TLR4基因启动子区SNPs及其与严重创伤病人预后的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床流行病学资料统计显示,脓毒症是临床危重病患者的一个重要死亡原因,革兰氏阴性细菌细胞壁的主要毒性成分—LPS是导致脓毒症的主要致病因子之一。既往我们主要针对LPS受体在脓毒症发病机理中的作用开展了大量探索性研究,现已明确TLR4/CD14/MD-2是机体识别LPS的关键模式受体,其中CD14/ MD-2基因多态性在脓毒症的易感性及严重创伤预后方面发挥了重要作用。TLR4是LPS激活细胞的重要参与分子,尽管有研究表明其基因编码区(coding sequence,CDS)及3′非翻译区(untranslated region,UTR)基因多态性与脓毒症易感性有关,但其启动子区SNPs在中国人群中的分布以及在严重创伤病人预后中的作用尚不清楚。为此,本研究用生物信息学方法筛选出TLR4基因启动子区可能影响靶基因表达的SNP位点,然后以中国重庆地区汉族人群为研究对象,采用RFLP法对SNP发生及分布频率进行检测分析,通过构建SNP位点不同等位基因启动子载体,以双荧光素酶报告系统观察SNP对TLR4基因启动子活性的影响,以流式细胞仪检测不同基因型个体TLR4蛋白的表达水平,并探讨了不同等位基因个体全血对LPS刺激的反应性差异,最后通过对临床严重创伤病人标本分析进一步探讨上述SNPs与严重创伤病人预后之间的关系。主要结果与结论如下:
     1.生物信息学分析显示,TLR4基因启动子区-3000 bp内有12个SNP位点,其中-2242 T→C、-1892 G→A和-1837 A→G三个SNP位点碱基变异可能影响TLR4基因启动子区与转录因子的结合活性。
     2.对379名重庆地区汉族健康人群的SNP调查分析显示,TLR4基因启动子区存在-2242 T→C、-1892 G→A和-1837 A→G碱基变异,发生频率分别为43.27%、27.70%和42.75%,均为高频SNP。
     3.通过PCR和定点突变技术,构建了含TLR4基因-2331 ~ +14区域启动子及相应单点及多点突变启动子质粒。化学发光分析显示,-2242 C启动子活性明显高于-2242 T启动子活性,而其它突变启动子活性无明显差异。说明-2242 T→C碱基变异可增强TLR4基因启动子活性,有可能为功能性突变。流式细胞仪检测结果显示,正常对照组中三位点三种基因型粒细胞表达TLR4均无显著性差异;LPS刺激组中-2242位点CC纯合子和TC杂合子TLR4蛋白表达水平均显著高于TT纯合子,而-1892和-1837位点则无显著性差异,进一步说明-2242 T→C碱基变异可通过影响基因启动子活性增强靶基因的表达。
     4.以LPS刺激不同基因型个体全血,-2242 CC基因型个体TNFα、IL-6和IL-8产生水平均最高,TC基因型次之,而TT基因型细胞因子产生水平最低,提示-2242 T→C碱基变异能显著增强个体对内毒素的反应性。说明该SNP对于临床脓毒症及其它炎症疾病易感性的判定具有重要意义。
     5.通过对153例严重创伤病人针对-2242位点基因分型及临床资料分析,进一步验证了含TLR4基因5′启动子区-2242 C等位基因的个体在严重创伤后发展成MODS及脓毒症的危险性相对较高,对脓毒症可能是一个易感因子。因此可作为严重创伤后脓毒症等炎性相关疾病易感性的一个重要指标。
Clinical epidemiology study has shown that sepsis is an important cause of death of patients with major trauma, and LPS plays a central role in the pathogenesis of sepsis. We carried out a great quantity of exploratory study on LPS receptors in the past ten years, reseach results demonstrate that TLR4/CD14/MD-2 complex is the crucial pattern recognition receptor of LPS, and CD14, MD-2 gene polymorphisms are associated with susceptivity to sepsis and prognosis of patients with major trauma. TLR4 is also a key molecule of pattern recognition receptor in LPS passthway, though its polymorphisms in the coding sequence and 3′untranslated region (UTR) are well associated with the susceptibility to sepsis, however the distribution of its promoter polymorphisms in China population, and their clinical relevance in patients with major trauma is still unclear.
