological deficits associated with major depression. J Clin Exp Neuropsychol, 1997, 19(4): 587-603.
    35 Fossati P, ErgisA M, AllilaireI F. Executive functioning in unipolar depression: a review. Encephale, 2002, 28(2): 97-107.
    36 Merriam EP, Thase ME, Haas GL, et al. Prefrontal cortical dysfunction in depression determined by Wisconsin Card Sorting Test performance. Am J Psychiatry, 1999, 156(5): 780-782.
    37 Fossati P, Ergis AM, Allilaire JF. Problem-solving abilities in unipolar depressed patients: comparison of performance on the modified version of the Wisconsin and the Califomia sorting tests. Psychiatry Res, 2001, 104(2): 145-156.
    38 Brunnauer A, Laux G. Driving capacity and antidepressive drugs. Psychiatr Prax, 2003, 30(5) Suppl: S102-105.
    39 Mayberg HS, Liotti M, Brannan SK. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry, 1999, 156(5): 675-682.
    40刘哲宁,赵俊雄,陈筱章等.抑郁症患者威斯康星卡片分类测验和连续操作测验的初步研究.中国心理卫生杂志, 2003, 17(10): 690-692.
    41 Leppanen JM, Milders M, Bell JS, et a1. Depression biases the recognition of emotionally neutral faces. Psychiatry Research, 2004, 128(2): 123-133.
    42 Bouhuys AL, Geerts E, Mersch PP, et a1. Nonverbal interpersonal sensitivity and persistence of depression: perception of emotions in schematic faces. Psychiatry Res, 1996, 64(3): 193-203.
    43 Mikhailova ES, Vladimirova TV, Iznak AF, et a1. Abnormal recognition of facial expressions of emotions in depressed patients with major depression disorder and schizotypal personality disorder. Biol Psychiatry, 1996, 40(8): 697-705.
    44 Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol, 2001, 11(2): 240-249.
    45 Campanella S, Gaspard C, Debatisse D, et al. Discrimination of emotional facial expressions in a visual oddball task: an ERP study. Biol psychol, 2002, 59(3): 171-186.
    46 Bentin S, Deouell LY, Soroker N. Selective visual streaming in face recognition: evidence from developmental prosopagnosia. Neuroreport, 1999, 17(10): 823-827.
    47李建平,张平,代景华.五种基本情绪心脏自主神经传出活动模式.中国行为医学科学, 2006, 15: 57-58.
    48 Rainville P, Bechara A, Naqvi N, et al. Basic emotions are associated with distinct patterns of cardiorespiratory activity. Int J Psychophysiol, 2006, 61(1): 5-18.
    49 Miller GA. How we think about cognition, emotion, and biology in pychopathology. Psychophysiology, 1996, 33(6): 615-628.
    50 An SK, Lee SJ, Lee CH, et al. Reduced P3 amplitudes by negative facial emotional photographs in schizophrenia. Schizophr Res. 2003, 15(64): 125-135.
    51 Morita Y, Morita K, Yamamoto M, et al. Effects of facial affect recognition on the auditory P300 in healthy subjects. Neurosci Res, 2001, 41(1): 89-95.
    52 Dietrich DE, Emrich HM, Waller C, et al. Emotion/cognition-coupling in word recognition memory of depressive patients: an event-related potential study. Psychiatry Res, 2000, 96(1): 15-29.
    53 Dolcos F, Cabeza R. Event-related potentials of emotional memory: encoding pleasant, unpleasant, and neutral pictures. Cogn Affect Behav Neurosci, 2002, 2(3): 252-263.
    54 Takei Y, Kumano S, Maki Y, et al. Preattentive dysfunction in bipolar disorder: a MEG study using auditory mismatch negativity. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 2. [Epub ahead of print]
    55 Cornwell BR, Salvadore G, Colon-Rosario V, et al. Abnormal hippocampal functioning and impaired spatial navigation in depressed individuals: evidence from whole-head magnetoencephalography. 2010, 3. [Epub ahead of print]
    56 Todorov A, Engell AD. The role of the amygdale in implicit evaluation of emotionally neutral faces. Soc Cogn Affect Neurosci, 2008, 3(4): 303-312.
