含分布式能源的电网协调优化调度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国大力促进分布式能源发展和智能电网信息化、互动化建设的背景下,考虑分布式能源与我国当前电力调度模式的协调,解决分布式能源发电(用户)与电网之间的矛盾,使得分布式能源主动参与电网调度是值得研究的问题。主要研究内容和成果如下:
     结合虚拟发电厂运行特点,提出一种带优先级的多目标优化方法,将虚拟发电厂的技术层和经济层两层管理理念具体化为带有优先级的目标函数,并采用基于满意度表示的两步分解方法求解。建立虚拟发电厂和配电网的联合优化控制模型并采用近似动态规划方法求解。在与配电网的联合优化时虚拟发电厂的快速控制功能可以改善配电网的运行指标,如电网的频率偏差、电压偏差、功率控制等。
     基于充放储一体化电站的能量特性,研究了多个充放储电站入网的电网协调调度。利用电动汽车和电池的充放储过程的功率转移功能,改进SCOPF方法实现充放储节点功率调度的时间和空间解耦。首先采用虚拟发电厂的思想将区域电网中所有的分布式能源和充放储电站看作为一个整体,优化得到24个时段的调度结果,实现时间上的解耦;然后考虑电网拓扑结构,优化充放储功率实现空间解耦。
     提出一种内点法结合随机调节因子更新的方法来求解基于机会约束规划的随机最优调度模型,采用半不变量和Cornish-Fisher级数结合的方法来计算机会约束的等效条件。引入与机会约束概率相关的调节因子,将随机最优调度问题转化为可采用内点法求解的最优潮流模型,并提出调节因子的迭代更新方法实现随机环境下的功率解最优。最后以IEEE14和IEEE118节点系统为例验证所提方法并分析了所提方法的精度分析、灵敏度分析和计算量。
     提出一种多优化控制中心互动协调调度模式并应用于含分布式能源控制中心的电网优化调度。以优化控制中心为单位来分析分布式能源控制中心主动优化的特点。将传统的电网调度模型也转化为一个优化控制中心。各优化控制中心可按照自己的资源组成特点和多个优化目标并行独立优化以制定出力计划。基于互动协调调度模式,提出了并行优化和优先优化两种优化方式和正常和异常两种运行情况,并设计了两种优化方式和两种运行情况的协调优化方法。针对多优化控制中心并行优化中的冲突问题,采用协同优化来协调优化控制中心间的耦合变量不一致,并通过协调满意度设定值来解决多优化控制中心并行优化的目标冲突问题。最后采用不同运行情况下的算例仿真来说明和验证所提的模型和方法。
Recently, Chinese policies greatly promote the development of the grid-connected Distributed Energy Resource (DER) and the informational andinteractive smart grid. In this context, the cooperation dispatching of thepower grid including lots of DERs is a meaningful issue to eliminate theconflicts between the main grid and DERs (or consumers).
     It firstly aims on the optimization model and its solving method ofaggregating DERs based on the operation characteristics of virtual powerplant(VPP). A multi-objective optimization model with priority is proposed tospecify the technical and economic two-layer management mode of thevirtual power plant as the target functions with priority. The proposed modelis solved by decomposing it into two step optimization models based on thesatisfaction function. Then a joint optimization model of distribution networkincluding virtual power plants is established and solved by the approximatedynamic programming. With the joint optimization model, the networkperformance, such as frequency deviation, voltage deviation, power controlcan be improved because of the rapid control ability of virtual power plants.
     The second concerned point focuses on the cooperative dispatch of DERand the charging-discharging-storage integrative station(CDSIS) containingelectric vehicles (EV) and the second-use of electric vehicle batteries. Animproved dispatching model is proposed based on security constrainedoptimal power flow (SCOPF) to realize the temporal and spatial decoupling,with the power-transferring function of EVs and batteries. The improvedmodel firstly obtains the24-hour power outputs of traditional generators andthe total output of DERs and the CDSIS by treating them as a whole(represented by a VPP). Then it optimizes the DERs’ outputs considering thetopological structure of power grid to decouple the spatial correlation.
     Thirdly, an algorithm combining the interior point method and the update of the regulatory variables is proposed for the chance constrained stochasticoptimal power flow (S-OPF) model of power system including DERs. Theequivalent conditions of chance constraints are calculated based on cumulantsand Cornish-Fisher series. The regulatory variables are proposed to changethe chance constrained stochastic optimal power flow into a deterministicoptimal power flow (D-OPF) model. The update of the regulatory variablesis proposed to abtain iteratively the optimal solution of the S-OPF model. Theproposed method are tested on the IEEE14-bus and118-bus systems. Itsprecision, sensitivity and calculation are also analyzed in the case study.