     In this study, we selected the potential SNPs in TLR4 gene promoter, which maybe influence TLR4 gene expression through bioinformatics analysis. Then, we genotyped the selected SNPs in Chongqing Han population by method of restriction fragment length polymorphism. To study the function of the SNPs, we constructed different allele promoter plasmids and measured TLR4 promoter activity by Dual-Luciferase Reporter assay system. We also examined different genotype carriers’TLR4 protein levels and the significance of their whole-blood leukocytes response to LPS stimulation. Finally, we investigated the possible functional significance by observing the association with the prognosis of patients with major trauma. The main results and conclusions were summarized as follows:
     1. Bioinformatics analysis shows that there are twelve SNPs in the upstream 3000 bp of TLR4 promoter. Among them, -2242T→C, -1892G→A, and -1837 A→G can change the type or numbers of binding transcription factors, which indicats that the three SNPs may affect the transcription activities of TLR4 promoter.
     2. Genotyping 379 cases of Chongqing Han healthy population shows that -2242T→C, -1892G→A, and -475 A→G all exist in Chinese population, with the frequencies 43.27% , 27.70%, and 42.75% respectively.
     3. TLR4 gene promoter (-2331 ~ +14), and the other vectors containing a single mutant genotype of -2242 C, -1892 A, or -1837 G, a double mutant genotype of -2242 C, -1892 A, or -2242 C, -1837 G, or -1892 A, -1837 G, and a combined mutant genotype of -2242 C, -1892 A, and -1837 G are constructed through PCR and site-directed mutagenesis technique. Luciferase Reporter assay shows that -2242 C promoter has a higher activity than -2242 T promoter, it implys that–2242 T→C base variation can enhance the activity of TLR4 promoter. There are no significant difference between -1892 A promoter and -1837 G promoter activity. Fluorescence-activated cell sorter (FACS) shows -2242 CC carriers have higher TLR4 protein expression levels than -2242 TT carriers, which indicates that -2242 T→C may enhance TLR4 gene expression through changing promoter activity.
     4. Measuring LPS stimulated whole-blood leukocytes, we found that -2242 CC carriers have the highest TNFα, IL-6, and IL-8 levels and -2242 TT carriers have the least. It indicates that -2242 T→C can significantly enhance reactive potency to LPS. Results show that -2242 SNP may have an important significance in sepsis assessment.
     5. In view of the functional effect of the–2242 SNP shown by the above results, we further investigated the clinical relevance of this SNP in 153 patients with major trauma. The result shows that patients who possessed the–2242 C allele were more likely to experience complications with organ dysfunction and sepsis after major trauma. So the TLR4/–2242 polymorphism may be an important functional variant which might be used as a relevant risk estimate for sepsis and other complications in trauma patients.
引文
1.姚咏明,盛志勇.中国危重病急救医学. 2000, 12(6): 323-5.
    2.倪红,崔乃国,陈瑞阳.内毒素血症治疗的研究进展.国外医学生理病理科学与临床分册,2001,21(5):368-9.
    3. Angus DC, Cantagrel A, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med, 2001, 29(7): 1303-10.
    4. Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Eng J Med, 2003, 348(16): 1546-54.
    5. Mesters RM, Helterbrand J, Utterback BG et al. Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications. Crit Care Med, 2000, 28(7): 2209-16.
    6. Wenzel RP, Pinsky MR, Ulevitch RJ et al. Curent understanding of sepsis. Clin Infect Dis, 1996, 22(3): 407-12.
    7. Opal SM, Cohen J. Clinical gram-positive sepsis: does it fundamentally differ from gram-nebative bacterial sepsis? Crit Care Med, 1999, 27(8):1608-16.
    8. Judith HH, Shaw W. Antiendotoxin strategies. Infectious Disease C linics of North America, 1999, 13(2): 368-71.
    9. Baue AE, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndromes (MODS), multiple organ failure (MOF): are we winning the battle? Shock, 1998, 10(2): 79-89.
    10. Blomhoff A, Lie BA, Myhre AG, et al. Polymorphisms in the Cytotoxic T Lymphocyte Antigen-4 Gene Region Confer Susceptibility to Addison’s Disease. J Clin Endocrinol Metab, 2004, 89(7): 3474-6.
    11. Simmons JD, Mullighan C, Welsh KI, et al. Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. Gut, 2000, 47(2): 211-4.
    12. Searle S, Blackwell JM. Evidence for a functional repeat polymorphism in the promoter of the human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility. J Med Genet, 1999, 36(4): 295-9.
    13. Mira JP, Cariou A, Grall F, et al. Association of TNF2, a TNFαpromoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA, 1999, 282(6): 561-8.