    57 Frodl T, Meisenzahl EM, Zetzsche T, et al. Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry, 2002,159(7): 1112-1118.
    58 Borod JC, Cicero BA, Obler LK, et al. Right hemisphere emotional perception: evidence across multiple channels. Neuropsychology, 1998, 12(3): 446-458.
    59 Davidson RJ. Cerebral asymmetry and emotion: conceptual and methodological conundrums. Cognit Emot, 1993, 7(1): 115-138.
    60 Güntekin B, Ba?ar E. Facial affect manifested by multiple oscillations. Int J Psychophysiol, 2009, 71(1): 31-36.
    61 Eger E, Jedynak A, Lwaki T, et al. Rapid extraction of emotional expression:evidence from evoked potential fields during brief presentation of face stimuli. Neuropsychologia, 2003, 41(6): 808-817.
    62 Orozco S, Ehlers CL. Gender differences on electrophysiological responses to facial stimuli. Biol Psychiatry, 1998, 44(4): 281-289.
    63 Bentin S, Deouell L Y, Soroker N. Selective visual streaming in face recognition: Evidence from developmental prosopagnosia. Neuroreport, 1999, 10(4): 823-827.
    64 Carmel D, Bentin S, Domain specificity versus expertise: factors influencing distinct processing of faces. Cognition, 2002, 83(1): 1-29.
    65 Ishai A, Ungerleider LG, Martin A, et al. The representation of objects in the human occipital and temporal cortex. J Cogn Neurosci, 2000, 12: 35-5l.
    66 Sergent J, Otha S, MacDonald B. Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain, 1992, 115(Pt1): 15-36.
    67 Adolphs R, Tranel D, Hamann S, et al. Recogntion of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia, 1999, 37(10): 1111-1117.
    68 Critchley H, Daly E, Phillips M, et al. Explicit and implicit neural mechanisms for processing of social information from facial expressions: a functional magnetic resonance imaging study. Hum Brain Mapp, 2000, 9(2): 93-105.
    69 Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci, 2000, 4(6): 223-233.
    70 Phillips ML, Drevets WC, Rauch SL, et al. Neurobiology of emotion perception ?: The neural basis of normal emotion perception. Biol Psychiatry, 2003, 54(5): 504-514.
    71 Gorno-Tempini ML, Pradelli S, Serafini M, et al. Explicit and incidental facial expression processing : an fMRI study. Neuroimage, 2001, 14(2): 465-473.
    72 Surguladze SA, Brammer MJ, Young AW, et al. A preferential increase in theextrastriate response to signals of danger. Neuroimage, 2003, 19(4): 1317-1328.
    73 Phan KL, Wager T, Taylor SF, et al. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 2002, 16(2): 331-348.
    74 Mayberg HS, Brannan SK, Tekell JL, et a1. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry, 2000, 48: 830-843.
    75 Kim YH, Gitelman DR, Nobre AC, et al. The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. Neuroimage, 1999, 9(3): 269-277.
    76 Halari R, Simic M, Pariante CM, et al. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-na?ve adolescents with depression compared to controls. J Child Psychol Psychiatry, 2009, 50(3): 307-316.
    77 Mantani T, Okamoto Y, Shirao N, et al. Reduced activation of posterior cingulate cortex during imagery in subjects with high degrees of alexithymia: a functional magnetic resonance imaging study. Biol Psychiatry, 2005, 1(57): 982-990.
    78 Immordino-Yang MH, McColl A, Damasio H, et al. Neural correlates of admiration and compassion. Proc Natl Acad Sci, 2009, 12(106): 8021-8026.
    79 Nielen MM, Heslenfeld DJ, Heinen K, et al. Distinct brain systems underlie the processing of valence and arousalof affective pictures. Brain Cogn, 2009, 71(3): 387-396.