     Lastly, a multi-controller interactive coordination scheduling model ispresented and applied to the dispatch problem of the power system includingmultiple renewable controllers. The optimal controller models the activeoptimization of the DERs’ controlling center. The traditional power griddispatch model is also considered as a controlling center. In the dispatchingmodel, a controlling center can plan its power output on its own according toits resources characteristics and multiple optimization objectives. Based onthe interactive coordination dispatching model, two optimal models(peer-to-peer and with priority) and two operating model (normal andabnormal) are also proposed. The detailed coordination rules are alsodesigned accordingly. The collaborative optimization method based onsatisfaction is applied to solve the proposed models. The coupling variable iscoordinated using collaborative optimization. The coordination of satisfactionis proposed to resolve the objective conflict between multiple optimal controlcenters in parallel optimization. The model and the method are validated inthe simulation example.
引文
[1] Rewewables2013Global Status Report[R].2013-06.
    [2]各国鼓励分布式发电推动智能电网建设[J].高压电器,2012,48(9):66.
    [3]分布式发电管理暂行办法,中国电力报,2013年8月15日,第003版.
    [4] Roberts, B.P., Sodium-Sulfur (NaS) batteries for utility energy storage applications[C].2008IEEEPower and Energy Society General Meeting,2008:1-2.
    [5]丁明,陈忠,苏建徽等,可再生能源发电中的电池储能系统综述[J].电力系统自动化,2013,37(1):19-25.
    [6]丁明,张颖媛,茆美琴等,包含钠硫电池储能的微网系统经济运行优优化[J].中国电机工程学报,2011,31(4):7-13.
    [7] Roberts, B.P., Sandberg, C., The Role of Energy Storage in Development of Smart Grids[C].Proceedings of the IEEE,2011,99(6):1139-1144.
    [8]徐振华,面向智能电网的广义综合负荷建模方法研究[D].博士,湖南大学,2012.
    [9]陈安伟,智能电网技术经济综合评价研究[D].博士,重庆大学2012
    [10] Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V., Overview of Control and GridSynchronization for Distributed Power Generation Systems[J]. IEEE Transactions on IndustrialElectronics,2006,53(5):1398–1409.
    [11]Gaudenz Koeppel, Distributed Generation Literature Review and Outline of the Swiss Situation[R].Internal report,2003,pp12-13.
    [12]Tsikalakis, A.G., Hatziargyriou, N.D., Centralized Control for Optimizing Microgrids Operation[J].IEEE Transactions on Energy Conversion,2008,23(1):241-248.
    [13]艾欣,许佳佳,基于互动调度的微网与配电网协调运行模式研究[J].电力系统保护与控制,2013,41(1):143-149.
    [14]鲁宗相,王彩霞,闵勇等,微电网研究综述[J].电力系统自动化,2007,31(19):100-107.
    [15]王成山,李鹏,分布式发电,微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-15.
    [16] Katiraei, F., Iravani, M.R., Power Management Strategies for a Microgrid With MultipleDistributed Generation Units[J]. IEEE Transactions on Power Systems,2006,21(4):1821–1831.
    [17] Digra, R.K., Pandey, R.K., Multi-agent control coordination of Microgrid[C].2013StudentsConference on Engineering and Systems (SCES),2013, Page(s):1-5.
    [18] Wei Zhang, Yinliang Xu, Wenxin Liu et al., Fully Distributed Coordination of Multiple DFIGs ina Microgrid for Load Sharing[J]. IEEE Transactions on Smart Grid,2013,4(2):806-815.
    [19]王斐,牛铭,佟宇梁,多代理技术在energy hubs中的应用研究[J].电网与清洁能源,2010,11(26):28-32.
    [20] Raffel Buhler, Integration of Renewable Energy Sources Using Microgrids, Virtual Power Plantsand the Energy Hub Approach[Dissertation],2010, Swiss Federal Institute of Technology (ETH) Zurich.
    [21] Skarvelis-Kazakos, Spyros, Rikos, Evangelos, Kolentini, Efstathia, Implementing agent-basedemissions trading for controlling Virtual Power Plant emissions[J].Electric Power Systems Research,2013,102:1-7.
