基于生物智能的物联网协同自治机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为未来通信网络技术发展趋势之一,物联网是复杂、综合的跨学科研究领域,在设计、研究和实现等各个方面均面临着诸多难题和挑战,存在大量的基础科学问题亟待解决,如大规模网络的复杂性、网络环境的动态性、多元异构性、资源的有限性等问题。在生命科学的快速发展和推动下,以自然界中生命调控方法和作用规律为基础的生物智能理论得到了进一步的发展和应用。其中,很多生物智能方法具有异构性、自组织、动态性和可扩展等特征,为设计高效、具有鲁棒性的网络系统架构、算法和机制提供了借鉴和参考。本论文针对物联网的特性和需求,利用生物启发的网络智能理论与相关机制来研究物联网大规模异构网元的互连、分布式动态自组织方式和动态环境中网元间协同合作与服务等问题,为建立物联网协同自治理论奠定基础。本论文主要工作如下:
     (1)对物联网的基本特性、研究目标、相关研究背景和面临的挑战等内容进行了概括,并对生物智能算法的发展、研究现状和应用领域进行了综述,分析了生物智能应用于解决物联网等通信网络技术在发展中面临问题的可行性,为本文研究物联网中网元互连与交互、动态自组织、服务响应方式等相关问题提供了基本思路。
     (2)基于生物体内分泌系统中的激素传递和调节机理,设计了生物启发的物联网网元间分布式信息交互机制,并在此基础上提出了分布式协同跟踪算法(EIDCA)用于解决无线传感器网络中的目标跟踪问题。仿真结果证明在EIDCA算法作用下,网元能够在分布式的网络结构中进行高效的信息交换与相互作用,在维持网络稳定的同时能够完成目标跟踪任务,与其它分布式跟踪算法相比具有更好的跟踪效果和保持跟踪能力。
     (3)基于人体内分泌血糖调节模型,提出了一种适用于物联网的动态自组织算法(ISOS),使网元能够在其动态局部自治区内根据其自身状态和周围环境情况进行自我调节;另外,该算法以多种激素作为不同信息载体,通过对自治网元激素释放过程的调控来实现网元之间的自组织与协同合作功能。仿真结果证明了在该动态自组织算法的作用下,自治网元能够在分布式网络结构中相互协作、高效组织起来,以维持物联网的全局稳定状态并完成网络目标,具有较好的调节能力和稳定性;另外,当网络期望唤醒网元概率较小时ISOS算法能够取得更大的性能优势,尤其适合在网络资源有限的条件下使用。
     (4)为满足物联网动态环境中“常响应”服务模式需要,本论文建立了物联网智能服务模型;同时基于人体神经-内分泌系统的相互调节机制及其对内稳态的综合调控机理,设计了“常响应”模式的动态服务请求的监测算法(HITS)。实验结果证明了在HITS作用下,物联网在维持稳定的同时能够对随机产生的服务请求具有较好的监测和快速响应能力,并通过预测用户的运动范围来实现对移动中用户服务状态的持续监控,为建立物联网面向服务的体系结构、实现动态环境中物联网的智能服务与应用提供了参考方案。
     论文的最后总结全文的研究工作,并对下一步的目标和研究方向进行了讨论和展望。
As a future development trend of the communication network technologies, the Internet of Things (IoT) is an integrated interdisciplinary research area which faces many difficulties and challenges on designing, researching and realization. There are a lot of basic scientific problems to be solved, e.g. complexity of the large-scale network, dynamic characteristics of network environments, efficient control of massive heterogeneous network elements, resource and energy limitations, etc.. With the rapid development of biology science, the biological intelligent theory, which is inspired by the life regulation and control mechanisms in nature, has become more developed, and the application and popularization have already come into a new stage. Many bio-inspired methods endow systems or networks with the heterogeneity, autonomy, autonomous, dynamics and scalability, which can be references and inspirations for designing new efficient network architectures and mechanisms. Taking the features and requirements of the IoT into account, this work focuses on the issues of data exchange and interaction among heterogeneous network elements, distributed self-organization schemes and intelligent service provision in the dynamic system environment, and tries to solve these problems by applying biological intelligence methods and theories, which can lay the foundation for the cooperative autonomous theory of the IoT. The main contribution of the thesis lies in:
     (1) A summarization of the features, challenges and relevant research work of the IoT is provided. The feasibility of the biological intelligence is analyzed in solving the problems in the communication networks like the IoT, especially the regulation principles and mechanism in maintaining the homeostasis of internal environment by the endocrine system and neural system. This thesis also provides the methods of the researches on the interactions among network elements, self-organization, maintenance of network's stability and scalability, and service request response methods.
