抑郁症患者的临床表型和氟西汀疗效与5-羟色胺转运蛋白基因多态性的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】:抑郁症不但是最常见、最严重的精神健康问题之一,而且也是世界范围内诊治花费最高的精神疾病之一。抑郁症的临床表现差异很大,可以大致分为核心症状和伴随症状两大类。这两类症状在临床上的涵义以及对于抗抑郁药物的治疗反应都不尽相同。抑郁症是在病因学上有遗传异质性的脑功能障碍的一组疾病,遗传学标志是与生俱来的,而且具有很高的检测稳定性。通过单核苷酸多态性(SNP)了解疾病的发病机理、疾病的诊断及易感性为复杂性疾病基因的研究提供了重要基础。5羟色胺能(5HT)神经系统改变是抑郁症的重要的病理生理过程之一,我们在预试验期对涉及抑郁症5HT合成代谢通路上的候选基因进行筛查。初步结果发现5HTT(5HT转运体)内含子13 C/T的转换(SNP编号为rs2054847)在抑郁症基线期与临床表型有某种趋势的联系,加之抑郁的发病机制涉及5HTT,SSRI类药物作用的靶点也是5HTT,因此我们决定对此SNP进行探索性的研究分析。
     【目的】:探索性地研究抑郁患者5HTT SNP(rs2054847),从分子生物学水平探讨抑郁症患者的基因型与疾病表型之间的关系以及基因型和疗效之间的关系,为患者提供个体化治疗提供客观证据,更为新型抗抑郁药物的研发提供参考。
     【方法】:研究的第一部分:入选标准为DSM-Ⅳ确诊为重性抑郁的患者,年龄≥18岁,HAMD 17项总分≥16分,无躁狂或轻躁狂发作史,非单纯的心境恶劣障碍的患者。基线期使用遗传研究用诊断标准化精神检查(DIGS)、HAMD 17项量表和临床总体印象量表(CGI)进行评定。在患者签署知情同意后抽取静脉血,应用Taqman SNP技术测定基因型。研究的第二部分:参加第一部分研究的所有患者给予固定剂量的百优解(氟西汀)20 mg/d,分别在治疗的第8,15,29和43天随访评定HAMD量表,评价疗效。
     【结果】:基线期761例患者入选,性别分布:女性患者是男性患者的1.23倍(420/341),平均年龄为34.2岁,HAMD分数平均为22.62,单次发作患者是复发的2倍(498/245)。在基线期761例患者中425例(56%)血样进行了DNA检测基因型。各基因型的频率分别是TT 65.4%(278例),CT31.8%(135例)CC2.8%(12例);等位基因频率T81.3%,C18.7%,符合Hardy-We土nberg平衡。基线期TT型患者HAMD分数(23.19)高于CT型(21.98)和CC型(20.83)。采用显性遗传模型将CT型和CC型患者合并为一组C+型和TT型患者进行比较。基线期除TT基因型患者1年内有生活事件比例是C+基因型的1.86倍外,其他人口学资料在基因型之间无差异。基线期TT基因型患者迟滞因子分数(8.0)、核心因子分数(9.76)和Maier因子分数(11.81)显著的高于C+基因型的患者(7.33,8.77,10.90)。百优解20mg/d固定剂量治疗,在第43天研究结束时,TT型患者共217例,CT型104例,CC型8例,未测基因型患者273例。完成研究的患者和脱落的患者在基因型,基线期HAMD总分和人口学方面无显著性差别。研究结束时(43d)TT基因型患者HAMD减分(13.91)呈现高于C+型减分(12.41)的趋势;TT基因型患者有效率(74.7%)呈现高于C+型有效率(69.6%)的趋势;在研究结束时,TT基因型患者缓解率(48.3%)是C+型患者的缓解率(39.3%)的1.68倍(P=0.036)。从治疗的第15d起TT型核心因子减分(2.8)高于C+型(1.9),持续至研究结束。
     【结论】:抑郁症患者基线抑郁严重程度受到5HTT基因C/T多态性的修饰。基因的修饰作用主要针对抑郁症的核心症状,而对睡眠和焦虑症状没有影响。本研究的发现支持5HTT受体功能与抑郁症发病之间存在内在联系的学说。SSRI类抗抑郁药对抑郁症的疗效,主要是其对抑郁症核心症状的疗效受到基因型的修饰,符合SSRI类药物的作用机制。
【Background】: The phenotypes differ among depression patients. Core symptoms (including depressive symptom and retard symptom) and accompanied symptoms (including sleep disorders, anxiety symptoms and somatic symptoms) may vary clinically, as well as pharmaceutical treatment response. Major depression is a heredity characteristic brain dysfunction disorder. Single nucleotide polymorphism (SNP) provides important gene clue in the study of pathogenesis and diagnosis of the disease. Changes of serotonin system are known as important pathophysiology in depression. As the key role in pathogenesis and the target of selective serotonin reuptake inhibitor, serotonin transporter gene becomes a candidate gene for major depression.