    [22] Lukovic, S., Kaitovic, I., Mura, M., Bondi, U. Virtual Power Plant as a Bridge between DistributedEnergy Resources and Smart Grid[C].In Proceedings of43rd Hawaii International Conference onSystem Sciences, Koloa, Kauai, HI, USA,5–8January2010, pp.1–8.
    [23] Gong J., Xie D., Jiang C., Zhang Y. Multiple Objective Compromised Method for PowerManagement in Virtual Power Plants[J]. Energies.2011,4(4):700-716.
    [24]丁明,张颖媛,茆美琴.微网研究中的关键技术[J].电网技术.2009,33(11):6-11.
    [25] Asano, H., Watanabe, H., Bando, S., Methodology to Design the Capacity of a Microgrid[C].IEEE International Conference on System of Systems Engineering,2007.2007, Page(s):1-6.
    [26] Gil, N.J., Peas Lopes, J.A., Hierarchical Frequency Control Scheme for Islanded Multi-MicrogridsOperation[J]. IEEE Lausanne Power Tech,2007:473-478.
    [27] Duo Shao, Qi Wei, Tingzhi Nie, A Multi-Agent control strategy in microgrid island mode[C].6thInternational Forum on Strategic Technology (IFOST),2011,Vol.1Page(s):429-432.
    [28]卫志农,余爽,孙国强等,虚拟电厂的概念与发展[J].电力系统自动化,2013,37(13):1-9.
    [29] Provoost, F., Myrzik, J.M.A., Kling, W.L. Optimizing LV Voltage Profile by Intelligent MVControl in Autonomously Controlled Networks[C]. In Proceedings of the41st International UniversitiesPower Engineering Conference, Newcastle-Upon-Tyne, UK,6–8September2006, Volume1, pp.354–358.
    [30] Hongming Yang, Dexin Yi, Junhua Zhao et al., Distributed Optimal Dispatch of Virtual PowerPlant via Limited Communication[J]. IEEE Transactions on Power Systems,2013,28(3):3511-3512.
    [31]季阳,基于多代理系统的虚拟发电厂技术及其在智能电网中的应用研究[D],硕士,上海交通大学,2011.
    [32]刘晓,新能源电力系统广域源荷互动调度模式理论研究[D],博士,华北电力大学,2012.
    [33] EI Bakari, K., Myrzik, J.M.A., Kling, W.L. Prospects of a Virtual Power Plant to Control a Clusterof Distributed Generation and Renewable Energy Sources[C]. In Proceedings of the44th InternationalUniversities Power Engineering Conference, Glasgow, Scotland,1–4September2009, pp.1–5.
    [34] Bignucolo, F., Caldon, R., Prandoni, V., Spelta, S., Vezzola, M. The Voltage Control on MVDistribution Networks with Aggregated DG Units (VPP)[C]. In Proceedings of the41st InternationalUniversities Power Engineering Conference, Newcastle-Upon-Tyne, UK,6–8September2006, Vol.1,pp.187–192.
    [35] Bakari, K.E., Kling, W.L. Virtual Power Plants: An Answer to Increasing DistributedGeneration[C]. In Proceedings of Innovative Smart Grid Technologies Conference Europe, Gotheburg,Sweden,10–13October2010, pp.1–6.
    [36]Salmani, M.A., Tafreshi, S.M.M., Salmani, H. Operation Optimization for a Virtual Power Plant[C].In Proceedings of IEEE PES/IAS Conference on Sustainable Alternative Energy, Valencia, Spain,28–30September2009, pp.1–6.
    [37] Ruiz, N., Cobelo, I., Oyarzabal, J. A direct load control model for virtual power plantmanagement[J]. IEEE Trans. Power Electron.2009,24(2):959–966.
    [38] Molderink A, BakkerV,Bosman M.G.C.,etal. Management and Control of Domestic Smart GridTechnology[J]. IEEE Trans on Smart Grid,2010,2(1):109-119.
    [39] Vasirani, M., Kota, R., Cavalcante, R.L.G., et al. An Agent-Based Approach to Virtual PowerPlants of Wind Power Generators and Electric Vehicles[J]. IEEE Transactions on Smart Grid,2013,4(3):1314-1322.
    [40] Elaheh M,Seyed M M T. Bidding Strategy of Virtual Power Plant forParticipating in Energy andSpinning Reserve Markets一Part I: Problem Formulation [J]. IEEE Trans on Power Systems,2011,26(2):949-956.
