EGCG与锌、镉离子相互作用及其在前列腺癌细胞PC-3中的生物学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌是人体必需的微量元素,锌缺乏能引起人体多种疾病的发生,而镉是一种重金属元素,具有致癌、致畸、致突变作用。但有研究表明,镉可以诱导癌细胞凋亡,对多种癌症具有治疗作用。在欧美国家,前列腺癌导致的死亡率仅次于肺癌,位居第二。正常前列腺组织比其他软组织中的锌含量高10倍多,前列腺癌发生后,前列腺癌组织中的含锌量明显降低。正常情况下,前列腺组织中的[Zn~(2+])/[Cd~(2+)]处于平衡状态,而病理状态下,这种平衡遭到破坏从而导致多种前列腺疾病的发生。流行病学调查、细胞体外和动物体内试验都证实EGCG可以预防和治疗前列腺癌,EGCG在前列腺癌细胞中的生物学活性受金属离子存在的影响,但Zn~(2+)、Cd~(2+)与EGCG相互作用及其在前列腺癌细胞PC-3中的生物学行为至今未见报道。
     本文利用前列腺癌细胞PC-3培养体系研究了Zn~(2+)、Cd~(2+)和EGCG对前列腺癌细胞PC-3生长状态的影响。结果表明,EGCG、Zn~(2+)和Cd~(2+)可以导致PC-3细胞形态结构变化,EGCG可以减轻Zn~(2+)和Cd~(2+)对PC-3细胞的损伤;80μmol/L的Zn~(2+)可以诱导PC-3细胞凋亡,20μmol/L的Cd~(2+)主要导致PC-3细胞坏死,而80μmol/L的EGCG处理并未观察到凋亡的PC-3细胞,三者导致的细胞死亡率与其使用剂量有关;三者均可降低PC-3细胞膜的U/S值,降低PC-3细胞膜的流动性,从而影响PC-3细胞膜的结构和功能。已有报道称金属离子增强EGCG对癌细胞的作用可能是因为二者形成络合物提高了EGCG的生物学活性,但其机理仍不清楚。本文体外合成Zn~(2+)、Cd~(2+)与EGCG络合物并应用于前列腺癌细胞PC-3,旨在验证Zn~(2+)、Cd~(2+)与EGCG络合作用对前列腺癌细胞的影响机理。MTT法实验结果发现,Zn~(2+)、Cd~(2+)均可增强EGCG对PC-3细胞生长的抑制作用,而络合物却减弱了这种作用;化学发光实验表明,Zn~(2+)、Cd~(2+)能增强EGCG清除羟基自由基的能力,清除率随处理浓度的增加而增加,在40,80,160μmol/L处理浓度下,Zn~(2+)/EGCG混合物和Cd~(2+)/EGCG混合物与EGCG相比都达到了显著或极显著水平,而络合物除了Zn-EGCG络合物在160μmol/L外均未达到显著水平;HPLC法测定其透膜率结果表明Zn~(2+)、Cd~(2+)可以增强EGCG的透膜率,但是络合物却减弱了EGCG的透膜率。这些结果都证明了Zn~(2+)、Cd~(2+)与EGCG形成络合物并非Zn~(2+)、Cd~(2+)增强EGCG对前列腺癌细胞作用的主要原因。
     为了探讨Zn~(2+)、Cd~(2+)及EGCG防治前列腺癌的机理,本文选择最佳的处理浓度和处理时间,研究了Zn~(2+)、Cd~(2+)和EGCG对前列腺癌细胞PC-3线粒体功能以及细胞内氧化还原状态的影响。线粒体功能实验结果表明,EGCG、Zn~(2+)和Cd~(2+)可以直接与PC-3细胞线粒体作用并影响线粒体功能;EGCG、Zn~(2+)和Cd~(2+)通过诱导线粒体膜转换孔的开放、细胞色素C的释放、线粒体膜电位和膜流动性的下降等线粒体途径诱导细胞凋亡。细胞氧化还原状态实验结果表明,EGCG、Zn~(2+)和Cd~(2+)均可诱导PC-3细胞内的氧化应激,产生活性氧自由基,降低细胞膜的流动性,损伤细胞内的生物大分子等。
Zinc ion is indispensable to human health, and plays an important role in the occurrence of many diseases caused by the absence or excess of their intake. Cadmium is a kind of toxic metal to the human body and an inducer to cancers or tumors. However, previous papers reported that high doses of Cd~(2+), corresponding to acute exposure, could give rise to necrosis or apoptosis to the cells. As investigated before, the mortality caused by prostate cancer has been stood the second place among all diseases to be taken place in the human body. Also, from past reports total Zn~(2+) levels in the prostate are 10 times higher than in other soft tissues, and the ability of Zn~(2+) to be accumulated in the prostate is disappeared during prostate carcinogenesis. Practically, the metabolisms of Zn~(2+) and Cd~(2+) are in a balance in normal prostate glands. Moreover, if their balance was disturbed prostate diseases would be occurred. Depending on the epidemiology, cell scanning experiments in vitro and animal tests in vivo, it was primarily confirmed that EGCG could act as the prevention from prostate cancer. Meantime, the bioactivity of EGCG was significantly affected by metal ions. But so far, it has not been elucidated clearly about the interactions between Zn or Cd~(2+) and EGCG, and their behavior showed in androgen-insensitive human prostate tumor cells (PC-3) yet.
     In the present dissertation, effects of EGCG, Zn~(2+) and Cd~(2+) on the growth of PC-3 cells were investigated. The results showed that EGCG, Zn~(2+) and Cd~(2+) brought the changes of PC-3 cells morphologically, and the effects of Zn~(2+) and Cd~(2+) in the presence of EGCG were decreased. The proliferation of PC-3 cells was suppressed by EGCG, Zn~(2+) and Cd~(2+) in a dose-dependent manner. 80μmol/L Zn~(2+) could induce apoptosis to PC-3 cells, and 20μmol/L Cd~(2+) could give rise to their necrosis, but, addition of 80μmol/L EGCG could not cause their apoptosis. Also, EGCG, Zn~(2+) or Cd~(2+) could lead to a decrease in membrane fluidity of PC-3 cells as evidenced by a decrease in U/S. Some published papers suggested that the possible reasons for the biological behavior of EGCG against human cancer cells were due to the formation of complexes of EGCG with metal ions. In fact, whether complex of EGCG with Zn~(2+) was a main functional component against prostate cancer was not clear up to now. The objective of this investigation was to explore mechanism of interactions of EGCG with Zn~(2+) or Cd~(2+)in the enhancement of Zn~(2+) or Cd~(2+) to inhibition of EGCG against PC-3 cells. MTT assay demonstrated that Zn~(2+) or Cd~(2+) increased the effects of EGCG against PC-3 cells, but their complexes decreased these kinds of effects obviously. From chemiluminescence tests, the free radical scavenging rate of mixture of EGCG and Zn~(2+) or Cd~(2+) was significantly different from the treatment with EGCG alone at 40, 80, 160μmol/L, but the free radical scavenging rate of Zn-EGCG or Cd-EGCG complex was not significantly different from EGCG except for Zn-EGCG complex at 160μmol/L. HPLC was employed to detect and quantify EGCG content in PC-3 cells. The results of HPLC analysis showed that Zn~(2+) and Cd~(2+) enhanced permeatability of EGCG to cytoplasm membrane, but Zn-EGCG or Cd-EGCG complex did not. Thus, we postulated that complex of EGCG with Zn~(2+) or Cd~(2+) was not able to the main functional component in coexisting system of EGCG with Zn~(2+) or Cd~(2+), which inhibited the growth of PC-3 cells.
     In order to explore the mechanism of EGCG, Zn~(2+) and Cd~(2+) against PC-3 cells, we chose the best exposure period (24h) and optimal concentration to investigate the effects of EGCG, Zn~(2+), Cd~(2+) and EGCG in the presence of Zn~(2+) or Cd~(2+) on the function of mitochondria involved ROS of PC-3 cells. The results indicated that EGCG, Zn~(2+) and Cd~(2+) could interact directly with mitochondria and induce PC-3 cells death through the mitochondria-mediated apoptotic pathway. ROS might be responsible for the EGCG- and Cd~(2+)-mediated induction of apoptosis. EGCG, Zn~(2+) and Cd~(2+) could trigger oxidative stress of PC-3 cells to produce ROS, decrease membrane fluidity and destroy biomolecules.
引文
[1] Fujiki H, Suganuma M, Imai K, Nakachi K. Green tea: cancer preventive beverage and/or drug. Cancer Lett. 2002: 9-13.
    [2] Liao S, Umekita Y, Guo J, Kokontis JM, Hiipakka RA. Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett. 1995: 239-243.
    [3] Gupta S, Ahmad N, Nieminen AL, Mukhtar H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol. 2000: 82-90
    [4] 孙世利,杨军国,张岚翠,于海宁,沈生荣.儿茶素与金属离子相互作用及 其生物学意义.细胞生物学杂志.2007:225-228.
    [5] 陈永昌,王瑛,虞浩,许文荣.RhoA蛋白和cAMP对人前列腺癌细胞株PC-3 形态的影响.实验生物学报.2005:363-367.
    [6] Yu HN, Yin JJ, Shen SR. Effects of epi-gallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of Cu~(2+). Food Chem. 2006: 108-115.
    [7] Gasparini G, Longo R, Toi M, Ferrara N. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat. Clin. Pract. Oncol. 2005: 562-577.
    [8] Harlozinska A. Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Res. 2005: 3327-3333.
    [9] Vayalil PK, Katiyar SK. Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate. 2004: 33-42.
    [10] Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE. VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood. 2004: 788-794.
    [11] Lamy S, Gingras D, Beliveau R. Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res. 2002: 381-385.
    [12] Shay JW, Zou Y, Hiyama E, Wright WE. Telomerase and cancer. Hum. Mole. Gene. 2001:677-685.
    [13] Naasani I, Oh-Hashi F, Oh-Hara T, Feng WY, Johnston J, Chan K, Tsuruo T. Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer res. 2003: 824-830.
    [14] Brusselmans K, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV. Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int. J. Cancer. 2003: 856-862.
    [15] Hussain T, Gupta S, Adhami VM, Mukhtar H. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int. J. Cancer. 2005: 660-669.
    [16] Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat. Rev. Mol. Cell Biol. 2004: 805-815.
    [17] Siddiqui IA, Adhami VM, Afaq F, Ahmad N, Mukhtar H. Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J. Cell Biochem. 2004: 232-242.
    [18] Fujimura Y, Umeda D, Kiyohara Y, Sunada Y, Yamada K, Tachibana H. The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-O-gallate. Biochem. Biophys. Res. Commun. 2006: 524-531.
    [19] Fujimura Y, Umeda D, Yano S, Maeda-Yamamoto M, Yamada K, Tachibana H. The 67kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem. Biophys. Res. Commun. 2007: 79-85.
    [20] Fujimura Y, Yamada K, Tachibana H. A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcepsilonRI expression. Biochem. Biophys. Res. Commun. 2005: 674-681.
    [21] Umeda D, Tachibana H, Yamada K. Epigallocatechin-3-O-gallate disrupts stress fibers and the contractile ring by reducing myosin regulatory light chain phosphorylation mediated through the target molecule 67 kDa laminin receptor. Biochem. Biophys. Res. Commun. 2005: 628-635.
    [22] Waltregny D, de Leval L, Menard S, de Leval J, Castronovo V. Independent prognostic value of the 67-kd laminin receptor in human prostate cancer. J. Natl. Cancer Inst. 1997:1224-1227.
    [23] Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Bio. 2004: 380-381.
    [24] Chen X, Yu H, Shen S, Yin J. Role of Zn2+ in epigallocatechin gallate affecting the growth of PC-3 cells. J. Trace. Elem. Med. Biol. 2007: 125-131.
    [25] Yu HN, Shen SR, Yin JJ. Effects of interactions of EGCG and Cd(2+) on the growth of PC-3 cells and their mechanisms. Food Chem. Toxicol. 2007: 244-249.
    [26] Casalini P, Iorio MV, Galmozzi E, Menard S. Role of HER receptors family in development and differentiation. J Cell Physiol. 2004: 343-350.
    [27] Bhatia N, Agarwal R. Detrimental effect of cancer preventive phytochemicals Silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU 145 cells. Prostate. 2001: 98-107.
    [28] Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA. Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem. Biol Interact. 2007: 10.1016/j.cbi.2007.09.001.
    [29] Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 2003: 1-15.
    [30] Pinna LA. Protein kinase CK2: a challenge to canons. J. Cell Sci. 2002: 3873-3878.
    [31] Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE. Protein kinase CK2 promotes aberrant activation of nuclear factor-kappaB, transformed phenotype, and survival of breast cancer cells. Cancer Res. 2002: 6770-6778.
    [32] Wang G, Ahmad KA, Ahmed K. Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells. Cancer Res. 2006: 2242-2249.
    [33] Ahmad KA, Harris NH, Johnson AD, Lindvall HC, Wang G, Ahmed K. Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells.Mol. Cancer Ther. 2007: 1006-1012.
    