     (2) An information interaction mechanism among the IoT elements is designed inspired by the hormone transmission and regulation principles in the endocrine system. Based on this, an endocrine-based intelligent distributed cooperative algorithm (EIDCA) is also given for object tracking in the wireless sensor networks, and a numerical evaluating method is designed to provide an explicit measurement for comparison of different algorithms. Experiment results show that with the proposed EIDCA, the network elements can exchange information and interactive efficiently in a distributed way and the EIDCA accomplishes the tracking mission for the invading object more efficiently and persistently compared with other algorithms.
     (3) An intelligent self-organizing scheme (ISOS) for the IoT inspired by the endocrine regulating mechanisms of blood glucose regulation is proposed. For each node in the network, an autonomous area is established, where the node can effectively interact with its peers and perform self-control according to its own status and dynamic circumstance in a decentralized infrastructure. To act as the media for the information transmission and data sharing among the nodes, the concept of the hormone with different purposes is introduced and implemented numerically, and the nodes can therefore collaborate with each other and worked in a cooperative way. By adjusting the releasing procedure of the hormones, the ability of effectively detecting service requests randomly generated can also be guaranteed in the probabilistic partially-working IoT. A series of scenario-based simulations with results verifies the performance of the proposed mechanism entitles the IoT with the ability of maintaining its status in a globally stable status and effectively discovering the random service requests in a resource-critical configuration, which would be of great significance for the practical implementation of the IoT.
     (4) Inspired by the neuroendocrine comprehensive regulation mechanism of maintaining the homeostasis in human body, an IoT intelligent service model and dynamic service request detection algorithm (HITS) for realizing "always response service" in the dynamic environment are proposed. A dynamic information exchange scheme plays a critical part in the HITS to guarantee the rapidness of the network on responding the randomly generated service requests. Simulation results show that the proposed HITS algorithm can be regarded as a qualified instance of the distributed IoT infrastructure. The application of the HITS algorithm entitles the network with intelligent decision-making and cooperative working abilities, by which the autonomy of the nodes, the stability of the network and the effectiveness for providing service to the potential service-in-need targets can be guaranteed simultaneously.
     Finally a conclusion is made for the whole contents of this dissertation, together with the perspectives of this field for the next step.
引文
[1]L. Atzori, A. Iera, G. Morabito. The internet of things:a survey[J]. Computer Networks,2010,54(15):2787-3805.
    [2]D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac. Internet of things:vision, applications and research challenges[J]. Ad Hoc Networks,2012,10(7): 1497-1516.
    [3]H.-D. Ma. Internet of things:objectives and scientific challenges[J]. Journal of Computer Science and Technology,2011,26(6):919-924.
    [4]刘海涛,马建,熊永平.物联网技术应用[M].北京:机械工业出版社,2011.
    [5]R. V. Kulkarni, A. Forster, G. K. Venayagamoorthy. Computational intelligence in wireless sensor networks:a survey[J]. IEEE Communications Surveys & Tutorials,2011,13(1):68-96.
    [6]F. Dressier, O. B. Akan. A survey on bio-inspired networking[J]. Computer Networks,2010,54(6):881-900.
    [7]The Internet of Things. ITU Internet Reports,2005, http//www.itu.int/internetofthings/.
    [8]刘化君,刘传清.物联网技术[M].北京:科学出版社,2004.
    [9]B. Gates, N. Myhrvold, Peter Rinearson. The Road Ahead[M]. New York: Viking Press,1995.
    [10]沈苏彬,范曲立,宗平,毛燕琴,黄维.物联网的体系结构与相关技术研究[J].南京邮电大学学报(自然科学版),2009,29(6):10-11.
    [11]J. P. Conti. The Internet of Things[J]. Communication Engineer,2006,4(6): 20-25.
    [12]刘化君.物联网的体系结构与探讨[J].计算机与网络,2010,13:58-71.
    [13]M. Zorzi, A. Gluhak, S. Lange, A. Bassi. From today's INTRAnet of things to a future INTERnet of things:a wireless and mobility-related view[J]. IEEE Wireless Communications,2010,17(6):44-51.
    [14]S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau. Self-organization in biological systems[M]. Princeton University Press, Princeton,2003.
    [15]F. Dressier, I. Carreras. Advances in biologically inspired information systems— models, methods and tools, studies in computational intelligence[M]. Springer, Berlin, Heidelberg, New York,2007, pp.21-46.
    [16]K. Matsumoto, A. Utani, H. Yamamoto. Bio-inspired data transmission scheme to multiple sinks for the long-term operation of wireless sensor networks[J]. Artificial Life and Robotics,2010,15(2):189-194.