    14. Majetschak M, Flohe S, Obertacke U, et al. Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg, 1999, 230(2): 207-14.
    15. Kao SL, Chong SS, Lee CG. The role of single nucleotide polymorphisms (SNP) in understanding complex disorders and pharmacogenomics. Ann Acad Med Singapore, 2000, 29(3): 376-82.
    16. Wen AQ, Wang J, Feng K, et al. Effects of haplotypes in the interleukin 1 beta promoter on lipopolysacchride-induced interleukin 1 beta expression. Shock, 2006, 26: 25-30.
    17. Gu W, Shan YA, Zhou J, et al. Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann Surg, 2007, 246: 151-8.
    18.杨清武,朱佩芳,王正国等.抗人Toll样受体4合成肽单克隆抗体的制备与鉴定.解放军医学杂志,2002,27(1):11-2.
    19.熊建琼,朱佩芳,王正国等.髓样分化蛋白-2在内毒素与内皮细胞结合中的作用.第三军医大学学报,2004,26(24):2235-8.
    20.熊建琼,朱佩芳,王正国等.髓样分化蛋白2在内毒素/脂多糖激活人脐静脉内皮细胞中作用的实验研究.中华烧伤杂志,2005,21(2):97-9.
    21.张道杰,蒋建新,陈永华等.人肠上皮细胞耐受内毒素的分子机制.中华实验外科杂志,2004,21(11):1329-30.
    22.熊建琼,朱佩芳,王正国等.髓样分化蛋白-2在内毒素激活内皮细胞核因子-κB中的作用.中华创伤杂志,2004,20(6):367-9.
    23. Roch FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA, 1998, 95(2): 588-93.
    24. Medzhitov R, Preston-Hurlburt P, Janeway JR. A human homologue of Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388(6640): 394-7.
    25. Ohnishi T, Muroi M, Tanamoto K. N-linked glycosylations at Asn (26) and Asn (114) of human MD-2 are required for Toll-like receptor 4-mediated activation of NF-kappaB by lipopolysaccharide. J Immunol, 2001, 167(6): 3354-9.
    26. Viriyakosol S, Tobias PS, Kitchens RL et al. MD-2 binds to bacterial lipopolysaccharide. J Biol Chem, 2001, 276(41): 38044-51.
    27. Mancek M, Pristovsek P, Jerala R. Identification of LPS-binding peptide fragment of MD-2, a toll-receptor accessory protein. Biochem Biophys Res Commun, 2002, 292(4): 880-5.
    28. Fujihara M, Muroi M, Tanamoto K, et al. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: role of the receptor complex. 71Pharmacol Ther, 2003, 100(2): 171-4.
    29. Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide respnsiveness on Tol-like receptor 4. J Exp Med, 1999, 189(11): 1777-82.
    30. Visintin A, Mazzoni A, Spitxer JA, et al. Secreted MD-2 is a large polymerid protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci USA, 2001, 98(21): 12156-61.
    31. Kawasaki KS, Akashi R, Shimazu, et al. Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem, 2000, 275(4): 2251-4.
    32. Ohashi K, Burkart V, Flohe S, et al. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000, 164(2): 558-61.
    33. Muta T, Takeshige K. Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur J Biochem, 2001, 268(16): 4580-9.
    34. Vives-Pi M, Somoza N, Fernandez-Alvarez J, et al. Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol, 2003, 133(2): 208-18.
    35. Duan ZX, Zhu PF, Dong H, et al. Functional significance of the TLR4/11367 polymorphism identified in Chinese Han population. Shock, 2007, 28(8):160-4.
    36. Shalhub S, Junker CE, Imahara SD, et al. Variation in the TLR4 gene influences the risk of organ failure and shock posttrauma: a cohort study. J Trauma, 2009, 66(1): 115-22.
    37. Altshuler D, Pollara VJ, Cowles CR, et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 2000, 407(6803): 513-6.
    38. Ranade K, Chang MS, Ting CT, et al. High-throughput genotyping with single nucleotide polymorphisms. Genome Res. 2001, 11(7): 1262-8.
    39. Pui-Yan Kwok. Single Nucleotide Polymorphisms Methods and Protocols [M]. Humama Press Inc. 2003.
    40. Kwok PY. High-throughput genotyping assay approaches. Pharmaco-genomics, 2000, 1 (1): 95-100.
    41. Tsuchihashi Z, Dracopoli NC. Progress in high through SNP genotyping methods.Pharmacogenomics J, 2002, 2(2):103-10.
    42.张盈华.流式细胞仪在医学检验中的应用.中华医学检验杂志,1997, 20:203-5.