    [34] Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000: 211-225.
    [35] Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO. J. 2000: 3159-3167.
    [36] Bhatia N, Zhao J, Wolf DM, Agarwal R. Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with Silymarin. Proc. Am. Assoc. Cancer Res. 1999: 77-84.
    [37] Shimizu M, Deguchi A, Hara Y, Moriwaki H, Weinstein IB. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem. Biophys. Res. Commun. 2005: 947-953.
    [38] Dong Z, Ma W, Huang C, Yang CS. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res. 1997: 4414-4419.
    [39] Wang YC, Bachrach U. The specific anti-cancer activity of green tea (-)-epigallocatechin-3-gallate (EGCG). Amino. Acids. 2002: 131-143.
    [40] Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene. 2003: 4851-4859.
    [41] Hoshino N, Kimura T, Hayakawa F, Yamaji A, Ando T. Bactericidal activity of catechin-copper (II) complexes against Staphylococcus aureus compared with Escherichia coli. Lett. Appl. Microbiol. 2000: 213-217.
    [42] Kumamoto M, Sonda T, Nagayama K, Tabata M. Effects of pH and meta! ions on antioxidative activities of catechins. Biosci. Biotechnol. Biochem. 2001: 126-132.
    [43] Zago MP, Oteiza PI. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radic. Biol. Med. 2001: 266-274.
    