     【Objective】: To explore the relationship between 5HTT inton 13 SNP C/T (db SNP rs 2054847) and phenotype, and then evaluated association of therapeutic respond and 5HTT genotype. At the molecular organism's level we investigated whether genetic factor can modify the phenotype and the therapeutic effect. Offer objective evidence for individualized treatment and reference for development new type antidepressive agents.
     【Methods】Part A: 761 patients according to Diagnosis and statistic manual for mental disorder-Ⅳ(DSM-Ⅳ) criterion diagnosed with major depressive disorder were included. The whole patients' age≥18 year, HAMD-17 scores≥16, without history of mania or hypomania and dysthymic disorder in the baseline. We used DIGS (Diagnostic interview for genetic studies), HAMD-17 and CGI to evaluate the patients' condition. Apply with the Taqman SNP technology to identification genotype. Part B: we prescribed PROZAC (fluoxetine) 20mg/d (fixed dosage) for the patients, and then followed up and evaluated with HAMD scales on 8d, 15d, 29d and 43d respectively.
     【results】: In the baseline, 761 cases were included in the study. Female patients(420 cases) were male patients(341cases) 1.23 times, average age was 34.2years. average HAMD scores were 22.62. The single episode patients were 2 times than recurrent patients.56% of the patients (425 cases) had genotype. Genotype frequency were TT:65.4%, CT:31.8% and CC2.8% respectably. Allele frequency T: 81.3%, C: 18.7%, according with Hardy-Weinberg equilibrium. In the base line, the patients with TT genotype have higher HAMD scores and report more life events in one year than CT and CC genotype. The patients with TT genotype had higher scores in core symptom factor, retard factor and Maier factor but not in sleep and anxious symptoms, than other genotypes. All patients with fluoxetine 20 mg/d (fixed dosages) treatment. At the end of study, TT patients have a higher tendency in reduction of HAMD scores and responsive ratio than other genotypes. TT patients' remitters (48.3%) were 1.68 fold than CC and CT genotype (39.3%). TT patients' core symptom improvement come up early.
     【conclusions】In baseline, the severity of patients with depression was modified by 5HTT genotype, especially on core symptoms, but not on sleep and anxious symptoms. This result supports 5HTT receptor had internal association with pathogenesis of depression. Treatment response of SSRI agent was modified by genotype, focusing on core symptom. That accord with the mechanism of drug action.
引文
1 Briley, M. Understanding Antidepressants, Martin Dunitz Ltd 2000
    2 Kessler RC, Berglund P, Dernier O, et al: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003; 289(23):3095 - 3105
    3 Murray CGL, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet, 1997;349:1498-504.
    4 Hamet P, Tremblay J. Genetics and genomics of epression. Metabolism 2005; 54(Suppl 5): 10-15.
    5 Costello E. J., Pine D. S., Hammen C., et al. Development and natural history of mood disorders, Biol Psychiatry, 2002; 52 :529 - 542.