    43. Qureshi ST, Lariviere L, Leveque G, et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med, 1999, 189: 615-25.
    44. Hoshino K, Takeuchi O, Kawai T, et al. Toll-like receptor 4(TLR4)-deficient mice are hyporesponsive to lipolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 1999; 162: 3749-52.
    45. Poltorak A, He X, Smirnoval I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScRc mice: mutations in Tlr4 gene. Science, 1998, 282: 2085-8.
    46. Schurr JR, Young E, Byrne P, et al. Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Infect Immun, 2005, 73: 532-45.
    47. Beutler B, Poltorak A. Positional cloning of Lps, and the general role of toll-like receptors in the innate immune response. Eur Cytokine Netw, 2000, 11: 143-52.
    48. Maria T. Abreu, Elizabeth T, et al. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem, 2002, 277(23): 20431-7.
    49. Rehli M, Poltorak A, Schwarzfischer L, et al. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem, 2000, 275: 9773-81.
    50. da Silva Correia J, Soldau K, Christen U, et al. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. J Biol Chem. 2001, 276(24): 21129-35.
    51. Re F, Strominger JL. Monomeric recombinant MD-2 binds toll-like receptor 4 tightly and confers lipopolysaccharide responsiveness. J Biol Chem. 2002, 277(26): 23427-32.
    52. Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002, 3(7): 667-72.
    53. Jansky L, Reymanova P, Kopecky J. Dynamics of cytokine production in human peripheral blood mononuclear cells stimulated by LPS or infected by Borrelia. Physiol Res, 2003, 52(6): 593-8.
    54. Bone RC. The pathogenesis of sepsis. Ann Int Med, 1991, 1115(6): 457-69.
    55. Rood MJ, van Krugten MV, Zanelli E, et al. TNF-308A and HLA-DR3 alleles contribute independently to susceptibility to systemic lupus erythematosus. ArthritisRheum, 2000, 43(1):129-34.
    56. D’Slfonso S, Colombo G, Della Bella S, et al. Association between polymorphisms in the TNF region and systemic lupus erythematosus in the Italian population. Tissue Antigens, 1996, 47(6): 551-5.
    57. Gu W, Du DY, Huang J, et al. Identification of interleukin-6 promoter polymorphism in the Chinese Han population and their functional significance. Crit Care Med, 2008, 36(5): 1437-43.
    58. Marshall JC, Cook DJ, Christou NV, et al. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med, 1995, 23(10): 1638-52.
    59. Committee on Injury Scaling. The Abbreviated Injury Scale: 1998 Revision (AIS-98). Des Plaines, ILL: Association for the Advancement of Automotive Medicine, 1998.
    60. Dionigi R, Dominioni L, Jemos V, et al. Sepsis score and complement factor B for monitoring severely septic surgical patients and for predicting their survival. Eur Surg Res, 1985, 17(5): 269-80.
    61. Wang ZG,Jiang JX. An overview of research advances in road traffic trauma in China. Traffic Injury Prevention, 2003, 4: 9-16.
    62. Jiang JX, Su YP, Huang YS, et al. Research advances in early systemic damage after severe trauma. Chin J Traumatol, 2002; 18:197-199.
    63. Angus DC, Linde-zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United State: analysis of incidence outcome and associated costs of care. Crit Care Med, 2001, 29:1303-10.
    64. Williams DL, Ha T, Li C, et al. Modulation of tissue Toll-like receptor 2 and 4 during the early phase of polymicrobial sepsis correlates with mortality. Crit Care Med, 2003, 31: 1808-18.
    65. Agnese DM, Calvano JE, Hahm SJ, et al. Human Toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis, 2002, 186: 1522-5.
    66. Lorenz E, Mira JP, F rees KL, et al. Relevance of mutations in the Toll-like receptor 4 in patients with gram-negative septic shock. Arch Intern Med, 2002, 162: 1028-32.
    67. Child NT, Yang IA, Pulletz MC, et al. polymorphism in Toll-like receptor 4 and systemic inflammatory response syndrome. Biochem Soc Trams, 2003, 31: 652-3.
    68. Sabroe I, Whyte MK, Wilson AG, et al. Toll-like receptor 4 polymorphism and COPD. Thorax, 2004, 59: 81-5.
    1. Schumann RR. Host cell-pathogen interface: molecular mechanisms and genetics. Vaccine, 2004, 22 (suppl 1): S 21–4.
    2. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol, 2001, 1: 135–45.