    [41] Elaheh M,Seyed M M T. Bidding Strategy of Virtual Power Plant for Participating in Energy andSpinning Reserve Markets—Part II: Numerical Analysis [J]. IEEE Trans on Power Systems,2011,26(2):957-964.
    [42] Heredia F.J.,Rider M.J.,Corchero C. Optimal Bidding Strategies for Thermal and GenericProgramming Units in the Day-Ahead Electricity Market [J].IEEE Trans on Power Systems’2011,26(2):1504-1518.
    [43]张彩萍,姜久春,张维戈等,梯次利用锂离子电池电化学阻抗模型及特性参数分析[J].电力系统自动化,2013,37(1):54-58.
    [44]曹秉刚,张传伟,白志峰,电动汽车技术进展和发展趋势[J].西安交通大学学报,2004,38(1):1-5.
    [45]张文亮,武斌,李武峰等,我国纯电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(4):1-5.
    [46] ROBERTS B P.SODIUM-Sulfur (NaS)batteries for utility energy storage applications. IEEE Powerand Energy Society General Meeting Conversion and Delivery of Electrical Energy in the21st Century.2008
    [47] Viswanathan, V.V., Kintner-Meyer, M., Second Use of Transportation Batteries: Maximizing theValue of Batteries for Transportation and Grid Services[J]. IEEE Transactions on Vehicular Technology,2011,60(7):2963-2970.
    [48]杨敏霞,刘高维,房新雨等,计及电网状态的充放储一体化站运行模式探讨[J].电网技术,2013,37(5):1202-1208.
    [49] Neubauer J,Pesaran A.PHEV/EV li-lon battery second-use project[R], USA, National RenewableEnergy Laboratory,2010.
    [50] Beer, S., Gomez, T., Dallinger, D., et al. An Economic Analysis of Used Electric Vehicle BatteriesIntegrated Into Commercial Building Microgrids [J]. IEEE Transactions on Smart Grid,2012,3(1):517-525.
    [51]刘念,唐霄,段帅等,考虑动力电池梯次利用的光伏换电站容量优化配置方法[J].中国电机工程学报,2013,33(4):34-44.
    [52]顾羽洁,电动汽车充放储一体化电站对电网影响的研究[D],硕士,上海交通大学,2012.
    [53]胡泽春,宋永华,徐智威等,电动汽车接入电网的影响与利用[J].中国电机工程学报,2012,32(4):1-10.
    [54]刘高维,杨敏霞,贾玉健等,充放储一体化电站接入电网的能量流动控制策略[J].电力与能源,2013,34(2):179-181+186.
    [55]王泽众,李家辉,电池梯次利用储能装置在电动汽车充换电站中的应用[J].电气自动化,2012,34(6):49-50.
    [56] Sortomme, E., El-Sharkawi, M.A., Optimal Combined Bidding of Vehicle-to-Grid AncillaryServices[J]. IEEE Transactions on Smart Grid,2012,3(1):70-79.
    [57] Sortomme, E., Hindi, M.M., MacPherson, S.D.J., et al. Coordinated Charging of Plug-In HybridElectric Vehicles to Minimize Distribution System Losses [J]. IEEE Transactions on Smart Grid,,2011,2(1):198-205.
    [58]张舒,胡泽春,宋永华等,考虑电动汽车换电站与电网互动的机组组合问题研究[J].中国电机工程学报,2012,32(10):49-55.
    [59]杨敏霞,贾玉健,冯俊淇等,充放储一体化站对区域配电网的谐波治理[J].电力科学与工程,2012,28(11):1-6+12.
    [60] Sortomme, E., El-Sharkawi, M.A., Optimal Scheduling of Vehicle-to-Grid Energy and AncillaryServices[J].IEEE Transactions on Smart Grid,3(1),2012:351-359.
    [61]鲍冠南,陆超,袁志昌,基于动态规划的电池储能系统削峰填谷实时优化[J].电力系统自动化,2012,36(12):11-16.
    [62]赵俊华,文福拴,薛禹胜等,计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,34(20):22-29.
    [63]于大洋,宋曙光,张波等,区域电网电动汽车充电与风电协同调度的分析[J].电力系统自动化,2011,35(14):24-29.
    [64] Wenxia Pan, Yongwei Fan, Nanying He, The optimal dispatching research of the wind-hydrohybrid system[C]. International Power Engineering Conference,2007, Page(s):977-981.