    6 Meyer JH, Houle S, Sagrati S. et al. Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry. 2004;61:1271-9
    7 Murphy DL, Lerner A, Rudnick G, et al. serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv. 2004;4:109-123
    8 Blakely RD, Berson HE, Fremeau RT Jr, et al. Cloning and expression of a functional serotonin transporter from rat brain. Nature 1991; 354: 66 - 70
    9 Lotrich FE, Pollock BG. Meta-analysis of serotonin transporter polymorphisms and affective disorders. Psychiatirc Genetics 2004;14:121-129
    10 Julien Mendlewicz , Isabelle Massatl, Daniel Souery et al. Serotonin transporter 5HTTLPR polymorphism and affective disorders: no evidence of association in a large European multicenter study European Journal of Human Genetics 2004; 12: 377 - 382
    11 Kunugi H, Hattori M, Kato T, et al. Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Mol Psychiatry 1997; 2: 457-462.
    12 M Angueloval, C Benkelfat and G Turecki A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders Molecular Psychiatry 2003; 8: 574-591
    13 Liu W, Gu N, Feng G, et al Tantative association of the serotonin transporter with schizophrenia and unipolar depression but not with bipolar disorder in Han Chinese. Pharmacogenetics. 1999;9:491-5
    14 Heninger GR , Delgado PL , Charney DS . The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry . 1996 ; 29 : 2-11
    15 Berman RM, Narasimhan M, Charney DS: Treatment-refractory depression: definitions and characteristics. Depress Anxiety 1997; 5:154-164
    16 KM Smits, LJM Smits, JSAG Schouten,et al. Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review Molecular Psychiatry 2004; 9: 433-441
    17 Sachidanandam R, Weissman D, Schmidt SC. et al. A map of human genome sequence variation containing 1. 42 million single nucleotide polymorphisms. Nature, 2001, 409: 928-33
    18 American Psychiatric Association. Diagnostic and Statistical Manual Disorder (DSM-IV). 4~(th), Washington: psychiatric Association, 1994. 320-327
    19 Nurnberger J. J., Blehar, M., Kaufmann, C., et al. Diadgnostic interview for genetic studies; Rationale , unique features and training; NIMH Genetics Initiative, Arch. Gen. Psychiatry. 1994
    20 张明园主编 精神科量表评定手册,湖南科学技术出版社, 1998
    21 Cleary M, Guy W. Factor analysis of the Hamilton depression scale. Drugs Exp Clin Res 1975;1:115 - 20.
    
    22 Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene Science. 2003; 18:386-9
    
    23 Yu YW, Tsai SJ, Chen TJ, et al. Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Molecular Psychiatry 2002; 7: 1115-1119
    24 Lusassen AM, Screaton GR, Julier C et al. Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype Hum Mol Genet 1995; 4: 501-506
    25 Kim CH, Kim HS, Cubells JF et al. A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J Biol Chem 1999;274: 6507-6518
    26 Mellerup E, Bennike B, Bolwig T, et al. Platelet serotonin transporters and the transporter gene in control subjects, unipolar patients and bipolar patients. Acta Psychiatr Scand 2001;103:229 - 233.
    27 Iga J, Ueno S, Yamauchi K et al. Serotonin transporter mRNA expression in peripheral leukocytes of patients with major depression before and after treatment with paroxetine. Neurosci Lett. 2005; 389:12-6.
    28 Meyer JH, Houle S, Sagrati S et al. Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry. 2004; 61:1271-9
    29 Reivich M, Amsterdam JD, Brunswick DJ,et al. PET brain imaging with [11C](+)McN5652 shows increased serotonin transporter availability in major depression. J Affect Disord. 2004; 82:321-7
    30 Kugaya A, Sanacora G, Staley JK et al. Brain serotonin transporter availability predicts treatment response to selective serotonin reuptake inhibitors. Biol Psychiatry. 2004;56:497-502.
    31 Newberg AB, Amsterdam JD, Wintering N, et al. 123I-ADAM binding to serotonin transporters in patients with major depression and healthy controls a preliminary study. J Nucl Med 2005; 46:973-977
    32 Herold N, Uebelhack K, Franke L. Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123I]-ADAM. J Neural Transm. 2006; 113:659-70.
    33 Celada P , Puig M , Amargos-Bosch M. et al. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004; 29 : 252- 265 .
    34 Ase AR , Reader TA , Hen R , et al. Regional changes in density of serotonin transporter in the brain of 5-HT1A and 5-HT1B knockout mice, and of serotonin innervation in the 5-HT1B knockout. J Neurochem . 2001; 78 : 619- 630 .