    [17]M. Meisel, V. Pappas, L. Zhang. A taxonomy of biologically inspired research in computer networking[J]. Computer Networks,2010,54(6):901-916.
    [18]S. Balasubramaniam, D. Botvich, R. Carroll, J. Mineraud, T. Nakano, T. Suda, W. Donnelly. Biologically inspired future service environment[J]. Computer Networks,2011,55(15):3423-3440.
    [19]R. H. Jacobsen, Q. Zhang, T. S. Toftegaard. Bioinspired privciples for large-scale networke sensor systems:an overview[J]. Sensors,2011,11(4): 4137-4151.
    [20]S. S. Iyengar, H.-C. Wu, N. Balakrishnan, Y.-C Shih. Biologically inspired cooperative routing for wireless mobile sensor networks[J]. IEEE Systems Journal,2007,1(1):29-37.
    [21]M. Peng, Y. Liu, D.-Y. Wei, W.-B. Wang, H.-Hwa Chen. Hierarchical cooperative relay based heterogeneous networks[J]. IEEE Wireless Communications,2011,18(3):48-56.
    [22]A. Konstantinidis, K. Yang, Q.-F. Zhang, D. Zeinalipour-Yazti. A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks[J]. Computer Networks,2010, 54(6):960-976.
    [23]F. Marcelloni, M. Vecchio. Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization[J]. Information Sciences,2010,180(10):1924-1941.
    [24]Y.-S. Ding, X.-J. Lu, K.-R. Hao, L.-F. Li, Y.-F. Hu. Target coverage optimization of wireless sensor networks using multi-objective immune co-evolutionary algorithms[J]. International Journal of System Science-Distributed Estimation and Filtering for Sensor Networks,2011,42(9):1531-1541.
    [25]K. P. Ferentinos, T. A. Tsiligiredis. Adaptive design optimization of wireless networks using genetic algorithms[J]. Computer Networks,2007,51(4): 1301-1051.
    [26]N. Garcia-Pedrajas, C. Hervas-Martinez, D. Ortiz-Boyer. A Cooperative coevolution of artificial neural network ensembles for pattern classification[J]. IEEE Transactions on Evolutionary Computation,2005,9(3):271-302.
    [27]W. Yao, S. Chen. Minimum bit multiuser transmission designs using particle swarm optimisation[J]. IEEE Transactions on Wireless Communications,2009, 8(10):5012-5017.
    [28]A. S. Ibrahim, H. Zhu, K. J. R. Liu. Distributed energy-efficient cooperative routing in wireless networks[J]. IEEE Transactions on Wireless Commubications,2008,10(7):3930-3941.
    [29]D. Caputo, F. Grimaccia, M. Mussetta, R. E. Zich. Genetical swarm optimization of multihop routes in wireless sensor networks[J]. Applied Computational Intelligence and Soft Computing,2010, Article ID:523943.
    [30]J. Barbancho, C. Leon, F. J. Molina, A. Barbancho. Using artificial intelligence in routing schemes for wireless networks[J]. Computer Communications,2007, 30(14-15):2802-2811.
    [31]Y.-J. Gong, M. Shen, J. Zhang, O. Kaynak, W.-N. Chen, Z.-H Zhan. Optimizing RFID network planning by using a particle swarm optimization algorithm with redundant reader elimination[J]. IEEE Transactions on Industrial Informatics, 2012,8(4):900-912.
    [32]H. Yang, F. Ye, B. Sikdar. A swarm-intelligence-based protocol for data acquisition in networks with mobile sinks[J]. IEEE Transactions on Mobile Computing,2008,7(8):931-945.
    [33]Y.-S. Ding, L. Gao. Macrodynamics analysis of migration behaviors in large-scale mobile agent systems for the future Internet[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,2011,41(5): 1032-1036.
    [34]L. Gao, Y.-S. Ding, H. Ying. An adaptive social network-inspired approach to resource discovery for the complex grid systemsfJ]. International Journal of General Systems,2006,35(3):347-360.
    [35]D.-B. Zhao, Y.-J. Dai, Z. Zhang. Computational intelligence in wireless sensor networks:a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2012,42(4):485-494.
    [36]S. Balasubramaniam, D. Botvich, B. Jennings, S. Davy, W. Donnelly, J. Strassner. Policy-constrained bio-inspired processes for autonomic route management[J]. Computer Networks,2009,53(10):1666-1682.
    [37]Y.-F. Hu, Y.-S. Ding, K.-R. Hao. An immune cooperative particle swarm optimization algorithm for fault-tolerant routing optimization in heterogeneous wireless sensor networks[J]. Mathematical Problems in Engineering,2012, 743728:1-19.