    [44] Sakagami T, Satoh K, Ishihara M, Sakagami H, Takeda F, Kochi M, Takeda M. Effect of cobalt ion on radical intensity and cytotoxic activity of antioxidants. Anticancer Res. 2000: 3143-3150.
    [45] Ishino A, Kusama K, Watanabe S, Sakagami H. Inhibition of epigallocatechin gallate-induced apoptosis by CoC12 in human oral tumor cell lines. Anticancer Res. 19999:5197-5201.
    [46] Yamanaka N, Oda O, Nagao S. Green tea catechins such as (-)-epicatechin and (-)-epigallocatechin accelerate Cu2+-induced low density lipoprotein oxidation in propagation phase. FEBS. Lett. 1997: 230-234.
    [47] Hu C, Kitts DD. Evaluation of antioxidant activity of epigallocatechin gallate in biphasic model systems in vitro. Mol. Cell Biochem. 2001: 147-155.
    [48] Navarro RE, Santacruz H, Inoue M. Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn2+: nuclear spin relaxation by the paramagnetic ion. J. Inorg. Biochem. 2005: 584-588.
    [49] Tang DS, Shen SR, Chen X, Zhang YY, Xu CY. Interaction of catechins with aluminum in vitro. J. Zhejiang Univ. Sci. 2004: 668-675.
    [50] Fernandez MT, Mira ML, Florencio MH, Jennings KR. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. J. Inorg. Biochem. 2002: 105-111.
    [51] Esparza I, Salinas I, Santamaria C, Garcia-Mina JM, Fernandez JM. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal. Chim. Acta. 2005: 267-274.
    
    [52] Ohyoshi E, Sakata T, Kurihara M. Complexation of aluminium with(-)-epigallocathechin gallate studied by spectrophotometry. J. Inorg, Biochem.1999:31-34.
    [53] Hynes MJ, Coinceanainn MO. The kinetics and mechanisms of the reaction ofiron(Ⅲ) with gallic acid, gallic acid methyl ester and catechin. J. Inorg. Biochem.2001:131-142.
    [54] 郭炳莹,程启坤.茶汤组分与金属离子的络合性能.茶叶科学.1991: 139-144.
    [55] 沈生荣,赵玉芳,赵保路.铁存在下儿茶素的抗自由基效应.茶叶科学.1997: 119-123.
    [56] 戚向阳,谢笔钧.表没食子儿茶素没食子酸酯(EGCG)锗(Ⅳ)配合物的 研究.天然产物研究与开发.1994:35-44.
    [57] Chen YM, Wang MK, Huang PM. Catechin transformation as influenced byaluminum. J. Agric. Food Chem. 2006: 212-218.
    [58] Bodini ME, Valle MA, Tapia R. Zinc catechin complexes in apro medium.Redox chemistry and interaction with superoxide radical anion. Polyhedron. 2001:1005-1009.
    [59] Kagaya N, Tagawa Y, Nagashima H, Saijo R, Kawase M, Yagi K. Suppressionof cytotoxin-induced cell death in isolated hepatocytes by tea catechins. Eur. J.Pharmacol. 2002: 231-236.
    [60] Yu HN, Shen SR, Xiong YK. Cytotoxicity of epigallocatechin-3-gallate toLNCaP cells in the presence of Cu2+. J. Zhejiang Univ. Sci. B. 2005: 125-131.
    [61] Yu HN, Yin JJ, Shen SR. Growth inhibition of prostate cancer cells byepigallocatechin gallate in the presence of Cu2+. J. Agric. Food Chem. 2004:462-466.
    [62] 陈勋,于海宁,沈生荣.EGCG与锌离子互作对前列腺癌细胞PC-3生长的影 响.茶叶科学.2006:219-224.
    [63] Yu HN, Yin JJ, Shen SR. Effects of epi-gallocatechin gallate on PC-3 cellcytoplasmic membrane in the presence of Cu2+. Food Chem. 2006: 108-115.
    [64] Kostyuk VA, Potapovich AI, Vladykovskaya EN, Korkina LG, Afanas'ev IB. Influence of metal ions on flavonoid protection against asbestos-induced cell injury. Arch. Biochem. Biophys. 2001: 129-137.
    [65] Mazzio E, Huber J, Darling S, Harris N, Soliman KF. Effect of antioxidants on L-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells. Neurotoxicology. 2001: 283-288.
    [66] Kang WS, Chung KH, Chung JH, Lee JY, Park JB, Zhang YH, Yoo HS, Yun YP. Antiplatelet activity of green tea catechins is mediated by inhibition of cytoplasmic calcium increase. J. Cardiovasc. Pharmacol. 2001: 875-884.
    [67] Tang SZ, Kerry JP, Sheehan D, Buckley DJ. Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chem. 2002: 45-51.
    [68] Coudray C, Bousset C, Tressol JC, Pepin D, Rayssiguier Y. Short-term ingestion of chlorogenic or caffeic acids decreases zinc but not copper absorption in rats, utilization of stable isotopes and inductively-coupled plasma mass spectrometry technique. Br. J. Nutr. 1998: 575-584.
    [69] Kuo SM, Leavitt PS, Lin CP. Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol. Trace Elem. Res. 1998: 135-153.
    [70] Choi JH, Rhee IK, Park KY, Park KY, Kim JK, Rhee SJ. Action of green tea catechin on bone metabolic disorder in chronic cadmium-poisoned rats. Life Sci. 2003: 1479-1489.
    [71] Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MB. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol. Nutr. Food Res. 2006: 229-234.
    [1] Cohen JJ. Apoptosis. Immunol Today. 1993: 126-130.
    