    80 Banich MT, Mackiewicz KL, Depue BE, et al. Cognitive control mechanisms, emotion and memory: a neural perspective with implications for psychopathology. Neurosci Biobehav Rev, 2009, 33(5): 613-630.
    81 Gray JR, Braver TS, Raichle ME. Integration of emotion and cognition in lateral prefrontal cortex. Proc Natl Acad Sci, 2002, 19(99): 4115-4120.
    82 Gur RC, Turetsky BI, Matsui M, et a1. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci, 1999, 19(10): 4065-4072.
    83 Bellis De, Keshavan MS, Beers SR, et a1. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex, 2001, 11(6): 552-557.
    84 Caplan PJ, Crawford M, Hyde JS, et a1. Gender Differences in Human Cognition. Oxford University Press: New York, 1997.
    85 Gur RC, Gunning-Dixon F, Bilker WB, et a1. Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cereb Cortex, 2002, 12(9): 998-1003.
    86 Lane RD, Reiman EM, Bradley MM, et a1. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia, 1997, 35(11): 1437-1444.
    87 Lee TMC, Liu HL, Hoosain R, et a1. Gender differences in neural correlates of recognition of happy and sad faces in humans assessed by functional magnetic resonance imaging. Neurosci Lett, 2002, 333(1): 13-16.
    88 Canli T, Desmond JE, Zhao Z, et a1. Sex differences in the neural basis of emotional memories. Proc Natl Acad Sci, 2002, 99(16): 10789-10794.
    89 Koch K, Pauly K, Kellermann T, et al. Gender differences in the cognitive control of emotion: An fMRI study. Neuropsychologia, 2007, 20, 45(12): 2744-2754.
    90 Hofer A, Siedentopf CM, Ischebeck A, et a1. Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. Neuroimage, 2006, 32(2): 854-862.
    91 Gorman JM. Gender differences in depression and response to psychotropic medication. Gend Med, 2006, 3(2): 93-109.
    92 Suslow T, Junghanns K, Arolt V. Detection of facial expressions of emotions in depression. Percept Mot Skills, 2001, 92(3 Pt 1): 857-868.
    93 Sheline YI, Barch DM, Donnelly JM, et a1. Increased amygdale response to masked emotional faces in depressed subjects resolves with antidepressant treatment:an fMRI study. Biol Psychiatry, 2001, 50(9): 651-658.
    94 Davidson RJ, Irwin W, Anderle MJ, et a1. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry, 2003, 160(1): 64-75.
    95 Kennedy SH, Evans KR, Kruger S, et a1. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry, 2001, 158(6): 899-905.
    96 Fu CHY, Walsh ND, Drevets WC. Neuroimaging studies of mood disorders. In: Fu CHY, Russell T, Senior C, Weinberger DR, Murray RM, eds. Neuroimaging in Psychiatry, London, England: Martin, Dunitz, 2003: 131-169.
    97 Brody AL, Saxena S, Mandelkem MA, et a1. Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatry, 2001, 50(3): 171-178.
    98 Martin SD, Martin E, Rai SS, et a1. Brain blood flow changes in depressed patients treated with interpersonal psychotherapy or venlafaxine hydrochloride:preliminary findings. Arch Gen Psychiatry, 2001, 58(7): 641-648.
    99 Fu CH, Williams SC, Cleare AJ, et a1. Attention of the neural response to sad faces in maj or depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry, 2004, 61(9): 877-889.
    100 Fu CH, Williams SC, Brammer MJ, et a1. Neural responses to happy facial expressions in major depression following antidepressant treatment. Am J Psychiatry, 2007, 164(4): 599-607.
    101 Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression:towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull, 2003, 65: 193-207.
    102 Anand A, Li Y, Wang Y, et a1. Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: an FMRI study. J Neuropsychiatry Clin Neurosci, 2007, 19(3): 274-82.