    3. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol, 2005, 17: 1–14.
    4. Medzhitov R, Preston-Hurlburt P, Janeway VA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388: 394-7.
    5. Kimbrell DA, Beutler B. The evolution and genetics of innate immunity. Nat Rev Genet, 2001, 2: 256-67.
    6. Rehli M. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol, 2002, 23: 375-8.
    7. O’Neill LA, Fitzgerald KA, Bowie AG. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol, 2003, 24: 286-90.
    8. Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat Immunol, 2004, 5: 971-4.
    9. Hoebe K, Du X, Georgel P, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature, 2003, 424: 743-78.
    10. Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 2003, 301: 640-3.
    11. Fitzgerald KA, Rowe DC, Barnes BJ, et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med, 2003, 198: 1043-55.
    12. Yamamoto M, Sato S, Hemmi H, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol, 2003, 4: 1144-50.
    13. Kirschning CJ, Schumann RR. TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr Top Microbiol Immunol, 2002, 270: 121-44.
    14. Kawai T, Akira S. Toll-like receptor downstream signaling. Arthritis Res Ther, 2005, 7:12-9.
    15. Schroer NW, Morath S, Alexander C, et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharidebinding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem, 2003, 278: 15587–94.
    16. Weber JR, Freyer D, Alexander C, et al. Recognition of pneumococcal peptidoglycan. An expanded, pivotal role for LPS binding protein. Immunity, 2003, 19: 269-79.
    17. Schroer NWJ, Heine H, Alexander C, et al. Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses. J Immunol, 2004, 173: 2683-91.
    18. Ferwerda B, McCall MBB, Verheijen K, et al. Functional consequences of Toll-like receptor 4 polymorphisms. Mol Med, 2008, 14(5-6): 346-52.
    19. Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet, 2000, 25: 187-91.
    20. Lorenz E, Mira JP, Frees KL, et al. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med, 2002, 162(9):1028-32.
    21. Lorenz E, Hallman M, Marttila R, Haataja R, Schwartz DA. Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population. Pediatr Res, 2002, 52: 373-6.
    22. Agnese DM, Calvano JE, Hahm SJ, et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis, 2002, 186: 1522-5.
    23. Feterowski C, Emmanuilidis K, Miethke T, et al. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology, 2003, 109: 426-31.
    24. Child NJ, Yang IA, Pulletz MC, et al. Polymorphisms in Toll-like receptor 4 and the systemic inflammatory response syndrome. Biochem Soc Trans, 2003, 31: 652-3.
    25. Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol, 2000, 1: 398-401.
    26. Haynes LM, Moore DD, Kurt-Jones EA, et al. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol, 2001, 75: 10730-7.
    27. Haeberle HA, Takizawa R, Casola A, et al. Respiratory syncytial virus-inducedactivation of nuclear factor-kappaB in the lung involves alveolar macrophages and toll-like receptor 4-dependent pathways. J Infect Dis, 2002, 186: 1199-206.
    28. Tal G, Mandelberg A, Dalal I, et al. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis, 2004, 189: 2057-63.
    29. Read RC, Pullin J, Gregory S, et al. A functional polymorphism of toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J Infect Dis, 2001, 184: 640-2.
    30. Allen A, Obaro S, Bojang K, et al. Variation in Toll-like receptor 4 and susceptibility to group A meningococcal meningitis in Gambian children. Pediatr Infect Dis J, 2003, 22: 1018-9.
    31. Michelsen KS, Doherty TM, Shah PK, et al. TLR signaling: an emerging bridge from innate immunity to atherogenesis. J Immunol, 2004, 173: 5901-7.
    32. Michelsen KS, Doherty TM, Shah PK, et al. Role of Toll-like receptors in atherosclerosis. Circ Res, 2004, 95: e96-7.
    33. Bjorkbacka H, Kunjathoor VV, Moore KJ, et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med, 2004, 10: 416-21.
    34. Michelsen KS, Wong MH, Shah PK, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA, 2004, 101: 10679-84.
    35. Lehr HA, Sagban TA, Ihling C, et al. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation, 2001, 104: 914-20.
    36. Vink A, Schoneveld AH, van der Meer JJ, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation, 2002, 106: 1985-90.
    37. Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation, 2001, 104: 3103-8.
    38. Kalayoglu MV, Libby P, Byrne GI. Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. JAMA, 2002, 288: 2724-31.
    39. Netea MG, Kullberg BJ, Galama JM, et al. Non-LPS components of Chlamydiapneumoniae stimulate cytokine production through Toll-like receptor 2-dependent pathways. Eur J Immunol, 2002, 32: 1188-95.