    [2] Zhao R, Domann FE, Zhong W. Apoptosis induced by selenomethionine and methioninase is superoxide mediated and p53 dependent in human prostate cancer cells. Mol. Cancer Ther. 2006: 3275-3284.
    [3] Yamanaka K, Rocchi P, Miyake H, Fazli L, Vessella B, Zangemeister-Wittke U, Gleave ME. A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol Cancer Ther. 2005: 1689-1698.
    [4] Halestrap AP, Brennerb C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr. Med. Chem. 2003: 1507-1525.
    [5] Brustovetsky N, Tropschug M, Heimpel S, Heidkamper D, Klingenberg M. A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore. Biochemistry. 2002: 11804-11811.
    [6] Garcia N, Martinez-Abundis E, Pavon N, Correa F, Chavez E. Copper induces permeability transition through its interaction with the adenine nucleotide translocase. Cell Biol Int. 2007: 893-899.
    [7] Ichas F, Mazat JR From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochem. Biochem. Biophys. Acta. 1998: 33-50.
    [8] Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate call death and as a putative target for cardioprotection. Cell Physiol. Biochem. 2007: 01-22.
    [9] Fontaine E, Eriksson O, Ichas F, Bernardi P. Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex i. J. Biol. Chem. 1998: 12662-12668.
    [10] Tsujimoto Y, Nakagawa T, Shimizu S. Mitochondrial membrane permeability transition and cell death. Biochimica. Et. Biophysica Acta. 2007: 1297-1300.
    [11] Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 2004: 87-106.
    [12] Purring-Koch C, McLendon G. Cytochrome c binding to Apaf-l:the effects of dATP and ionic strength. Proc. Natl. Acad. Sci. USA. 2000: 11928-11931.
    [13] Mootha VK, Wei MC, Buttle KF, Scorrano L, Panoutsakopoulou V, Mannella CA, Korsmeyer SJ. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO. J. 2001: 661-671.
    [14] Zhivotovsky B, Orrenius S, Brustugun OT, Doskeland SO. Injected cytochrome c induces apoptosis. Nature. 1998: 449-450.
    [15] Yuste VJ, Sanchez-Lopez I, Sole C, Moubarak RS, Bayascas JR, Dolcet X, Encinas M, Susin SA, Cornelia JX. The contribution of apoptosis-inducing factor, caspase-activated DNase,and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA. J. Biol. Chem. 2005: 35670-35683.
    [16] Purring-Koch C, McLendon G. Cytochrome c binding to Apaf-l:the effects of dATP and ionic strength. Proc.Natl. Acad. Sci. USA. 2000: 11928-11931.
    [17] Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, Kuida K, Yonehara S, Ichijo H, Takeda K. Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J. Biol. Chem. 2000: 26576-26581.
    [18] Wu YH, Shih SF, Lin JY. Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J. Biol. Chem. 2004: 19264-19275.
    [19] Pereverzev MO, Vygodina TV. Konstantinov AA, Skulachev VP. Cytochrome c, an ideal antioxidant. Biochem. Soc. Trans. 2003: 1312-1315.
    [20] Barros MH, Netto LE, Kowaltowski AJ. H_2O_2 generation in Saccharomyces cerevisiac respiratory pet mutants:effect of cytochrome c. Free Radic. Biol. Med. 2003: 179-188.
    [21] Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prevost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G. Two distinct pathways leading to nuclear apoptosis. J. Exp. Med. 2000: 571-580.
    [22] Perfettini JL, Reed JC, Israel N, Martinou JC, Dautry-Varsat A, Ojcius DM. Role of Bcl-2 family members in caspase-independent apoptosis during Chlamydia infection. Infect Immun. 2002: 55-61.
    [23] Hirakawa A, Takeyama N, Nakatani T, Tanaka T. Mitochondrial permeability transition and cytochrome c release in ischemia-reperfusion injury of the rat liver. J.Surg.Res. 2003:240-247.
    [24] Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J. Biol. Chem. 2002: 34793-34799.
    [25] Ishida H. The research method for investigating the role of the mitochondrial permeability transition pore in cell death. Nippon Yakurigaku Zasshi. 2004: 329-334.
    [26] Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene. 2004: 2785-2796.
    [27] Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002: 9.
    [28] Izyumov DS, Avetisyan AV, Pletjushkina OY, Sakharov DV, Wirtz KW, Chernyak BV, Skulachev VP. Wages of fear.transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim. Biophys. Acta. 2004: 141-147
    [29] Grusch M, Polgar D, Gfatter S, Leuhuber K, Huettenbrenner S, Leisser C, Fuhrmann G, Kassie F, Steinkellner H. Smid K, Peters GJ, Jayaram HN. Klepal W, Szekeres T, Knasmiiller S, Krupitza G. Maintenance of ATP favours apoptosis over necrosis triggered by benzamide riboside. Cell Death Differ. 2002: 169-178.
    [30] Tsui KH, Chang PL, Juang HH. Zinc blocks gene expression of mitochondrial aconitase in human prostatic carcinoma cells. Int. J. Cancer. 2006: 609-615.
    [31] Eguchi Y, Srinivasan A, Tomaselli KJ, Shimizu S, Tsujimoto Y. ATP-dependent steps in apoptotic signal transduction. Cancer Res. 1999: 2174-2181.
    [32] Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999:233-249.
    [33] Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y, Wu X, Li Y, Xue X, Ren J. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol. Appl. Pharmacol. 2007: 105-110
    [34] Bragadin M, Iero A, Cima F, Ballarin L, Manente S. TCMS inhibits ATP synthesis in mitochondria: a systematic analysis of the inhibitory mechanism. Toxicol. In Vitro. 2007: 1127-1133.
    [35] Di Lisa F, Canton M, Menabo R, Kaludercic N, Bernardi P. Mitochondria and cardioprotection. Heart Fail. Rev. 2007: 249-260.
    [36] Bianchi K, Rimessi A, Prandini A, Szabadkai G, Rizzuto R. Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim. Biophys. Acta. 2004: 119-31.
    [37] Salido M, Gonzalez JL, Vilches J. Loss of mitochondrial membrane potential is inhibited by bombesin in etoposide-induced apoptosis in PC-3 prostate carcinoma cells. Mol. Cancer Ther. 2007: 1292-1299.
    [38] Zamzami N, Kroemer G. Methods to measure membrane potential and permeability transition in the mitochondria during apoptosis. Methods Mol. Biol. 2004:103-115.
    [39] Matorras R, Rerteagndo L, Sanjurjo P. Biochemital markors of n-3 long chain polyunsaturated fatty acid intake during pregnancy. Clin. Exp. Obstet. Gynecol. 1998: 135-138.
    [40] Sills RH, Moore DJ. Mendelsohn R. Erythrocyte peroxidation: quantitation by Fourier transform infrared spectroscopy. Anal. Biochem. 1994: 118-123.
    [41] Shinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochem. Biophys. Acta. 1978: 367-394.
    [42] Bahri MA, Seret A, Hans P, Piette J, Deby-Dupont G, Hoebeke M. Does propofol alter membrane fluidity at clinically relevant concentrations? An ESR spin label study. Biophys Chem. 2007: 82-91.
    [43] Schendel SL, Montal M, Reed JC. Bcl-2 family proteins as ion-channels. Cell Death Differ. 1998: 372-380.
    [44] Kim YA, Xiao D, Xiao H, Powolny AA, Lew KL, Reilly ML, Zeng Y, Wang Z, Singh SV. Mitochondria-mediated apoptosis by diallyl trisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak. Mol. Cancer Ther. 2007: 1599-1609.
    [45] Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 2001: 319-328.
    [46] Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, Youdim MB, Tsujimoto Y, Naoi M. Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol,an endogenous neurotoxin,and is inhibited by Bcl-2 and rasagiline,N-propargyl-1(R)-aminoindan. J. Neurochem. 2002: 913-923.
    [47] Khar A, Pardhasaradhi BV, Ali AM, Kumari AL. Protection conferred by Bcl-2 expression involves reduced oxidative stress and increased glutathione production during hypothermia-induced apoptosis in AK-5 tumor cells. Free Radic. Biol. Med. 2003: 949-957.
    
    [1] Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals andantioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006: 1-40.
    [2] Esterbauer H, Schaur RJ, Zollner H. Zollner, Chemistry and biochemistry of4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med.1991:81-128.
    [3] Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mut. Res. 1999:83-95.
    [4] Pinchuk I, Schnitzer E, Lichtenberg D. Kinetic analysis of copper-inducedperoxidation of LDL. Biochim. Biophys. Acta. 1998: 155-172.
    [5] Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002: 620-650.
    [6] Awasthi YC, Sharma R, Cheng JZ, Yang Y, Sharma A, Singhal SS, Awasthi S. Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol. Aspects Med. 2003:219-30.
    [7] Dianzani MU. 4-hydroxynonenal from pathology to physiology. Mol. Aspects Med. 2003: 263-272.
    [8] Basu AK, Marnett LJ. Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis. 1983: 331-333.
    [9] Esterbauer H, Schaur RJ, Zollner H. Chemistryand biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991:81-128.
    [10] Rice-Evans C, Burdon R. Free radical-lipid interactions and their pathological consequences. Prog. Lipid Res. 1993: 71-110.
    [11] Sun Y. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic. Biol. Med. 1990: 583-99.
    [12] Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 1996: 17-29.
    [13] Klaunig JE. Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J, Stevenson DE, Walborg EF Jr. The role of oxidative stress in chemical carcinogenesis. Environ. Health Perspect. 1998:289-295.
    [14] Levine RL, Mosoni L, Berlett BS, Stadtman ER. Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA. 1996: 15036-15040.
    [15] Stadtman ER. Role of oxidant species in aging. Curr. Med. Chem. 2004: 1105-1112.
    [16] Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol. Biochem. 2001: 173-186.
    [17] Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Cross-talk between calcium and reactive oxygen species signaling. Acta. Pharmacol. Sin. 2006: 821-826.
    [18] Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. Mitochondrial reactive oxygen species and Ca2+ signaling. Am. J. Physiol. Cell Physiol. 2006: 1082-1088.
    [19] Hazzalin CA, Mahadevan LC. MAPK-regulated transcription: a continuously variable gene switch? Nat. Rev. Mol. Cell. Biol. 2002: 30-40.
    [20] English JM, Cobb MH. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol. Sci. 2002:40-45.
    [21] Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 2001: 397-408.
    [22] Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit. Care Med. 2000: 67-77.
    