    103 Kanwisher N. Domain specificity in face perception. Nat Neurosci, 2000, 3(8): 759-763.
    104 LeDoux JE. Emotion: clues from the brain. Annu Rev Psychol. 1995, 46: 209-235.
    105 Globisch J, Hamm AO, Esteves F, et al. Fear appears fast: temporal course of startle reflex potential in animal fearful subjects. Psychophysiology, 1999, 36(1): 66-75.
    106 Hartikainen KM, Ogawa KH, Knight RT. Transient interference of right hemispheric function due to automatic emotional processing. Neuropsychologia, 2000, 38(12): 1576-1580.
    107 Dannlowski U, Ohrmann P, Bauer J, et al. Amygdala reactivity to masked negative faces is associated with automatic judgmental bias in major depression: a 3 T fMRI study. J Psychiatry Neurosci, 2007, 32(6): 423-429.
    108 Canli R, Zhao Z, Brewer J, et al. Event-related activation in the human amygdala associates with later memory for individual emotional experience. J Neurosci, 2000, 1(20): RC99.
    109 Morris JS, Ohman A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdale. Nature, 1998, 4, 393(6684): 467-470.
    110 Pessoa L, McKenna M, Gutierrez E, et al. Neural processing of emotional faces requires attention. Proc Nati Acad Sci, 2002, 99(17): 11458-11463.
    111 Morris JS, DeGelder B, Weiskrantz L, et al. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain, 2001, 124(Pt6): 1241-1252.
    112 Matthews SC, Strigo IA, Simmons AN, et al. Decreased functional coupling ofthe amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. J Affect Disord, 2008, 111(1): 13-20.
    113 Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev, 2009, 33(5): 699-771.
    114 Surguladze S, Brammer MJ, Keedwell P, et al. A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biol Psychiatry, 2005, 57(3): 201-209.
    115 Kensinger EA, Schacter DL. Emotional content and reality-monitoring ability: fMRI evidence for the influences of encoding processes. Neuropsychologia, 2005, 43(10): 1429-1443.
    116 Ramel W, Goldin PR, Eyler LT, et al. Amygdala reactivity and mood-congruent memory in individuals at risk for depressive relapse. Biol Psychiatry, 2007, 15(61): 231-239.
    117 Ketter TA, Kimbrell TA, George MS, et al. Effects of mood and subtype on cerebral glucose metabolism in treatment-resistant bipolar disorder. Biol Psychiatry, 2001, 49(2): 97-109.
    118 Baas D, Aleman A, Kahn RS. Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Brain Res Rev, 2004, 45(2): 96-103.
    119 Dolan RJ, Lane R, Chua P, et al. Dissociable temporal lobe activations during emotional episodic memory retrieval. Neuroimage, 2000, 11(3): 203-209.
    120 Glascher J, Adolphs R. Processing of the arousal of subliminal and supraliminal emotional stimuli by the human amygdala. J Neurosci, 2003, 23(32): 10274-10282.
    121 Wager TD, Phan KL, Liberzon I, et al. Valence, gender, and lateralization of function of functional brain anatomy in emotion: a meta-analysis of findings fromneuroimaging. NeuroImage, 2003, 19(3): 513-531.
    122王丽,姚志剑,卢青等.抑郁症静息态大脑双侧杏仁核的功能连接.临床精神医学杂志, 2008, 18(3): 145-147.
    123 Fossati P, Ergis AM, Allilaire JF. Problem-solving abilities in unipolar depressed patients: comparison of performance on the modified version of the Wisconsin and the Califomia sorting tests. Psychiatry Res, 2001, 104(2): 145-156.
    1. Banaschewski T, Brandeis D. Annotation: what electrical brain activity tells us about brain function that other techniques cannot tell us: a child psychiatric perspective. Child Psychol Psychiatry, 2007, 48(5): 415-435.
    2.孙吉林,尹岭,赵文清.脑磁图.北京:科学技术文献出版社, 2005: 33-35.
    3.邢学民.脑磁图在神经疾病中的应用现状.重庆医学, 2005, 34: 145-147.
    4. Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry, 2003, 54(3): 338–352.