    [65] Li, Q., Choi, S.S., Yuan, Y., Yao, D.L., On the Determination of Battery Energy Storage Capacityand Short-Term Power Dispatch of a Wind Farm[J]. IEEE Transactions on Sustainable Energy,2011,2(2):148-158.
    [66] Zhu Wang,Lingfeng Wang,Dounis A I,et al, Integration of plug-in hybrid electric vehicles intobuilding energy management system[C].IEEE Power and Energy Society General Meeting,Detroit,USA,2011:1-8.
    [67] Li Zhu,Yu F R,Bin Ning,et al.Stochastic charging management for plug-in electric vehicles insmart microgrids fueled by renewable energy sources[C]. IEEE Online Conference on GreenCommunications (GreenCom), New York,USA,2011:7-12.
    [68] Bedir A,Ozpineci B,Christian J E.The impact of plug-in hybrid electric vehicle interaction withenergy storage and solar panels on the grid for a zero energy house[C]. IEEE Transmission andDistribution Conference and Exposition. New Orleans, USA,2010:1-6.
    [69]茆美琴,孙树娟,苏建徽.包含电动汽车的风/光/储微电网经济性分析[J].电力系统自动化,2011,35(14):30-35.
    [70] Ting Wu, Qiang Yang, Zhejing Bao et al, Coordinated Energy Dispatching in Microgrid WithWind Power Generation and Plug-in Electric Vehicles[J]. IEEE Transactions on Smart Grid,2013,4(3):1453-1463
    [71]苗轶群,含电动汽车及换电站的微网优化调度研究[D].博士,浙江大学,2012.
    [72] Xian Liu, Xu, W., Minimum Emission Dispatch Constrained by Stochastic Wind PowerAvailability and Cost[J]. IEEE Transactions on Power Systems,2010,25(3):1705-1713.
    [73]韩自奋,陈启卷.考虑约束的风电调度模式[J].电力系统自动化,2010,24(2):89-92.
    [74]郑太一,冯利民,王绍然,王泽一,付小标.一种计及电网安全约束的风电优化调度方法[J].电力系统自动化,2010,34(15):71-74.
    [75]任博强,彭鸣鸿,蒋传文等,计及风电成本的电力系统短期经济调度建模[J].电力系统保护与控制,2010,38(14):67-72.
    [76] Dutta, S., Overbye, T. J., Optimal storage scheduling for minimizing schedule deviationsconsidering variability of generated wind power[C]. Power Systems Conference and Exposition (PSCE),2011:1-7.
    [77] Abbey, C., Strunz, K., Joos, G., A Knowledge-Based Approach for Control of Two-Level EnergyStorage for Wind Energy Systems[J]. IEEE Transactions on Energy Conversion,2009,24(2):539-547.
    [78] Mohammadi, M., Nafar, Mehdi, Optimal placement of multitypes DG as independent privatesector under pool/hybrid power market using GA-based Tabu Search method[J]. International Journal ofElectrical Power&Energy,2013,51:43-53.
    [79] Moradijoz, M., Moghaddam, M. Parsa et al. A multi-objective optimization problem for allocatingparking lots in a distribution network[J]. International Journal of Electrical Power&Energy,2013,46:115-122.
    [80]胡庶,吴耀武,娄素华,等.用户自备分布式发电与供电商的博弈[J].电力系统自动化,2006,30(20):21-25.
    [81]陈海焱.含分布式发电的电力系统分析方法研究[D].博士,华中科技大学,2007.
    [82]王瑞琪,分布式发电与微网系统多目标优化设计与协调控制研究[D].博士,山东大学,2013.
    [83]杨为,分布式能源的优化调度[D],硕士,合肥工业大学,2010.
    [84] Sicong Tan, Jian-Xin Xu, Panda, S.K., Optimization of Distribution Network IncorporatingDistributed Generators: An Integrated Approach[J]. IEEE Transactions on Power Systems,2013,28(3):2421-2432.
    [85] Ting Wu, Qiang Yang, Zhejing Bao et al, Coordinated Energy Dispatching in Microgrid With WindPower Generation and Plug-in Electric Vehicles[J]. IEEE Transactions on Smart Grid,2013,4(3):1453-1463.
    [86] Kim, Hongseok, Thottan, Marina, A two-stage market model for microgrid power transactions viaaggregators[J]. BELL LABS TECHNICAL JOURNAL,2011,16(3):101-107.