    35 Daws LC , Gerhardt GA , Frazer A . 5-HT1B antagonists modulate clearance of extracellular serotonin in rat hippocampus. Neurosci Lett. 1999; 266 : 165 - 168
    36 Gudelsky GA, Nash JF Carrier-mediated release of serotonin by 3, 4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions J Neurochem. 1996; 66: 243-9.
    37 Kannari K, Shen H, Aral A, et al. Reuptake of L-DOPA-derived extracellular dopamine in the striatum with dopaminergic denervation via serotonin transporters Neurosci Lett. 2006;402: 62-5.
    38 Meyer JH, Kruger S, Wilson AA, et al. Lower dopamine transporter binding potential in striatum during depression. Neuroreport. 2001; 12:4121-4125.
    39 Mossner R, Daniel S, Albert D, et al. Serotonin transporter function is modulated by brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF). Neurochem Int. 2000;36:197-202.
    40 Comings D. Polygenic inheritance in psychiatric disorders. Handbook of Psychiatric Genetics. CRC Press: Boca Raton 1997.
    41 RischN. Linkage strategies for genetically complex traits: I. Multilocus models. Am J Med Gen 1990; 46: 222-228.
    42 Keller M Remission versus response: The new gold standard of antidepressant care. J Clin Psychiatry 2004;65:53 - 59
    43 Stassen HH, Angst J, Delili-Stula A. Severity at baseline and onset of improvement in depression: meta-analysis of imipramine and moclobemide versus placebo Eur Psychiatry 1994;9:129-136
    44 Meyer JH, Kapur S, Eisfeld B, et al. The effect of paroxetine upon 5-HT2A receptors in depression: an [18F] setoperone PET imaging study. Am J Psychiatry 2001; 158:78-85
    45 Benmansour S, Cecchi M, Morilak D, et al. Effects of chronic antidepressant treatments on serotonin transporter function, density and mRNA level. J Neurosci 1999; 19:10494-10501
    46 Meyer JH, Wilson AA, Ginovart N, et al. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [(11)C]DASB PET imaging study. Am J Psychiatry 2001b;158:1843 - 9.
    47 Kugaya A, Seneca NM, Snyder PJ, et al. Changes in human in vivo serotonin and dopamine transporter availabilities during chronic antidepressant administration. Neuropsychopharmacology. 2003;28:413-20.
    48 Quitkin FM. Placebos, drug effects, and study design: a clinician' s guide. Am J Psychiatry. 1999;156:829-36.
    49 Artigas F, Romero L, de Montigny C, et al. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996;19:378-83.
    50 Riad M, Zimmer L, Rbah L, et al. Acute Treatment with the Antidepressant Fluoxetine Internalizes 5-HT1A Autoreceptors and Reduces the In Vivo Binding of the PET Radioligand [18F]MPPF in the Nucleus Raphe Dorsalis of Rat. Journal of Neuroscience, 2004; 24:5420 -5426
    51 Hong CJ, Chen TJ, Yu YW, et al Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. The pharmacogenomics journal 2006;6:27-33
    52 Serretti A, Zanardi R, Rossini D, et al. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 2001; 6: 586-592
    53 Serretti A, Mandelli L, Lorenzi C, et al. Serotonin transporter gene influences the time course of improvement of "core" depressive and somatic anxiety symptoms during treatment with SSRIs for recurrent mood disorders. Psychiatry Res. 2007;149:185-93
    54 Kato M, Ikenaga Y, Wakeno M, et al. Controlled clinical comparison of paroxetine and fluvoxamine considering the serotonin transporter promoter polymorphism. Int Clin Psychopharmacol. 2005;20:151-6.
    55 Hooijer C, Zitman FG, Griez E, et al. The Hamilton Depression Rating Scale (HDRS); changes in scores as a function of training and version used . J Affect Disord 1991; 22: 21-29
    1 Costello E.J., Pine D.S., Hammen C.,et al. Development and natural history of mood disorders, Biol Psychiatry, 2002,; 52: 529-542.
    2 Mc Tigue DM, Horner PJ, Stokes BT, et al. Neurotrophin-3 and brain-derived neurotropbic factor induce o]igodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 1998; 18: 5354-5365.