    40. Bulut Y, Faure E, Thomas L, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol, 2002, 168: 1435-40.
    41. Prebeck S, Kirschning C, Durr S, et al. Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol, 2001, 167: 3316-23.
    42. Kiechl S, Lorenz E, Reindl M, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med, 2002, 347: 185-92.
    43. Ameziane N, Beillat T, Verpillat P, et al. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol, 2003, 23: e61-4.
    44. Balistreri CR, Candore G, Colonna-Romano G, et al. Role of Toll like receptor 4 in acute myocardial infarction and longevity. JAMA, 2004, 292: 2339-40.
    45. Edfeldt K, Bennet AM, Eriksson P, et al. Association of hyporesponsive toll-like receptor 4 variants with risk of myocardial infarction. Eur Heart J, 2004, 25: 1447-53.
    46. Reismann P, Lichy C, Rudofsky G, et al. Lack of association between polymorphisms of the toll-like receptor 4 gene and cerebral ischemia. J Neurol, 2004, 251: 853-8.
    47. Lorenz E, Schwartz DA, Martin PJ, et al. Association of TLR4 mutations and the risk for acute GVHD after HLA-matched-sibling hematopoietic stem cell transplantation. Biol Blood Marrow Transplant, 2001, 7: 384-7.
    48. Torok HP, Glas J, Tonenchi L, et al. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll like receptor 4 gene with ulcerative colitis. Clin Immunol, 2004, 112: 85-91.
    49. Radstake TR, Franke B, Hanssen S, et al. The Toll-like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity and/or outcome. Arthritis Rheum, 2004, 50: 999-1001.
    50. Rudofsky G Jr, Reismann P, Witte S, et al. Asp299Gly and Thr399Ile genotypes of the TLR4 gene are associated with a reduced prevalence of diabetic neuropathy in patientswith type 2 diabetes. Diabetes Care, 2004, 27: 179-83.
    51. Palmer SM, Burch LH, Davis RD, et al. The role of innate immunity in acute allograft rejection after lung transplantation. Am J Respir Crit Care Med, 2003, 168: 628-32.
    52. Smirnova I, Hamblin MT, McBride C, et al. Excess of rare amino acid polymorphisms in the Toll-like receptor 4 in humans. Genetics, 2001, 158: 1657-64.
    53. Smirnova I, Mann N, Dols A, et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci USA, 2003, 100: 6075-80.
    54. Zheng SL, Augustsson-Balter K, Chang B, et al. Sequence variants of toll-like receptor4 are associated with prostate cancer risk: results from the CAncer Prostate in Sweden Study. Cancer Res, 2004, 64: 2918-22.
    55. Staercke CD, Lally C, Austin H, et al. The lack of association between four point mutations in the promoter region of the toll-like 4 receptor gene and myocardial infarction. Thrombosis Research, 2007, 119: 105-10.
    56. Duan ZX, Zhu PF, Dong H, et al. Functional significance of the TLR4/11367 polymorphism identified in Chinese Han population. Shock, 2007, 28(2):160-4.
    1. Anderson KV, Jurgens G, Nusslein-Volhard C. Establishment of dorsal–ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell, 1985, 42: 779–89.
    2. Morisato D, Anderson KV. Signaling pathways that establish the dorsal–ventral pattern of the Drosophila embryo. Annu Rev Genet, 1995, 29: 371–99.
    3. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86: 973–83.
    4. Cherry S, Silverman N. Host-pathogen interactions in Drosophila: new tricks from an old friend. Nat Immunol, 2006, 7: 911–7.
    5. Kimbrell DA, Beutler B. The evolution and genetics of innate immunity. Nat Rev Genet, 2001, 2: 256-67.
    6. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol, 2003, 3: 169–76.
    7. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem, 2002, 71: 635–700.
    8. Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol, 2005, 3: 36–46.
    9. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 1998, 282: 2085–8.
    10. Sato S, Nomura F, Kawai T, et al. Synergy and cross tolerance between Toll-like receptor ( TLR ) 2 and TLR4-mediated signaling pathways. J Immunol, 2000, 165 (12): 7096-101.
    11. Gioannini TL, Weiss JP. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res, 2007, 39: 249–60.
    12. Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol, 2007, 19: 3–10.
    13. Tobias PS, Soldau K, Ulevitch RJ. Isolation of a lipopolysaccharidebinding acute phase reactant from rabbit serum. J Exp Med, 1986, 164: 777–93.