    [87] Toma, Lucian, Otomega, Bogdan, Bulac, Constantin, Coordination of Distributed GeneratorsThrough the Virtual Power Plant Concept[C], IEEE3rd IEEE PES International Conference andExhibition on Innovative Smart Grid Technologies Europe (ISGT Europe), Tech Univ Berlin, Berlin,GERMANY,2012:14-17.
    [88] SCHELL ENBERG A. Probabilistic and stochastic optimal power flow[D]. Alberta, Canada:University of Calgary,2006.
    [89] Zhang, H., Li, P. Probabilistic analysis for optimal power flow under uncertainty Probabilisticanalysis for optimal power flow under uncertainty[J]. IET GENERATION TRANSMISSION&DISTRIBUTION,2010,4(5):553-561.
    [90]董雷,程卫东,杨以涵,含风电场的电力系统概率潮流计算[J].电网技术,2009,33(16):87-91.
    [91] Jabr, R.A., Pal, B.C. Intermittent wind generation in optimal power flow dispatching[J].Generation, Transmission&Distribution, IET,2009,3(1):66-74.
    [92] Entriken, R., Tuohy, A., Brooks, D. Stochastic optimal power flow in systems with wind power[C],Power and Energy Society General Meeting,2011:1-5.
    [93] KIMBALL L M, CL EMENTS K A, PAJ IC S, et al. Stochastic OPF by constraint relaxation[C]. InProc.2002IEEE Power Technology Conference, Bologna, Italy2003,Vol.4.
    [94]胡泽春,王锡凡.考虑负荷概率分布的随机最优潮流方法[J].电力系统自动化,2007,31(16):14-18.
    [95] Hui Zhang, and Pu Li, Chance Constrained Programming for Optimal Power Flow underUncertainty[J]. IEEE Trans. Power Syst.,2011,26(4):2417-2424.
    [96]孙元章,吴俊,李国杰等,基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,29(4),2009:41-47.
    [97] Zhipeng Liu, Fushuan Wen, and Ledwich, G. Optimal Siting and Sizing of Distributed Generatorsin Distribution Systems Considering Uncertainties[J]. IEEE Trans. Power Delivery,2011,26(4):2541-2551.
    [98] Y. Fu, M. Shahidehpour, and Z. Li, AC contingency dispatch based on security-constrained unitcommitment[J]. IEEE Transactions on Power Systems,2006,21(2):897–908.
    [99] Qianfan Wang, Yongpei Guan, and Jianhui Wang, A Chance-Constrained Two-Stage StochasticProgram for Unit Commitment with Uncertain Wind Power Output[J]. IEEE Transactions on PowerSystems,2012,27(1):206-215.
    [100] A. T. Saric and A. M. Stankovic, An application of interval analysis and optimization to electricenergy markets[J]. IEEE Transactions on Power Systems,2006,21(2):515–523.
    [101] Lei Wu, Mohammad Shahidehpour, and Zuyi Li, Comparison of Scenario-Based and IntervalOptimization Approaches to Stochastic SCUC[J].IEEE Transactions on Power Systems,2012,27(2):913-921.
    [102] Schellenberg, A., Rosehart, W., and Aguado, J. Cumulant-based probabilistic optimal power flow(P-OPF) with Gaussian and gamma distributions[J]. IEEE Transactions on Power Systems,2005,20(2):773-781.
    [103] Lukovic, S., Kaitovic, I., Mura, M., et al, Virtual Power Plant as a Bridge between DistributedEnergy Resources and Smart Grid[C]. In Proceedings of43rd Hawaii International Conference onSystem Sciences, Koloa, Kauai, HI, USA,2010, pp.1–8.
    [104] Kuzle, I., Zdrilic, M., Pandzic, H., Virtual power plant dispatch optimization using linearprogramming[C].10th International Conference on Environment and Electrical Engineering (EEEIC),2011:1-4.
    [105] EI Bakari, K., Myrzik, J.M.A., et al. Prospects of a Virtual Power Plant to Control a Cluster ofDistributed Generation and Renewable Energy Sources[C]. In Proceedings of the44th InternationalUniversities Power Engineering Conference, Glasgow, Scotland,2009, pp.1–5.
    [106] Bignucolo, F., Caldon, R., Prandoni, V., Spelta, S., Vezzola, M. The Voltage Control on MVDistribution Networks with Aggregated DG Units (VPP)[C]. In Proceedings of the41st InternationalUniversities Power Engineering Conference, Newcastle-Upon-Tyne, UK,2006, Vol.1, pp.187–192.
