MIMU微惯性测量单元误差建模与补偿技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微惯性测量单元(Micro Inertial Measurement Unit)具有体积小、重量轻、成本低、可靠性高等特点,在军事及民用领域具有广阔的应用前景。陀螺及加速度计是MIMU的主要元件,其精度直接影响到惯性系统的精度。实际工作中,由于不可避免的有各种干扰因素作用导致陀螺及加速度计产生误差。这些误差,一方面是器件本身结构不完善引起的;另一方面,也和其所处的工作环境和工作条件有关。主要围绕MIMU误差补偿进行了以下研究:
     分析了微陀螺及加速度计的工作和结构原理,从理论上分析了影响其精度的主要误差来源,并建立了陀螺及加速度计的误差模型,采用“六位置24点”编排对陀螺及加速度计的主要误差及性能进行了标定。
     针对MIMU对温度影响敏感的特点,对陀螺及加速度计的温度特性进行了分析,分别采用离线标定和在线辨识的方法确立温度补偿模型参数并用于补偿。实验结果表明,陀螺的零偏稳定性由补偿前的126.324°/h减小到9.612°/h,加速度计的偏置稳定性由补偿前的0.836 mg减小到0.216 mg;为进一步提高补偿效率,引入了Kalman滤波对温度传感器测量值进行滤波处理后再用于补偿,减小了补偿过程中由于温度测量噪声而引入的额外误差,陀螺零偏稳定性由9.612°/h下降到8.964°/h,加速度计偏置稳定性由0.216mg下降到0.176mg。陀螺效果改善不大,这是因为陀螺温度传感器本身的测量噪声很小,而且主要由本身的量测噪声决定;但对温度传感器量测噪声较大的局部而言,其噪声能够减小18%。
     对陀螺随机漂移建模进行了研究,运用随机信号处理方法以及时间序列分析法建立了陀螺随机漂移的AR模型,并根据Akaike信息准则中的AIC准则和Kalman滤波对模型的适用性及准确性进行了检验,实验结果验证了该方法的正确性。
Micro Inertial Measurement Unit (MIMU) has many advantages such as small volume, light weight, low cost, high reliability etc. It will be applied broadly in the field of military and civil. Inertial navigation gyroscope and accelerometer are important parts of the inertial system and its precision will directly influence the precision of inertial system. Actually, error in measurement will be caused inevitably due to many disturbing factors. On one hand, the imperfect structure of MIMU will cause error; on the other hand, error may occur due to the working environment and condition of the MIMU. The error compensation about MIMU is studied in this paper. A series of results are presented as follows:
     Analyses the main error factors of accelerometer and gyro according to its structural characteristics, the simple mathematic models of micro gyro and accelerometer are established based on the results of velocity and 24 position calibration.
     The temperature characteristics of gyroscope and accelerometer have been studied. The temperature compensation models of gyroscope and accelerometer bias have been established. Through compensation, the bias stability of the gyroscope is reduced from 126.324°/h to 9.612°/h and that of accelerometer is reduced from 0.836mg to 0.216mg.The compensation models have been further improved by pre-filtering before compensation. The bias stability is reduced to 8.964°/h and 0.176mg for gyroscope and accelerometer, respectively.
     Non-stationary random signal of gyro drift is studied. The AR model of the random signal is established by using stochastic signal processing methods and time series analysis theory. This method is proved by AIC rule and Kalman filter.
引文
[1]刘俊,石云波,李杰.微惯性技术[M].北京:电子工业出版社,2005.
    [2]李滋刚,万德均.捷联式惯性导航技术[M].北京:中国船舶信息中心,2001.
    [3]张巧云,胡爱民,林曰乐,张挺,谢佳维,毛世平,李卯辰,郑永祥,吕志清.石英微机械陀螺的研究进展及应用前景[J].光电惯性技术论文集,2002.
    [4]李志信,罗小兵,过增元.MEMS在惯性测量中的应用[J].传感器技术,2001,20(7).
    [5]李国辉.惯性器件的温度漂移系数及补偿技术研究[D].航天第十六研究所硕士学位论文,2003.
    [6]李新刚,袁建平.微机械陀螺的发展现状[J].力学进展,2003,3(33).
    [7]光纤陀螺仪测试方法.中华人民共和国国家军用标准,GJB2426-95.
    [8]单轴摆式伺服线加速度计通用规范.中华人民共和国国家军用标准,GJB719-89.
    [9]惯性技术术语.中华人民共和国国家军用标准,GJB585A-98.
    [10]干国强,邱致和.导航与定位[M].北京:国防工业出版社,2000.
    [11]丁衡高.微惯性仪表技术的研究与进展[J].中国惯性技术学报,2001,9(4).
    [12]滕继涛.MIMU/GPS组合导航系统关键技术研究[D].北京航空航天大学博士学位论文,2004.
    [13]Yan Dong,Francis E.H.Tayl,Xu Yuan,William T.Chen.Optimization Design of MEMS Gyroscope,Eurosensors XIII,The Hague,The Netherlands,September,1999
    [14]芮俊丽.捷联系统误差补偿及初始对准技术研究[D].南京航空航天大学硕士学位论文,2000.
    [15]解旭辉,刘危,张明亮,李圣怡.微惯性测量组合关键技术与应用[J].光学精密工程,No.2,2002.