    14. Wright SD, Tobias PS, Ulevitch RJ, et al. Lipopolysaccharide (LPS) binding proteinopsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med, 1989, 170: 1231–41.
    15. Wright SD, Ramos RA, Tobias PS, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 1990, 249: 1431–3.
    16. Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med, 1999,189: 1777–82.
    17. Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol, 2002, 3: 667–72.
    18. Gioannini TL, Teghanemt A, Zhang D, et al. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA, 2004, 101: 4186–91.
    19. Mitsuzawa H, Nishitani C, Hyakushima N, et al. Recombinant soluble forms of extracellular TLR4 domain and MD-2 inhibit lipopolysaccharide binding on cell surface and dampen lipopolysaccharide-induced pulmonary inflammation in mice. J Immunol, 2006, 177: 8133–9.
    20. Fitzgerald KA, Rowe DC, Golenbock DT. Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes Infect, 2004, 6: 1361–7.
    21. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine, 2008, doi:10.1016/j.cyto.2008.01.006.
    22. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 2007, 7: 353–64.
    23. Kawai T, Adachi O, Ogawa T, et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999, 11: 115–22.
    24. Kawai T, Takeuchi O, Fujita T, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol, 2001, 167: 5887–94.
    25. Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol, 2001, 2: 835–41.
    26. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature, 2001, 413: 78–83.
    27. Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of thesignalling cascade shared by TLR2 and TLR4. Nature, 2002, 420: 324–9.
    28. Horng T, Barton GM, Flavell RA, et al. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature, 2002, 420: 329–33.
    29. Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell, 2006, 125: 943–55.
    30. Yamamoto M, Sato S, Hemmi H, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol, 2003, 4: 1144–50.
    31. Yamamoto M, Sato S, Mori K, et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol, 2002, 169: 6668–72.
    32. Oshiumi H, Matsumoto M, Funami K, et al. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol, 2003, 4: 161–7.
    33. Hoebe K, Du X, Georgel P, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature, 2003, 424: 743–8.
    34. Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 2003, 301: 640–3.
    35. Rowe DC, McGettrick AF, Latz E, et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA, 2006, 103: 6299–304.
    36. Carty M, Goodbody R, Schroder M, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol, 2006, 7: 1074–81.
    37. Knapp S, de Vos AF, Florquin S, et al. Lipopolysaccharide binding protein is an essential component of the innate immune response to Escherichia coli peritonitis in mice. Infect Immun, 2003, 71: 6747-53.
    38. Fan MH, Klein RD, Steinstraesser L, et al. An essential role for lipopolysaccharide-binding protein in pulmonary innate immune responses. Shock, 2002, 18: 248-54.
    39. Wurfel MM, Monks BG, Ingalls RR, et al. Targeted deletion of the lipopolysaccharide-binding protein gene leads to profound suppression of LPSreceptors ex vivo, whereas in vivo responses remain intact. J Exp Med, 1997, 186 (12) : 2051-6.
    40. Haziot A, Ferrero E, Kontgen F, et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity, 1996, 4: 407–14.
    41. Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet, 2000, 25: 187–91.
    42. Re F, Strominger JL. Separate functional domains of human MD-2 mediate Toll-like receptor 4-binding and lipopolysaccharide responsiveness. J Immunol, 2003, 171 (10): 5272-6.
    43. Gioannini TL, TeghanemtA, ZhangDS, et al. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. PNAS, 2004, 101(12): 4186-91.
    44. Suzuki N, Suzuki S, Duncan GS, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature, 2002, 416: 750–6.
    45. Picard C, Puel A, Bonnet M, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science, 2003, 299: 2076–9.
    46. Ku CL, von Bernuth H, Picard C, et al. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med, 2007, 204: 2407–22.
    47. Kawagoe T, Sato S, Jung A, et al. Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling. J Exp Med, 2007, 204: 1013–24.
    48. Kim TW, Staschke K, Bulek K, et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med, 2007, 204: 1025–36.
    49. Koziczak-Holbro M, Joyce C, Gluck A, et al. IRAK-4 kinase activity is required for interleukin-1(IL-1) receptor- and toll-like receptor 7-mediated signaling and gene expression. J Biol Chem, 2007, 282:13552–60.
    50. Lye E, Dhanji S, Calzascia T, et al. IRAK-4 kinase activity is required for IRAK-4-dependent innate and adaptive immune responses. Eur J Immunol, 2008, 38: (in press).