    [23] Seger R, Krebs EG. The MAPK signaling cascade. FASEB. J. 1995: 726-735.
    [24] Cano E, Mahadevan LC. Parallel signal-processing among mammalian MAPKs. Trends Biochem. Sci. 1995: 117-122.
    [25] Davis RJ. MAPKs: new JNK expands the group. Trends Biochem. Sci. 1994: 470-473.
    [26] Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 1997: 217-221.
    [27] Catarzi S, Degl'Innocenti D, Iantomasi T, Favilli F, Vincenzini MT. The role of H2O2 in the platelet-derived growth factor-induced transcription of the gamma-glutamylcysteine synthetase heavy subunit. Cell Mol. Life Sci. 2002: 1388-1394.
    [28] Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999: 9-22.
    [29] Esposito F, Chirico G, Montesano Gesualdi N, Posadas 1, Ammendola R, Russo T, Cirino G, Cimino F. Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires Src activity, J. Biol. Chem. 2003: 20828-20834.
    [30] Salmeen A, Barford D. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid. Redox. Signal. 2005: 560-577.
    [31] Ashkenazi A. Dixit VM. Death receptors: signaling and modulation. J. Science. 1998): 1305-1308.
    [32] Chiao PJ, Miyamoto S, Vermn IM. Autoregulation of I-KB activity. Proe. Nail. Arald Sei. USA. 1994:28-32.
    [33] Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006:1-40.
    [34] Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev. 2005: 365-379.
    [35] Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin. Biochem. 1999: 595-603.
    [36] Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 2003: 1441-1444.
    [37] Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR, Massa E, Mocci M, Serpe R. Antioxidant agents are effective in inducing . lymphocyte progression through cell cycle in advanced cancer patients: Assessment of the most important laboratory indexes of cachexia and oxidative stress. J. Mol. Med. 2003: 664-673.
    [38] Carmody RJ, Cotter TG. Signalling apoptosis: A radical approach. Redox Rep. 2001:77-90.
    [39] Kehrer JP. Cause-effect of oxidative stress and apoptosis. Teratology. 2000: 235-236.
    [40] Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000: 153-163.
    [41] Cejas P, Casado E, Belda-Iniesta C, De Castro J. Espinosa E, Redondo A, Sereno M, Garcia-Cabezas MA, Vara JA, Dominguez-Caceres A, Perona R, Gonzalez-Baron M. Implications of oxidative stress and cell membrane lipid peroxidation in human cancer (Spain). Cancer Causes Control. 2004: 707-719.
    [42] Davies KJ. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB. Life. 1999: 41-47.
    [43] Mates JM, Sanchez-Jimenez FM. Role of reactive oxygen species in apoptosis: Implications for cancer therapy. Int. J. Biochem. Cell Biol. 2000:157-170.
    [44] Kong Q, Beel JA, Lillehei KO. A threshold concept for cancer therapy. Med. Hypotheses. 2000: 29-35.
    [45] Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 2000:42-49.
    [46] Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 2000: 323-333.
    [47] Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science. 1998: 1305-1308.
    
    [48] Nagata S. Apoptosis by death factor. Cell. 1997: 355-365.
    [49] Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J. Characterization of two receptors for TRAIL. FEBS. Lett. 1997: 329-334.
    [50] Kaufmann SH, Gores GJ. Apoptosis in cancer: Cause and cure. Bioessays. 2000: 1007-1017.
    [51] Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 2000: 1456-1462.
    [52] Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004: 97-110.
    [53] Higuchi Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem. Pharmacol 2003: 1527-1535.
    
    
    [1] Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics. CA. CancerJ.Clin. 2001:15-36.
    [2] American Cancer Society, Cancer Facts and Figures. Available on the Internet athttp://www.cancer.org/downloads/STT/CancerFacts&Figures2002TM.pdf.
    [3] M(a|¨)(a|¨)tt(a|¨)-Riihinen KR, K(a|¨)hk(o|¨)nen MP, T(o|¨)rr(o|¨)nen AR, Heinonen IM. Catechins andprocyanidins in berries of vaccinium species and their antioxidant activity. J.Agric. Food Chem. 2005: 8485-8491.
    [4] Cooper R, Morr(?) DJ, Morr(?) DM. Medicinal benefits of green tea: part Ⅱ. Reviewof anticancer properties. J. Altern. Complement Med. 2005: 639-652.
    [5] Kim SY, Kim DS, Kwon SB, Park ES, Huh CH, Youn SW, Kim SW, Park KC.Protective effects of EGCG on UVB-induced damage in living skin equivalents.Arch. Pharm. Res. 2005: 784-790.
    [6] Ju J, Hong J, Zhou JN, Pan Z, Bose M, Liao J, Yang GY, Liu YY, Hou Z, Lin Y, Ma J, Shih WJ, Carothers AM. Yang CS. Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res. 2005:10623-10631.
    
    [7] Philpott M, Ferguson LR. Immunonutrition and cancer. Mutat. Res. 2004: 29-42.
    