    3 Zetterstro"m TSC, Pei Q, Madhav TR, et al. Amipulation of brain 5-HT levels affect genes expression for BDNF in rat brain. Neuropharmacology 1999; 38: 1063-1073.
    4 Shirayama, Y. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 2002; 22: 3251-3261
    5 方秀斌编著 神经生长因子基因家族 神经肽与神经营养因子 北京 人民卫生出版社 2002
    6 Fujimura H, Altar CA, Chen R, eta]. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation, rhromb Haemost. 2002;87:728-34.
    7 Karege F, Bondolfi G, Gervasoni N, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005; 57: 1068-72
    8 Karege F, Schwald M, Cisse M. Postnatal developmental rofi]e of brain-derived neurotrophic factor in rat brain and late]ets. Neurosci Lett, 2002; 328:261-4
    9 Duman RS. Novel therapeutic approaches beyond the 5-HT receptor. Biol Psychiatry 1998; 44: 324-335.
    10 Montminy M. Transcriptional regulation by cyclic AMP. Annu Rev Biochem 1997; 66: 807-822.
    11 Ozawa H, Rasenick M.M, Chronic electroconvulsive treatment augments coupling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J. Neurochem. 1991; 56:330-338
    12 Tiraboschi, E. Tardito D, Kasahara J, et al. Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IVand MAP kinase cascades. Neuropsychopharmacology 2004; 29: 1831 - 1840
    13 Thome J, Sakai N, Shin K, et al. cAMP response elementmediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000; 20: 4030-4036.
    14 A. Russo-Neustadt, R. C. Beard, C. W. Cotman, Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression, Neuropsychopharmacology 1999; 21: 679- 682.
    15 De Foubert G, Carney SL, Robinson CS, et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience. 2004;128:597-604
    16 Roceri M, Cirulli F, Pessina C, et al. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry. 2004; 55: 708-14
    17 Rasmusson AM, ShiL, Duman R. Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology. 2002; 27:133-42.
    18 Nibuya M, Takahashi M, Russell DS, et al. Chronic stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci Letts 1999;267: 81 -84.
    19 Dias BG, Banerjee SB, Duman RS, et al. Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology. 2003; 45:553-63.
    20 Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539-7547.
    21 Vinet J, Carra S, Blom JM, et al. Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKKalpha and CaMKKbeta mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuropharmacology. 2004; 47:1062-9.
    22 Coppell AL, Pei Q, Zetterstrom TS. Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology. 2003; 44:903-10.
    23 Muller MB, Toschi N, Kresse AE, et al. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 2000;23:205-15
    24 Young KA, Holcomb LA, Yazdani U, et al. Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry. 2004;161:1270-7.
    25 Saylam C, Ucerler H, Kitis 0, et al. Reduced hippocampal volume in drug-free depressed patients. Surg Radiol Anat. 2006;28:82-7.
    26 Lang UE, Hellweg R, Gallinat J. BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology 2004;29:795-8
    27 Karege F, Perret G, Bondolfi G, et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002 ;15;109:143-8
    28 Lang UE, Hellweg R, Gallinat J. Association of BDNF serum concentrations with central serotonergic activity: evidence from auditory signal processing. Neuropsychopharmacology 2005;30:1148-53
    29 Gervasoni N, Aubry JM, Bondolfi G, et al. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology. 2005;51: 234-8.
    30 Gonul AS, Akdeniz F, Taneli F, et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005;255:381-6
    31 Shimizu E, Hashimoto K, Okamura N, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54:70-5.
    32 Sklar P, Gabriel SB, Mclnnis MG, et al. Family-based association study of 76 candidate genes in bipolar disorders: BDNF is a potential risk locus, Mol. Psychiatry 2002;7:579 - 593.
    33 Neves-Pereira M, Mundo E, Muglia P, et al. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorders: evidence from a family-based association study. Am J Hum. Genet. 2002;71: 651 - 655.
    34 Hwang JP, Tsai SJ, Hong CJ, et al. The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging. 2006;27:1834-7.
    35 Lohoff FW, Sander T, Ferraro TN, et al. Confirmation of association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene and bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet. 2005;139:51-3.