    5. Fitzgerald PB, Laird AR, Maller J, et al. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp, 2008, 29(6): 683-695.
    6. Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry, 2000, 48: 813-829.
    7. Pizzagalli DA, Nitschke JB, Oakes TR, et al. Brain electrical tomography in depression: the importance of symptom severity, anxiety, and melancholic features. Biol Psychiatry, 2002, 52(2): 73-85.
    8. Anand A, Li Y, Wang Y, Wu J, et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry, 2005, 57(10): 1079-1088.
    9. Berendse HW, Verbunt JP, Scheltens P, et al. Magnetoencephalographic analysis of cortical activity in Alzheimer’s disease: a pilot study. Clin Neurophysionl, 2000, 111(4): 604-612.
    10. Fehr T, Kissler J, Moratti S, et al. Source distribution of neuromagnetic slow waves and MEG-delta activity in schizophrenic patients. Biol Psychiatry, 2001, 50(2): 108-116.
    11. K?hk?nen S, Yamashita H, Ryts?l? H, et al. Dysfunction in early auditory processing in major depressive disorder revealed by combined MEG and EEG. Psychiatry Neurosci, 2007, 32(5): 316 -322.
    12. Naatanen R, Pakarinen S, Rinne T, et al. The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol, 2004, 115: 140.
    13. Fernandez A, Rodiriguez-Palancas A, Lopez-Ibor M, et al. Increased occipital delta dipole density in major depressive disorder determined bymagnetoencephalography. J Psychiatr Neurosci, 2005, 30(1): 17-23.
    14. MaestúF, Fernandez A, Simos PG, et al. Profiles of brain magnetic activity during a memory task in patients with Alzheimer's disease and in non-demented elderly subjects, with or without depression. Neurol Neurosurg Psychiatry, 2004, 75: 1160-1162.
    15. Escudero J, Hornero R, Poza J,et al. Assessment of classification improvement in patients with Alzheimer’s disease based on magnetoencephalogram blind source separation. Artif Intell Med. 2008, 43(1): 75-85.
    16. Stefan J. Kiebel, Jean Daunizeau,aChristophe Phillips,et al. Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. NeuroImage, 2008, 39(2): 728-741.
    17. Tony W Wilson, Donald C. Rojas, Peter D. Teale, et al. Aberrant functional organi zation and maturation in early-onset psychosis: Evidence from magnetoencephalography. Psychiatry Res, 2007, 156(1): 59-67.
    18. Hunter AM, Cook IA, Leuchter AF, et al. The promise of the quantitative electroencephalogram as a predictor of antidepressant treatment outcomes in major depressive disorder. Psychiatr Clin North Am, 2007, 30(1): 105-124.
    19. Tollk?tter M, Pfleiderer B, S?r?s P, et al. Effects of antidepressive therapy on auditory processing in severely depressed patients:a combined MRS and MEG study. Psychiatr Res, 2006, 40(4): 293-306.
    20. Sperling W, Martus P, Alschbach M. Evaluation of neuronal effects of electroconvulsive therapy by magnetoencephalography (MEG). Prog Neuropsychopharmacol Biol Psychiatry, 2000, 24(8): 1339-1354.
    21. Heikman P, Salmelin R, Jyrki P, et al. Relation between frontal 3-7hz MEG activity and the efficacy of ECT in major depression. J ECT, 2001, 17(2): 136-140.
    22. Filbey FM, Slacka KJ, Sunderland TP, et al. Functional magnetic resonance imaging and magnetoen cephalography differences associated with APOEe[varepsilon]4 in young healthy adults. Neuroport, 2006, 17(15): 1585-1590.
    23. Baune BT, Hohoff C, Mortensen LS, et al. Serotonin transporte polymorphism (5-HTTLPR) association with melancholic depression: a female specific effect? Depress Anxiety, 2008, 25(11): 920-925.
    24. Lee YS, Han DH, Yang KC, et al. Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. J Affect Disord, 2008, 109(1-2): 165-169.