    [8] Li N, Han C, Chen J. Tea preparations protect against DMBA-induced oral carcinogenesis in hamsters. Nutr. Cancer. 1999: 73-79.
    [9] Han C, Xu Y. Chinese tea inhibits the occurrence of oesophageal tumours induced by N-nitrosomethylbenzylamine and blocks its formation in rats. IARC. Sci. Publ. 1991:541-545.
    [10] Wang ZY, Wang LD, Lee MJ, Ho CT, Huang MT, Conney AH, Yang CS. Inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by green and black tea. Carcinogenesis. 1995:2143-2148.
    [11] Morse MA, Kresty LA, Steele VE, Kelloff GJ, Boone CW, Balentine DA, Harbowy ME, Stoner GD. Effects of theaflavins on N-nitrosomethylbenzylamine-induced esophageal tumorigenesis. Nutr. Cancer. 1997: 7-12.
    [12] Weisburger JH, Rivenson A, Garr K, Aliaga C. Tea, or tea and milk, inhibit mammary gland and colon carcinogenesis in rats. Cancer Lett. 1997: 323-327.
    [13] Wang ZY, Huang MT, Ho CT, Chang R, Ma W, Ferraro T, Reuhl KR, Yang CS, Conney AH. Inhibitory effect of green tea on the growth of established skin papillomas in mice. Cancer Res. 1992: 6657-6665.
    [14] Landau JM, Wang ZY, Yang GY, Ding W, Yang CS. Inhibition of spontaneous formation of lung tumors and rhabdomyosarcomas in A/J mice by black and green tea. Carcinogenesis. 1998: 501-507.
    [15] Lu Y, Yao R, Yan Y, Wang Y, Hara Y, Lubet RA, You M. A gene expression signature that can predict green tea exposure and chemopreventive efficacy of lung cancer in mice. Cancer Res. 2006: 1956-1963.
    [16] Chen JJ, Ye ZQ, Koo MW. Growth inhibition and cell cycle arrest effects of epigallocatechin gallate in the NBT-II bladder tumour cell line. BJU. Int. 2004: 1082-1086.
    [17] Facchini A, Zanella B, Stefanelli C, Guarnieri C, Flamigni F. Effect of green tea extract on the induction of ornithine decarboxylase and the activation of extracellular signal-regulated kinase in bladder carcinoma ECV304 cells. Nutr. Cancer. 2003: 104-110.
    [18] Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK. Green tea polyphenols and its constituent epigallocatechin gallate inhibit proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett. 2007: 232-241.
    [19] Kim J, Zhang X, Rieger-Christ KM, Summerhayes IC, Wazer DE, Paulson KE, Yee AS. Suppression of Wnt Signaling by the Green Tea Compound (-)-Epigallocatechin 3-Gallate (EGCG) in Invasive Breast Cancer Cells: REQUIREMENT OF THE TRANSCRIPTIONAL REPRESSOR HBP1. J. Biol. Chem. 2006:10865-10875.
    [20] Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis. 2005: 958-967.
    [21] Suganuma M, Kurusu M, Suzuki K, Tasaki E, Fujiki H. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene. Int. J. Cancer. 2006: 33-40.
    [22] Ganguly C, Saha P, Panda CK, Das S. Inhibition of growth, induction of apoptosis and alteration of gene expression by tea polyphenols in the highly metastatic human lung cancer cell line NCI-H460. Asian Pac. J. Cancer Prev. 2005:326-331.
    [23] Xie J, Chen QY, Zhou JY. Study on mechanism of tea polyphenols in inducing human lung cancer cell apoptosis in vitro. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005:244-247.
    [24] Zaichick VY, Sviridova TV, Zaichick SV. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int. Urol. Nephrol. 1997: 565-574.
    [25] Ishii K, Otsuka T, lguchi K, Usui S, Yamamoto H, Sugimura Y, Yoshikawa K, Hayward SW, Hirano K. Evidence that the prostate-specific antigen (PSA)/Zn2+
    ??axis may play a role in human prostate cancer cell invasion. Cancer Lett. 2004:79-87.
    [26] Goel T, Sankhwar SN. Comparative study of zinc levels in benign and malignantlesions of the prostate. Scand. J. Urol. Nephrol. 2006: 108-112.
    [27] Franklin RB, Milon B, Feng P, Costello LC. Zinc and zinc transporters in normalprostate and the pathogenesis of prostate cancer. Front. Biosci. 2005: 2230-2239.
    [28] IARC. In: IARC Monographs on the Evaluation of Carcinogenic Risks toHumans. International Agency for Research on Cancer. 1993:41-117.
    [29] Nakamura K, Yasunaga Y, Ko D, Xu LL, Moul JW, Peehl DM, Srivastava, RhimJS. Cadmium-induced neoplastic transformation of human prostate epithelialcells. Int. J. Oncol. 2002: 543-547.
    [30] Yu HN, Yin JJ, Shen SR. Effects of epi-gallocatechin gallate on PC-3 cellcytoplasmic membrane in the presence of Cu~(2+). Food Chem. 2006:108-115.
    [31] 龙璜,苏海.细胞膜脂肪酸与心血管疾病.国际心血管病杂志.2007: 119-122.
    [32] Kajiya K, Kumazawa S, Nakayama T. Steric effects on interaction of tea catechins with lipid bilayers. Biosci. Biotechnol. Biochem. 2001: 2638-2643.
    [33] 肖银霞,李金龙,徐世文,李术.镉、硒、氟、铜、锌、磷对细胞膜影响的 研究进展.中国地方病杂志.2006:225-226.
    [1] Chung LY, Cheung TC, Kong SK, Fung KP, Choy YM, Chan ZY, Kwok TT.Induction of apoptosis by green tea catechins in human prostate cancer DU145cells. Life Sci.2001:1207-1214.
    [2] Lu YP, Lou YR, Xie JG, Peng QY, Liao J, Yang CS, Huang MT, Conney AH.Topical applications of caffeine or (-)-epigallocatechin gallate (EGCG) inhibitcarcinogenesis and selectively increase apoptosis in UVB-induced skin tumors inmice.Proc.Natl.Acad.Sci. USA. 2002: 12455-12460.
    [3] Yang CS, Lee MJ, Chen LS. Human salivary tea catechin levels and catechin esterase activities: implication in human cancer prevention studies. Cancer Epidemiol. Biomarkers Prev. 1999: 83-89.
    [4] Bhatia N, Agarwal R. Detrimental effect of cancer preventive Phytochemicals Silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU 145 cells. Prostate. 2001: 98-107.
    [5] Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene. 2003:4851-4859.
    [6] Gupta S, Ahmad N, Nieminen AL, Mukhtar H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol. 2000: 82-90.
    [7] Paschka AG, Butler R, Young CY. Induction of apoptosis in prostate cancer cell lines by the green tea component, (-)-epigallocatechin-3-gallate. Cancer Lett. 1998: 1-7.
    [8] Hiipakka RA, Zhang HZ, Dai W, Dai Q, Liao S. Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem. Pharmacol. 2002:1165-1176.
    [9] Huang L, Kirschke CP, Zhang Y. Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int. 2006: 10.
    [10] Hayakawa F, Kimura T, Hoshino N, Ando T. DNA cleavage activities of (-)-epigallocatechin, (-)-epicatechin, (+)-catechin, and (-)-epigallocatechin gallate with various kinds of metal ion. Biosci. Biotechnol. Biochem. 1999: 1654-1656.
    [11] Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S. (-)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochem. Pharmacol. 2003: 1769-1778.
    [12] Azam S, Hadi N, Khan NU, Hadi SM. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol. In Vitro. 2004: 555-561.
    [13] Inoue MB, Inoue M, Fernando Q, Valcic S, Timmermann BN. Potentiometric and (1)H NMR studies of complexation of Al(3+) with (-)-epigallocatechin gallate, a major active constituent of green tea. J. Inorg. Biochem. 2002: 7-13.
    [14] Kagaya N, Kawase M, Maeda H, Tagawa Y, Nagashima H, Ohmori H, Yagi K. Enhancing effect of zinc on hepatoprotectivity of Epigallocatechin Gallate in isolated rat hepatocytes. Biol. Pharm. Bull. 2002:1156-1160.
    [15] Navarro RE, Santacruz H, Inoue M. Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn2+: nuclear spin relaxation by the paramagnetic ion. J. Inorg. Biochem. 2005: 584-588.
    
    [16] Esparza I, Salinas I, Santamara C, Garcia-Mina JM, Fernandez JM. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal. Chim. Acta. 2005: 267-274.
    [17] Chen X, Yu HN, Shen SR, Yin JJ. Role of Zn2+ in epigallocatechin gallate affecting the growth of PC-3 cells. J. Trace Elements Med. Biol. 2007: 125-131.
    [18] Kuroda Y, Hara Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res. 1999: 69-97.
    