    36 Green EK, Raybould R, Macgregor S, et al. Genetic variation of brain-derived neurotrophic factor (BDNF) in bipolar disorder: case-control study of over 3000 individuals from the UK. Br J Psychiatry. 2006; 188:21-5.
    37 Schumacher J, Jamra RA, Becker T, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression.Biol Psychiatry 2005;58:307-14
    38 Surtees PG, Wainwright NW, Willis-Owen SA, et al. No association between the BDNF Val66Met polymorphism and mood status in a non-clinical community sample of 7389 older adults. J Psychiatr Res.2007;41:404-9.
    39 Nakata K, Ujike H, Sakai A, et al. Association study of the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder. Neurosci Lett. 2003;337: 17-20.
    40 Chen B, Dowlatshahi D, MacQueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol psychiatry 2001;50:260-5
    41 Karege F, Vaudan G, Schwald M, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136:29-37.
    42 Kobayashi K, Shimizu E, Hashimoto K, et al. Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: as a biological predictor of response to group cognitive behavioral therapy. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:261-5
    43 Choi MJ, Kang RH, Lim SW, et al. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res. 2006;1118:176-82.
    44 Tsai SJ, Cheng CY, Yu YW, et al. Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet. 2003,123:19-22.
    45 Kaija H, Sami A, Martti H, et al. Brain-derived neurotrophic factor (BDNF) polymorphisms G196A and C270T are not associated with response to electroconvulsive therapy in major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2006 Oct 11 [Epub ahead of print]
    46 Zanardini R, Gazzoli A, Ventriglia M, et al. Effect of repetitive transcranial magnetic stimulation on serum brain derived neurotrophic factor in drug resistant depressed patients. J Affect Disord 2006;91:83-6.
    47 Yukimasa T, Yoshimura R, Tamagawa A, et al. High-frequency repetitive transcranial magnetic stimulation improves refractory depression by influencing catecholamine and brain-derived neurotrophic factors. Pharmacopsychiatry 2006;39 :52-9
    48 Isenberg K, Downs D, Pierce K, et al. Low frequency rTMS stimulation of the right frontal cortex is as effective as high frequency rTMS stimulation of the left frontal cortex for antidepressant-free, treatment-resistant depressed patients. Ann Clin Psychiatry 2005; 17:153-9
    49 Lang UE, Bajbouj M, Gallinat J, et al. Brain-derived neurotrophic factor serum concentrations in depressive patients during vagus nerve stimulation and repetitive transcranial magnetic stimulation. Psychopharmacology (BerI) 2006;187:56-9
    1 Kessler RC, Berglund P, Demler O, et al: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003; 289:3095-3105
    2 Murray CGL, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet, 1997;349:1498-504.
    3 Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev 1992;72:165-229.
    4 Riad M, Garcia S, Watkins KC, et al. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000;7: 181-194.
    5 Hensler JG, KovachichGB, Frazer A. A quantitative autoradiographic study of serotoninlA receptor regulation: Effect of 5, 7-dihydroxytryptamine and antidepressant treatments. Neuropsychopharmacology. 1991;4:131 - 44.
    6 KiaHK, Miquel MC, Brisorgueil MJ, et al. Immunocyotchemical localization of serotoninlA receptors in the rat central nervous system. J Compar Neurol. 1996;365:289-305.
    7 Verge' D, Daval G, Marcinkiewicz M, et al. Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5, 7-dihydroxytryptamine-treated rats. J Neurosci.1986;6:3474 - 82.
    
    8 Van de Kar LD. Neuroendocrine pharmacology of serotonergic (5-HT) neurons. Annual Reviews of Pharmacology and Toxicology. 1991;31:289 - 320.
    9 Aune TM, McGrath KM, Sarr T, et al. Expression of 5HT1a receptors on activated human T cells. Regulation of cyclic AMP levels and T cell proliferation by 5-hydroxytryptamine. J Immunol. 1993;151:1175-83.
    10 Abdouh M, Storring JM, Riad M, et al. Transcriptional mechanisms for induction of 5-HT1A receptor mRNA and protein in activated B and T lymphocytes. J Biol Chem. 2001;276:4382-8.