    51. Lye E, Mirtsos C, Suzuki N, et al. The role of interleukin 1 receptor-associatedkinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem, 2004, 279: 40653–8.
    52. Swantek JL, Tsen MF, Cobb MH, et al. IL-1 receptorassociated kinase modulates host responsiveness to endotoxin. J Immunol, 2000,164: 4301–6.
    53. Keating SE, Maloney GM, Moran EM, et al. IRAK-2 participates in multiple toll-like receptor signaling pathways to NFjB via activation of TRAF6 ubiquitination. J Biol Chem, 2007, 282: 33435–43.
    54. Lomaga MA, Yeh WC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev, 1999, 13: 1015–24.
    55. Gohda J, Matsumura T, Inoue J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol, 2004, 173: 2913–7.
    56. Sato S, Sanjo H, Takeda K, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol, 2005, 6: 1087–95.
    57. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410: 37–40.
    58. YamamotoM, Yamazaki S, Uematsu S, et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature, 2004, 430: 218–22.
    59. Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature, 2005, 434: 243–9.
    60. Covert MW, Leung TH, Gaston JE, et al. Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science, 2005, 309: 1854–7.
    61. Meylan E, Burns K, Hofmann K, et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol, 2004, 5: 503–7.
    62. Cusson-Hermance N, Khurana S, Lee TH, et al. Rip1 mediates the Trif-dependent Toll-like receptor 3- and 4-induced NF-jB activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem, 2005, 280: 36560–6.
    63. Hacker H, Redecke V, Blagoev B, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 2006, 439: 204–7.
    64. Oganesyan G, Saha SK, Guo B, et al. Critical role of TRAF3 in the Toll-likereceptor-dependent and -independent antiviral response. Nature, 2006, 439: 208–11.
    65. Guo B, Cheng G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem, 2007, 282: 11817–26.
    66. Fitzgerald KA, McWhirter SM, Faia KL, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 2003, 4: 491–6.
    67. Hemmi H, Takeuchi O, Sato S, et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med, 2004, 199: 1641–50.
    68. Moynagh PN. TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol, 2005, 26: 469–76.
    69. Honda K, Taniguchi T. IRFs: master regulators of signalling by Tolllike receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol, 2006, 6: 644–58.
    70. Bowie AG, Haga IR. The role of Toll-like receptors in the host response to viruses. Mol Immunol, 2005, 42: 859–67.
    71. Perry AK, Chen G, Zheng D, et al. The host type I interferon response to viral and bacterial infections. Cell Res, 2005, 15: 407–22.
    72. Liew FY, Xu D, Brint EK, et al. Negative regulation of Tolllike receptor-mediated immune responses. Nat Rev Immunol, 2005, 5: 446–58.
    73. Divanovic S, Trompette A, Atabani SF, et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol, 2005, 6: 571–8.
    74. Brint EK, Xu D, Liu H, et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol, 2004, 5: 373–9.
    75. Qin J, Qian Y, Yao J, et al. SIGIRR inhibits interleukin-1 receptor- and toll-like receptor 4-mediated signaling through different mechanisms. J Biol Chem, 2005, 280: 25233–41.
    76. Wald D, Qin J, Zhao Z, et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol, 2003, 4: 920–7.
    77. Fearns C, Pan Q, Mathison JC, et al. Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding. J Biol Chem, 2006, 281: 34592–600.
    78. Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol, 2004, 5: 495–502.
    79. Mansell A, Smith R, Doyle SL, et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol, 2006, 7: 148–55.
    80. Wesche H, Gao X, Li X, et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem, 1999, 274: 19403–10.
    81. Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell, 2002, 110: 191–202.
    82. Hardy MP, O’Neill LA. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem, 2004, 279: 27699–708.
    83. Burns K, Janssens S, Brissoni B, et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med, 2003, 197: 263–8.
    84. Su X, Li S, Meng M, et al. TNF receptorassociated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol, 2006, 36: 199–206.
    85. Takeshita F, Ishii KJ, Kobiyama K, et al. TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF. Eur J Immunol, 2005, 35: 2477–85.
    86. Boone DL, Turer EE, Lee EG, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol, 2004, 5: 1052–60.
    87. Wertz IE, O’Rourke KM, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature, 2004, 430: 694–9.
    88. O’Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov, 2006, 5: 549–63.
    89. Kanzler H, Barrat FJ, Hessel EM, et al. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med, 2007, 13: 552–9.