    [19] Cao YH, Cao RH. Angiogenesis inhibited by drinking tea. Nature. 1999: 381.
    [20] Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch. Biochem. Biophys. 2003: 177-185.
    [21] Yu HN, Yin JJ, Shen SR. Effects of epi-gallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of Cu2+. Food Chem. 2006: 108-115.
    [22] Chen YM, Wang MK, Huang PM. Catechin transformation as influenced by aluminum. J. Agric. Food Chem. 2006: 212-218.
    [23] Hayakawa F, Ishizu Y, Hoshino N. Yamaji A, Ando T, Kimura T. Prooxidative activities of tea catechins in the presence of Cu2+. Biosci. Biotechnol. Biochem. 2004:1825-1830.
    [24] Kumamoto M, Sonda T, Nagayama K, Tabata M. Effects of pH and metal ions on antioxidative activity of catechins. Biosci. Biotechnol. Biochem. 2001: 126-132.
    [25] Yu HN, Shen SR, Yin JJ. Effects of interactions of EGCG and Cd(2+) on the growth of PC-3 cells and their mechanisms. Food Chem. Toxicol. 2007: 244-249.
    [26] Ohyoshi E, Sakata T, Kurihara M. Complexation of aluminium with (-)-epigallocathechin gallate studied by spectrophotometry. J. Inorg. Biochem. 1999:31-34.
    [27] Koutsogiannaki S, Evangelinos N, Koliakos G, Kaloyianni M. Cytotoxic mechanisms of Zn~(2+) and Cd~(2+) involve Na+/H+ exchanger (NHE) activation by ROS. Aquat. Toxicol. 2006: 315-324.
    [28] Afanas'eva IB, Ostrakhovitch EA, Mikhal'chik EV, Ibraqimova GA, Korkina LG Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem. Pharmacol. 2001: 677-684.
    [29] Yu HN, Shen SR, Xiong YK. Cytotoxicity of epigallocatechin-3-gallate to LNCaP cells in the presence of Cu~(2+). J. Zhejiang Univ. Sci. B. 2005: 125-131.
    [30] Tang Z, Sahu SN, Khadeer MA, Bai G, Franklin RB, Gupta A. Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone. 2005: 181-198.
    [31] Umeda D, Tachibana H, Yamada K. Tea catechin, epigallocatechin-3-gallate suppresses myosin II regulatory light chain phosphorylation. Biofactors. 2004: 387-389.
    [32] Fujimura Y, Yamada K, Tachibana H. A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gal late on FcepsilonRI expression. Biochem. Biophys. Res. Commun. 2005: 674-681.
    [33] Umeda D, Tachibana H, Yamada K. Epigallocatechin-3-O-gallate disrupts stress fibers and the contractile ring by reducing myosin regulatory light chain phosphorylation mediated through the target molecule 67 kDa laminin receptor. Biochem. Biophys. Res. Commun. 2005: 628-635.
    [34] Fujimura Y, Umeda D. Kiyohara Y, Sunada Y. Yamada K, Tachibana H. The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton
    in the degranulation inhibition induced by epigallocatechin-3-O-gallate. Biochem.
    Biophys. Res. Commun. 2006: 524-531.
    [1] G(?)mez-Zaera M, Abril J, Gonz(?)lez L, Aguil(?) F, Condom E, Nadal M, Nunes V.Identification of somatic and germline mitochondrial DNA sequence variants inprostate cancer patients. Mutat. Res. 2006:42-51.
    [2] Salido M, Gonzalez JL, Vilches J. Loss of mitochondrial membrane potential isinhibited by bombesin in etoposide-induced apoptosis in PC-3 prostate carcinomacells. Mol. Cancer Ther. 2007: 1292-1299.
    [3] Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y, Wu X, Li Y, Xue X, Ren J. Role ofmitochondrial permeability transition in human renal tubular epithelial cell deathinduced by aristolochic acid. Toxicol. Appl. Pharmacol. 2007: 105-110.
    [4] Costello LC, Franklin RB, Feng P. Mitochondrial function, zinc, and intermediarymetabolism relationships in normal prostate and prostate cancer. Mitochondrion.2005:143-153.
    [5] Huang L, Kirschke CP, Zhang Y. Decreased intracellular zinc in humantumorigenic prostate epithelial cells: a possible role in prostate cancer progression.Cancer Cell Int. 2006: 10.
    [6] Costello LC, Franklin RB. Novel role of zinc in the regulation of prostate citrate metabolism and its implication in prostate cancer. Prostate. 1998:285-296.
    [7] Costello LC, Liu Y, Franklin RB, Kennedy MC. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial.cells. J. Biol. Chem. 1997:28875-28881.
    [8] Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Effect of zinc on prostatic tumorigenicity in nude mice. Ann. N. Y. Acad. Sci. 2003: 316-320.
    [9] Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, Feng P. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate. 1999:200-207.
    [10] Iguchi K, Hamatake M, Ishida R, Usami Y, Adachi T, Yamamoto H, Koshida K, Uchibayashi T, Hirano K. Induction of necrosis by zinc in prostate carcinoma cells and identification of proteins increased in association with this induction. Eur. J. Biochem. 1998: 766-770.
    [11] Wang SI, Mukhtar H. Gene expression profile in human prostate LNCaP cancer cells by (-)-epigallocatechin-3-gallate. Cancer Lett. 2002: 43-51.
    [12] Nakazato T, Ito K, Miyakawa Y, Kinjo K, Yamada T, Hozumi N, Ikeda Y, Kizaki M. Catechin, a green tea component, rapidly induces apoptosis of myeloid leukemic cells via modulation of reactive oxygen species production in vitro and inhibits tumor growth in vivo. Haematologica. 2005: 317-325.
    [13] Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch. Biochem. Biophys. 2003:177-185.
    [14] Chen X, Yu H, Shen S, Yin J. Role of Zn~(2+) in epigallocatechin gallate affecting the growth of PC-3 cells. J. Trace Elem. Med. Biol. 2007: 125-131.
    [15] Yu HN, Shen SR, Yin JJ. Effects of interactions of EGCG and Cd(2+) on the growth of PC-3 cells and their mechanisms. Food Chem. Toxicol 2007: 244-249.
    [16] Esparza I, Salinas I, Santamara C, Garcia-Mina JM, Fernandez JM. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal. Chim. Acta. 2005: 261-21 A.
    [17] Lemire J, Mailloux R. Appanna VD. Zinc toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes. J. Appl. Toxicol. 2007: 10.1002/jat.l263.
    [18] Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an enspoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol. Biochem. 2007: 01-22.
    
    [19] Carew JS, Huang P. Mitochondrial defects in cancer. Mol. Cancer. 2002: 9.
    [20] Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001: 2922-2933.
    [21] Armstrong JS. The role of the mitochondrial permeability transition in cell death. Mitochondrion. 2006: 225-234.
    [22] Tsujimoto Y, Nakagawa T, Shimizu S. Mitochondrial membrane permeability transition and cell death. Biochim. Biophys. Acta. 2006:1297-1300.
    [23] Jung JY, Mo HC, Yang KH, Jeong YJ, Yoo HQ Choi NK, Oh WM, Oh HK, Kim SH, Lee JH, Kim HJ, Kim WJ. Inhibition by epigallocatechin gallate of CoCl_2-induced apoptosis in rat PC 12 cells. Life Sci. 2007: 1355-1363.
    [24] Tsui KH, Chang PL, Juang HH. Zinc blocks gene expression of mitochondrial aconitase in human prostatic carcinoma cells. Int. J. Cancer. 2006: 609-615.
    [25] Feng P, Liang JY, Li TL, Guan ZX, Zou J, Franklin R, Costello LC. Zinc induces mitochondria apoptogenesis in prostate cells. Mol. Urol. 2000: 31-36.
    [26] Untergasser G, Rumpold H, Plas E, Witkowski M, Pfister G, Berger P. High levels of zinc ions induce loss of mitochondrial potential and degradation of antiapoptotic Bcl-2 protein in vitro cultivated human prostate epithelial cells. Biochem. Biophys. Res. Commun. 2000: 607-614.
    [27] Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH. Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 2001: 47524-47529.
    [28] Qanungo S, Das M. Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis. 2005: 958-967.
    [29] Chen C, Shen G. Hebbar V, Hu R, Owuor ED, Kong AN. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis. 2003: 1369-1378.
    [30] Zhao Y, Yang LF, Ye M, Gu HH, Cao Y. Induction of apoptosis by epigallocatechin-3-gallate via mitochondrial signal transduction pathway. Prev. Med. 2004:1172-1179.
    [31] Das A, Banik NL, Ray SK. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int. J. Cancer. 2006:2575-2585.
    [32] Roy AM, Baliga MS, Katiyar SK. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol. Cancer Ther. 2005: 81-90.
    [33] Umeda D, Tachibana H, Yamada K. Tea catechin, epigallocatechin-3-gallate suppresses myosin II regulatory light chain phosphorylation. Biofactors. 2004: 387-389.
    [34] Fujimura Y, Yamada K, Tachibana H. A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcepsilonRI expression. Biochem. Biophys. Res. Commun. 2005: 674-681.
    [35] Umeda D, Tachibana H, Yamada K. Epigallocatechin-3-O-gallate disrupts stress fibers and the contractile ring by reducing myosin regulatory light chain phosphorylation mediated through the target molecule 67 kDa laminin receptor. Biochem. Biophys. Res. Commun. 2005: 628-635.
    [36] Fujimura Y, Umeda D, Kiyohara Y, Sunada Y, Yamada K, Tachibana H. The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-O-gallate. Biochem. Biophys. Res. Commun. 2006: 524-531.
    [37] Yu HN, Yin JJ, Shen SR. Effects of epi-gallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of Cu2+. Food Chem. 2006: 108-115.
    