    11 Sprouse JS, Aghajanian GK. Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1987;1:3-9.
    12 Artigas F, Romero L, de Montigny C, et al. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996;19:378-83.
    13 Casanovas JM, Berton O, Celada P, et al. In vivo actions of the selective 5-HT1A receptor agonist BAY x 3702 on serotonergic cell firing and release. Naunyn Schmiedebergs Arch Pharmacol 2000;362:248-54.
    14 Martin-Ruiz R, PuigMV, Celada P, et al. Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamatedependent mechanism. J Neurosci 2001;21:9856 - 66.
    15 Ou XM, Lemonde S, Jafar-Nejad H, et al. Freud-1: A Neuronal Calcium-Regulated Repressor of the 5-HT1A Receptor Gene. J Neurosci, 2003 ; 23:7415-7425
    16 Azmitia EC, Gannon PJ, Kheck NM, et al. Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacol. 1996;14:35-46.
    17 Stockmeier CA, Shapiro LA, Dilley GE, et al. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression: postmortem evidence for decreased serotonin activity. J Neurosci 1998; 18:7394-7401.
    18 Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, et al. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 2004;55:225-33.
    19 Hsiung SC, Adlersberg M, Arango V, et al. Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem 2003;87:182-94.
    20 Bhagwagar Z, Rabiner EA, Sargent PA, et al. Persistent reduction in brain serotonin 1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635 Mol Psychiatr 2004; 9: 386 - 392
    21 Hervas I, Vilaro MT, Romero L, et al. Desensitization of 5-HT(1A) autoreceptors by a low chronic fluoxetine dose effect of the concurrent administration of WAY-100635. Neuropsychopharmacology 2001;24:11 - 20.
    22 Gobbi G, Murphy DL, Lesch K, et al. Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 2001;296:987 - 95.
    23 Riad M, Zimmer L, Rbah L, et al. Acute Treatment with the Antidepressant Fluoxetine Internalizes 5-HT1A Autoreceptors and Reduces the In Vivo Binding of the PET Radioligand [18F]MPPF in the Nucleus Raphe Dorsalis of Rat. Journal of Neuroscience. 2004; 24:5420 -5426
    24 Barr AJ, Brass LF, Manning DR. Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor-G protein coupling. J Biol Chemistr 1997;272:2223-9.
    25 Serres F, Li Q, Garcia F, Raap DK, Battaglia G, Muma NA, Van de Kar LD. Evidence that Gz-proteins couple to hypothalamic 5-HT1A receptors in vivo. J Neurosci 2000;20:3095 - 103.
    26 Chen Y, Penington NJ. Differential effects of protein kinase C activation of 5-HT1A receptor coupling to Ca2 + and K+ currents in rat serotonergic neurons. J Physi 1996;496:129 - 37.
    27 Blier P, Lista A, Montigny C. Differential properties of pre-and postsynaptic 5-hydroxytryptaminel A receptors in the dorsal raphe and hippocampus. II. Effect of pertussis and cholera toxins. J Pharmacology and Experimental Therapeutics 1993;265:16 - 23.
    28 Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromol Med 2004;5:11 - 26.
    29 Casanovas JM, Hervas I, Artigas F Postsynaptic 5-HT1A receptors control 5-HT release in the rat medial prefrontal cortex. Neuroreport 1999; 10:1441 -1445
    30 Raap DK, Evans S, Garcia F, et al. Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT1A receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of Gz and Gi proteins. Journal of Pharmacology and Experimental Therapeutics 1999;288:98-106.
    31 Serres F, Li Q, Garcia F, et al. Evidence that Gz-proteins couple to hypothalamic 5-HT1A receptors in vivo. J Neurosci 2000;20:3095 - 3103
    32 Bosker FJ, Cremers TIFH, Jongsma ME, et al. Acute and chronic effects of citalopram on postsynaptic 5-hydroxytrptaminelA receptor-mediated feedback: a microdialysis study in the amygdala. J Neurochem 2001;76:1645-1653
    33 Julie G. Hensler, Differential Regulation of 5-HT1A Receptor-G Protein Interactions in Brain Following Chronic Antidepressant Administration . Neuropsychopharmacology 2002;26:565-573,
    34 Le Poul E, Boni C, Hanoun N, et al. Differential adaption of brain 5 - HT1A and 5 - HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology 2000;39:110-122
    35 Artigas F, Celada P, Laruelle M, et al. How does pindolol improve antidepressant action? Trends in Pharmacological Sciences 2001;22:224-8.