    [107] Caldon, R., Patria, A.R., Turri, R. Optimisation Algorithm for a Virtual Power Plant Operation[C].In Proceedings of39th International Universities Power Engineering Conference, Bristol, UK,September2004, Vol.3, pp.1058–1062.
    [108] Peik-herfeh, Malahat, Seifi, Hossein, Sheikh-El-Eslami, M. Kazem, Two-stage approach foroptimal dispatch of distributed energy resources in distribution networks considering virtual power plantconcept, European Transactions on Electrical Power,2012, Article in Press.
    [109]邓佳佳,考虑分布式能源的电力系统优化运营模型研究[D].博士,华北电力大学,2012.
    [110]刘晓,新能源电力系统广域源荷互动调度模式理论研究[D].博士,华北电力大学,2012.
    [111] Pinto, T., Vale, Z.A., Morais, H., Praca, I. et al., Multi-agent based electricity market simulatorwith VPP: Conceptual and implementation issues[C].IEEE Power&Energy Society General Meeting,2009:1-9.
    [112] Hernandez, Luis, Baladron, Carlos, Aguiar, Javier M., A Multi-Agent System Architecture forSmart Grid Management and Forecasting of Energy Demand in Virtual Power Plants[J]. IEEECommunication Magazine,2013,51(1):106-113.
    [113] Sao, C., Lehn, P.W. Autonomous load sharing between converters and generators inmicrogrids[C].2011IEEE Power and Energy Society General Meeting,2011:1-8.
    [114] De Brabandere, K.., Bolsens, Bruno, Van den Keybus, J.., A voltage and frequency droopcontrol method for parallel inverters[J]. IEEE Transactions on Power Electronics,2007,22(4):1107–1115.
    [115] Pudjianto, D., Ramsay, C., Strbac, G., Virtual power plant and system integration of distributedenergy resources[J]. Renewable Power Generation, IET,2007,1(1):10-16.
    [116] Willems, B.: Physical and Financial Virtual Power Plants, April2005. Available at SSRN:http://ssrn.com/abstract=808944
    [117] Dimeas, A.L., Hatziargyriou, N.D., Agent based control of Virtual Power Plants[C]. Interna-tionalConference on Intelligent Systems Applications to Power Systems,2007.2007, Page(s):1-6.
    [118] Jen-Hao Teng, A direct approach for distribution system load flow solutions[J]. IEEE Transactionson Power Delivery,2003,18(3):882–887.
    [119]魏庆来,基于近似动态规划的非线性系统最优控制研究[D].博士,东北大学,2008.
    [120]胡洲,基于HDP的一类时滞离散时间非线性系统最优跟踪控制的研究[D].博士,广西大学,2012.
    [121] Al-Tamimi, A., Lewis, F.L., Abu-Khalaf, M., Discrete-Time Nonlinear HJB Solution UsingApproximate Dynamic Programming: Convergence Proof[J]. IEEE Transactions on Systems, Man, andCybernetics, Part B: Cybernetics,2008,38(4):943-949.
    [122] Yu Jiang, Zhong-Ping Jiang, Approximate Dynamic Programming for Optimal Stationary ControlWith Control-Dependent Noise[J]. IEEE Transactions on Neural Networks,2011,22(12):2392-2398.
    [123]赵琰,邓玮,张玉艳,基于近似动态规划的神经网络控制及在电力系统中应用[J].东北电力技术,2009,4:10-12.
    [124]孙健,刘锋, SI Jennie,一种改进的近似动态规划方法及其在SVC的应用[J].电机与控制学报,2011,15(5):95-102.
    [125] Molina, D., Venayagamoorthy, G.K., Jiaqi Liang et al, Intelligent Local Area Signals BasedDamping of Power System Oscillations Using Virtual Generators and Approximate DynamicProgramming[J]. IEEE Transactions on Smart Grid,2013,4(1):498-508.
    [126] Jiaqi Liang, Molina, D.D., Venayagamoorthy, G.K., et al, Two-Level Dynamic StochasticOptimal Power Flow Control for Power Systems With Intermittent Renewable Generation[J]. IEEETransactions on Power Systems,2013,28(3):2670-2678.
    [127] Jiaqi Liang, Harley, R.G., Venayagamoorthy, G.K., Adaptive critic design based dynamic optimalpower flow controller for a smart grid[C].2011IEEE Symposium on Computational IntelligenceApplications In Smart Grid (CIASG),2011:1-8.