    [38] Chen YM, Wang MK, Huang PM. Catechin transformation as influenced by aluminum. J. Agric. Food Chem. 2006: 212-218.
    [39] Hayakawa F, Ishizu Y, Hoshino N, Yamaji A, Ando T, Kimura T. Prooxidative activities of tea catechins in the presence of Cu2+. Biosci. Biotechnol. Biochem. 2004:1825-1830.
    [40] Kumamoto M, Sonda T, Nagayama K, Tabata M. Effects of pH and metal ions on antioxidative activity of catechins. Biosci. Biotechnol. Biochem. 2001: 126-132.
    [41] Navarro RE, Santacruz H, Inoue M. Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn2+: nuclear spin relaxation by the paramagnetic ion. J. Inorg. Biochem. 2005: 584-588.
    [1] Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006: 1-40.
    [2] Davies KJ. The broad spectrum of responses to oxidants in proliferating cells: A new paradigm for oxidative stress. IUBMB. Life. 1999: 41-47.
    [3] Mates JM, Sanchez-Jimenez FM. Role of reactive oxygen species in apoptosis: Implications for cancer therapy. Int. J. Biochem. Cell Biol. 2000:157-170.
    [4] Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005: 365-379.
    [5] Mates JM, Perez-Gomez C, De Castro IN. Antioxidant enzymes and human diseases. Clin. Biochem. 1999: 595-603.
    [6] Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 2003: 1441-1444.
    [7] Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR, Massa E, Mocci M, Serpe R. Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: Assessment of the most important laboratory indexes of cachexia and oxidative stress. J. Mol. Med. 2003:664-673.
    [8] Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mut. Res. 1999: 83-95.
    [9] Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 1996: 17-29.
    [10] Klaunig JE. Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J, Stevenson DE, Walborg EF Jr. The role of oxidative stress in chemical carcinogenesis. Environ Health Per sped 1998:289-295.
    
    [11] Sun Y. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic. Biol. Med. 1990:583-599.
    
    [12] Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol. Biochem. 2001: 173-186.
    [13] Hazzalin CA, Mahadevan LC. MAPK-regulated transcription: a continuously variable gene switch? Nat. Rev. Mol. Cell. Biol. 2002: 30-40.
    [14] English JM, Cobb MH. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol. Sci. 2002:40-45.
    [15] Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell. Growth Differ. 2001: 397-408.
    [16] Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit. Care Med. 2000: 67-77.
    [17] Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. J. Science. 1998: 1305-1308.
    [18] Chiao PJ, Miyamoto S, Vermn IM. Autoregulation of I-KB activity. Proe. Nail. Arald. Sei. USA. 1994:28-32.
    [19] Ozben T. Oxidative Stress and Apoptosis: Impact on Cancer Therapy. J. Pharm. Sri. 2006: 2181-2196.
    [20] Yang CS, Chung JY, Yang G, Chhabra SK, Lee MJ. Tea and tea polyphenols in cancer prevention. J. Nutr. 2000: 472-478.
    [21] Azam S, Hadi N, Khan NU, Hadi SM. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicology in vitro. 2004: 555-561.
    [22] Koutsogiarmaki S, Evangelinos N, Koliakos G, Kaloyianni M. Cytotoxic mechanisms of Zn2+ and Cd2+ involve Na+/H+ exchanger (NHE) activation by ROS. Aquat. Toxicol. 2006: 315-324.
    [23] Noda C, He J, Takano T, Tanaka C, Kondo T, Tohyama K, Yamamura H, Tohyama Y. Induction of apoptosis by epigallocatechin-3-gallate in human lymphoblastoid B cells. Biochem. Biophys. Res. Commun. 2007: 951-957.
    [24] Kennedy DO, Kojima A, Yano Y, Hasuma T, Otani S, Matsui-Yuasa I. Growth inhibitory effect of green tea extract in Ehrlich ascites tumor cells involves cytochrome c release and caspase activation. Cancer Lett. 2001: 9-15.
    [25] Chen C, Shen G, Hebbar V, Hu R, Owuor ED, Kong AN. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis. 2003:1369-1378.
    [26] Valcic S, Muders A, Jacobsen NE, Liebler DC, Timmermann BN. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxyl radicals. Chem. Res. Toxicol. 1999: 382-396.
    [27] Yang CS, Maliakal P, Meng X. Inhibition of carcinogenesis by tea. Annu. Rev. Pharmacol. Toxicol. 2002: 25-54.
    [28] Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis. 1998:611-616.
    [29] Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996:1081-1085.
    [30] Huang EP. Metal ions and synaptic transmission: think zinc. Proc. Natl. Acad. Sci. USA. 1997: 13386-13387.
    [31] Truong-Tran AQ, Carter J, Ruffin R, Zalewski PD. New insights into the role of zinc in the respiratory epithelium. Immunol. Cell Biol. 2001: 170-177.
    [32] Chung MJ, Walker PA, Brown RW, Hogstrand C. Zinc-mediated gene-expression offers protection against H2O2-induced cytotoxicity. Toxicol. Appl. Pharmacol. 2005: 225-236.
    [33] Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, Reynolds IJ. Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 2000: 1878-1888.
    [34] Soengas JL, Agra-Lago MJ, Carballo B, Andres MD, Veira JA. Effect of an acute exposure to sublethal concentrations of cadmium on liver carbohydrate metabolism of Atlantic salmon (Salmo salar). Bull. Environ. Contam. Toxicol 1996:625-631.
    [35] Bisova K, Hendrychova J, Cepak V, Zachleder V. Cell growth and division processes are differentially sensitive to cadmium in Scenedesmus quadricauda. Folia Microbiol (Praha). 2003: 805-816.
    [36] Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 2003: 95-117.
    [37] Yang PM, Chiu SJ, Lin KA, Lin LY. Effect of cadmium on cell cycle progression in Chinese hamster ovary cells. Chem. Biol Interact. 2004: 125-136.
    [38] Dailianis S, Piperakis SM, Kaloyianni M. Cadmium effects on ROS production and DNA damage via adrenergic receptors stimulation: role of Na+/H+ exchanger and PKC. Free Radic. Res. 2005:1059-1070.
    [39] Yu HN, Shen SR, Yin JJ. Effects of Metal Ions, Catechins, and Their Interactions on Prostate Cancer. Crit. Rev. Food Sci. Nutr. 2007:711-719.