    36 Rasanen P, Hakko H, Tiihonen J. Pindolol and major affective disorders: a three-year follow-up study of 30,485 patients. J Clin Psychopharmacol 1999;19:297-302.
    37 Castro ME, Harrison PJ, Pazos A, et al. Affinity of (+/-)- pindolol, (-)-penbutolol, and (-)-tertatolol for pre- and postsynaptic serotonin 5-HT1A receptors in human and rat brain. J Neurochem 2000;75:755-62.
    38 Rabiner EA, Gunn RN, Castro ME, et al. Beta-blocker binding to human 5-HT(1A) receptors in vivo and in vitro: implications for antidepressant therapy. Neuropsychopharmacology 2000;23:285-93.
    39 Preferential 5-HT1A Autoreceptor Occupancy by Pindolol is Attenuated in Depressed Patients: Effect of Treatment or an Endophenotype of Depression? Neuropsychopharmacology 2004; 29, 1688-1698
    40 Hjorth S. Serotonin 5-HT1A autoreceptor blockade potentiates the ability of the 5-HT reuptake inhibitor citalopram to increase nerve terminal output of 5-HT in vivo - a microdialysis study. J Neurochem 1993; 60: 776-779
    41 Sharp T, Hjorth S. Application of brain microdialysis to study the pharmacology of the 5-HT1A autoreceptor. J Neurosci Methods, 1990;34:83-90
    42 Ferguson S. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 2001;53:1 -24.
    43 Shenoy SK, Lefkowitz RJ. Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 2003;375:503- 15.
    44 Blier P, Bergeron R, de Montigny C . Selective activation of postsynaptic 5-HT1A receptors induces rapid antidepressant response. Neuropsychopharmacol. 1997;16:333-8.
    45 Romero L, Bel N, Artigas F, et al. Effect of pindolol at pre-and postsynaptic 5 HT1A receptors:In vivo microdialysis and electrophysiological studies in the rat rain. Neuropsychopharmacol 1996; 15:349-60
    46 Yocca FD, Eison AS, Hyslop DK, et al. Unique modulation of central 5-HT2 receptor binding sites and 5-HT2 receptor - mediated behavior by continuous gepirone treatment. Life Sci 1991;49: 1777-1785.
    47 Hjorth S, Auerbach S B. Autoreceptors remain functional after prolonged treatment with a serotonin reuptake inhibitor. Brain Res 1999;835: 224 - 228
    48 Millan M J, Lejeune F, Gobert A. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and adrenergic transmission in frontal cortex: a review, and relevance to the actions of antidepressant agents. J Psychopharmacol, 2000;14:114-38
    49 Malberg JE, EischAJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000;20:9104-10.
    50 Altar CA, Laeng P, Jurata LW, et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 2004;24:2667-77
    51 Lesch KP, Zeng Y, Reif A, et al. Anxiety-related traits in mice with modified genes of the serotonergic pathway. Eur J Pharmacol 2003;480:185-204.
    52 Rotondo A, Nielsen DA, Nakhai B, et al. Agonist-promoted down-regulation and functional desensitization in two naturally occurring variants of the human serotoninlA receptor. Neuropsychopharmacol 1997;17:18 - 26.
    53 Del Tredici AL, Schiffer HH, Burstein ES, et al. Pharmacology of polymorphic variants of the human 5-HT1A receptor. Biochem Pharmacol 2004; 67:479-90.
    54 Albert PR, Zhou QY, Van Tol HH,et al. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptaminelA receptor gene. J Biol Chem 1990; 265:5825-32.
    55 Parsey RV, Oquendo MA, Ogden RT, et al. Altered Serotonin 1A Binding in Major Depression:A carbonyl-C-11]WAY100635 Positron Emission Tomography Study. Bio Psychiatry 2005;59:106 - 113