    [128] Jiaqi Liang, Venayagamoorthy, G.K., Harley, R.G.. Wide-Area Measurement Based DynamicStochastic Optimal Power Flow Control for Smart Grids With High Variability and Uncertainty [J].IEEE Transactions on Smart Grid,2012,3(1):59-69.
    [129]房新雨,黄克捷,冯俊淇等,电动汽车充放储一体化电站四种变流装置对比[J].电力电子技术,2013,47(07):64-66.
    [130] Wang, H., Murillo-Sanchez, C.E., Zimmerman, R.D., Thomas, R.J., On Computational Issues ofMarket-Based Optimal Power Flow[J]. IEEE Transactions on Power Systems,2007,22(3):1185-1193.
    [131]吴俊,李国杰,孙元章,基于随机规划的并网风电场最大注入功率计算[J].电网技术,2007,31(14):15-19.
    [132]王乐,余志伟,文福拴,基于机会约束规划的最优旋转备用容量确定[J].电网技术,2006,30(20):14-19.
    [133] The advanced theory of statistics, vol.12ed1945Kendall M.G.466s.
    [134]周建华,袁越,含风电场电力系统的Cornish-Fisher级数概率潮流计算[J].电力自动化设备,2011,31(12):69-71.
    [135] Zhou Jianhua, Yuan Yue, Probabilistic load flow calculation based on Cornish-fisher expansionfor power system with wind farm[J], Electric Power Automation Equipment,2011,31(12):69-71.
    [136] Tan, Kok-Kiong Kiong, Zhao, Shao; Xu, Jian-Xin Xin, Online automatic tuning of a proportionalintegral derivative controller based on an iterative learning control approach, IET Control Theory&Applications,2007,1(1):90–96.
    [137] Shen, D.; Mu, Y.; Xiong, G., Iterative learning control for non-linear systems with deadzoneinput and time delay in presence of measurement noise, IET Control Theory&Applications,2011,5(12):1418–1425.
    [138]金尚泰,侯忠生,池荣虎等,离散时间非线性系统的数据驱动无模型自适应迭代学习控制[J].控制理论与应用,2012,8(29):1001-1009.
    [139]王锡凡,电力系统优化规划[M].北京:水利电力出版社,1990:313-322.
    [140] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, MATPOWER: Steady-StateOperations, Planning and Analysis Tools for Power Systems Research and Education[J]. IEEETransactions on Power Systems,2011,26(1):12-19.
    [141] Pei Zhang, and Lee, S.T. Probabilistic load flow computation using the method of combinedcumulants and Gram-Charlier expansion[J]. IEEE Transactions on Power Systems,2004,19(1):676-682.
    [142]张伯明,张海波,多控制中心之间分解协调计算模式研究[J].中国电机工程学报,2006,26(22):1-5.
    [143]张步涵,王凯,方华亮等,基于网络分割的电力系统潮流分解协调计算[J].高电压技术,2007,33(7):173-176.
    [144]王刚,电力系统多控制中心之间分解协调暂态稳定仿真计算的研究[D].博士,清华大学,2006.
    [145] Liang, C.H.; Chung, C.Y.; Wong, K.P. er al, Parallel Optimal Reactive Power Flow Based onCooperative Co-Evolutionary Differential Evolution and Power System Decomposition[J], IEEETransactions on Power Systems,2007,22(1):249–257.
    [146]李智,杨洪耕,基于邻近中心算法的无功优化分解协调计算[J],电力自动化设备,2012,32(12):33-37.
    [147]赖晓文,,钟海旺,,杨军峰,基于价格响应函数的超大电网分解协调优化方法[J].电力系统自动化,2013,37(21):1-7.
    [148]王平,郑松林,吴光强.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报.2011,47(2):102-108.
    [149]白小涛,飞机多学科设计协同优化及近似技术研究[D].硕士,西北工业大学,2005.
    [150] Xiang Li, ChangAn Liu, Weiji Li, Application of Collaborative Optimization to Optimal ControlProblems[J]. AIAA Journal,2013,51(3):745-50.
    [151]李旭宇,复杂机电耦合系统的并行设计方法研究[D].博士,中南大学,2004.
    [152]钟掘,复杂机电系统耦合设计理论与方法[M].机械工业出版社,2007:252.
    [153]袁亚湘,孙文瑜.最优化理论与方法[M].科学出版社.1997.