    [16]王莹.微型石英音叉陀螺技术研究[D].北京理工大学博士论文,2001.
    [17]Itzhack Y.Bar-Itzhack,Richard R.Harman.Implicit and Explicit Spacecraft Gyro Calibration.AIAA Guidance,Navigation,and Control Conference and Exhibit[A].16-19 August,2004,providence,Rhode island.
    [18]陈北鸥,孙文胜,张桂宏,陈东海,蒋顺成.捷联组合(设备无定向)六位置测试标定[J].导航与航天运载技术,No.3,2001.
    [19]任大海,顾启泰,毛刚,尤政,刘学斌.微型惯性测量组合标定技术[J].清华大学学报(自然科学版),2001,41(8).
    [20]杨金显,袁赣南,徐良臣.微机械陀螺测试与标定技术研究[J].传感技术学报,2006,19(5).
    [21]王立文,国琳娜.惯性测量装置标定技术研究[J].鱼雷技术,2003,11(1).
    [22]周小刚,惠俊军,钱培贤.惯性测量组合小角度静态标定方法研究[J].计算机测量与控制,2005,13(3).
    [23]Kirill Shchedov,Christopher Evans,Roman Gutierrez,and Tony K.Tang.Temperature dependent characteristics of the JPL silicon MEMS gyroscope[A].2000IEEE Aerospace Conference Procee-dings[C].Piscataway NJ USA:IEEE,2000.403-411.
    [24]A.Kourepenis,J.Borenstein,J.Connelly,R.Elliott,E Ward,M.Weinberg.Performance of MEMS Inertial Sensors[A].1998 IEEE PLANS[C].Palm Springs,California 1998:1-8..
    [25]陈怀,张嵘,周斌,陈志勇.微机械陀螺仪温度特性及补偿算法研究[J].传感器技术,2004,23(10):24-26.
    [26]王淑娟,吴广玉.惯性器件温度误差补偿方法综述[J].中国惯性技术学报,1998,6(3):44-49.
    [27]Priyanka AGGARWAL,Zalnab SYED,Dr.Xiaoji NIU and Dr.Naser EL-SHEIMY,Cost-effective Testing and Calibration of Low Cost MEMS Sensors for Integrated Positioning,Navigation and Mapping Systems[C].XXIII FIG(International Federation of Surveyors) Congress,Munich,Germany,8-13 October 2006.
    [28]张奕群,高钟毓,陈鼎榕.用于火箭炮弹姿态测量的微机械陀螺初始热漂移建模[J].中国惯性技术学报,2000,8(1):59-62.
    [29]李清梅.石英挠性加速度计温度误差建模与补偿技术研究[D].国防科学技术大学硕士学位论文,2005.
    [30]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.
    [31]Hong KS.Compensation of nonlinear thermal bias drift of rsonant rate sensor using fuzzy logic[J].Sensors and Actuators,1999,78:143-148.
    [32]Shcheglov K,Evans C,Gutierrez R.et al.Temperature dependent characteristics of the JPL silicon MEMS gyroscope[A].2000 IEEE Aerospace Conference Proceedings [C].Piscataway NJ USA:IEEE,2000.403-411.
    [33]陈刚,张朝霞,庄良杰.捷联式惯性系统陀螺仪数据分析与温度建模[J].系统仿真学报,2006,18(6):1428-1430.
    [34]张鹏飞,龙兴武.机抖激光陀螺捷联系统中惯性器件的温度补偿的研究[J].宇航学报,2006,27(3):522-526.
    [35]潘金艳,朱长纯,樊建民.微机械陀螺零位误差的研究[J].西安交通大学学报,2006,Vol.40,No.4:480-483.
    [36]张广莹,邓正隆,傅振宪.陀螺仪温度建模研究[J].系统仿真学报,2003,15(3):369-371.
    [37]M.W.Putty,A micromachined vibrating ring gyroscope,Ph.D.dissertation,Univ. Michigan,Ann Arbor,Mar.1995.
    [38]Mitsuharu Chiba and Noboru Wakatsuki.Experimental Validation of Temperature Self-compensation for LiTa03 Piezoelectric Gyroscope.2000 IEEE ULTRASONICS SYMPOSIUM P883-S88.
    [39]戎健美.平台式惯导系统中陀螺漂移的建模及补偿[D].哈尔滨工程大学硕士学位论文,2004.
    [40]曹鲜花.星载光纤陀螺捷联系统误差建模研究[D].国防科学技术大学硕士学位论文,2006.
    [41]万德均,黄仁,仁兴明.陀螺随机漂移ARMA模型的建立[J].南京工学院学报,1988,18(3).
    [42]吴怀宇.时间序列分析与综合[M].武汉:武汉大学出版社,2004.
    [43]范剑清,姚琦伟.非线性时间序列[M].北京:高等教育出版社,2005.
    [44]臧荣春,崔平远.陀螺随机漂移时间序列建模方法研究[J].系统仿真学报,2005,17(8).
    [45]柳贵福,邢燕丽,张树侠.光纤陀螺零偏稳定性的数据建模方法研究[J].中国惯性技术学报,2001,9(3).
    [46]施芹.提高硅微陀螺仪性能若干关键技术研究——正交误差与杂散电容分析研究[D].东南大学博士学位论文.2005.
    [47]吴惠.微惯性测量系统关键器件的研究[D].中北大学硕士学位论文.2005.