    [38]刘宝.基于生物网络的智能控制系统及其应用[D].东华大学博士论文,中国:上海,2006,8.
    [39]丁永生.计算智能:理论、技术与应用[M].北京:科学出版社,2004.
    [40]A. He, K. K. Bae, T. R. Newman, J. Gaeddert, K. Kim, R. Menon, L. M. Tirado, J. J. Neel, Y.-P. Zhao, J. H. Reedm, W. H. Tranter. A survey of artificial intelligence for cognitive radios[J]. IEEE Transactions on Vehicular Technology, 2010,59(4):1578-1592.
    [41]L. Reznik, G. V. Pless, T. A. Karim. Distributed neural networks for signal change detection:on the way to cognition in sensor networks[J]. IEEE Sensors Journal,2011,11(3):791-798.
    [42]M. Liu, H. Li, Y. Shen, J. Fan, S. Huang. Elastic neural network method for multi-target tracking task allocation in wireless sensor networks[J]. Computers and Mathematics with Applications,2009,57(11-12):1822-1828.
    [43]L. S. Farhy. Modeling of oscillations of endocrine networks with feedback[J], Methods in Enzymology,2004,384:54-81.
    [44]林广栋.人工内分泌新机制及其应用研究[D].中国科学技术大学博士论文,中国:合肥,2012,5.
    [45]L. H. Shu, K. Ueda, I. Chiu, H. Cheong. Biologically inspired design[J]. CIRP Annals-Manufacturing Technology,2011,60(2):673-693.
    [46]Q.-Z. Xu, L. Wang. Recent advances in the artificial endocrine system[J]. Journal ofZhejiang University SCIENCE C,2011,12(3):171-183.
    [47]U. Brinkschulte,. M. Pacher, A. von Renteln. Towards an artificial hormone system for self-organizing real-time task allocation[C]. In:Proceedings of the 2nd International Conference on Autonomous Computing and Communication Systems,2008, Article no.32.
    [48]U. Brinkschulte, A. von Renteln. Analyzing the behavior of an artificial hormone system for task allocation[J]. LNCS,2009,5586:47-61.
    [49]Y.-P. Zhang, H.-F. You, X.-F Wang. A hormone based tracking strategy for wireless sensor network[C]. In:Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, Sep.20-22,2009, Shanghai, China,3:104-108.
    [50]P. Vagas, R. Moioli, L. N. de Castro, J. Timmis, M. Neal, F. J. V. Zuben. Artificial homeostasis:a novel approach[J]. Lecture Notes in Computer Science, 2005,3630:754-764.
    [51]M. Neal, J. Timmis. Once more unto the breach:towards artificial homeostasis[J]. Recent Developments in Biologically Inspired Computing,2005, pp.340-365,2005.
    [52]R. C. Moioli, P. A. Vagas, F. J. V. Zuben, P. Husbands. Evolving an artificial homeostatic system[J]. LNCS,2008,5249:278-288.
    [53]S. Balaubramaniam, D. Botvich, W. Donnelly, M. O. Foghlu, J. Strassner. Bio-inspired framework for autonomic communication systems[J]. Studies in Computational Intelligence,2007,69:3-19.
    [54]S. Balasubramaniam, D. Botvich, J. Mineraud, W. Donnelly, N. Agoulmine. BiRSM:bio-inspired resource self-management for all IP-networks[J]. IEEE Network,2010,24(3):20-25.
    [55]S. Balasubramaniam, K. Leibnitz, P. Lio', D. Botvich, M. Murata. Biological principles for future Internet architecture design[J]. IEEE Communications Magazine,2011,49(7):44-52.
    [56]B. Atakan, O. B. Akan. Distributed audio sensing with homeostasis-inspired autonomous communication[J]. Ad Hoc Networks,2011,9(4):552-564.
    [57]B. Kruger, F. Dressler. Molecular process as a basis for autonomous networking[J]. IPSI Transactions on Advances Research:Issues in Computer Science and Engineering,2005,1(1):43-50(细胞信号)
    [58]F. Dressler, O. B. Akan. Bio-inspired networking:from theory to practice[J]. IEEE Communication Magzine,2010,48(11):176-183.
    [59]F. Dressler, I. Dietrich, R. German, B. Kruger. A rule-based system for programming self-organized sensor and actor networks[J]. Computer Networks, 2009,53(10):1737-1750.
    [60]C. Charalambous, S.-G. Cui. A biologically inspired networking model for wireless sensor networks[J]. IEEE Network,2010,24(3):6-13.
    [61]R. V. Kulkarni, G. K. Venayagamoorthy. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes[J]. IEEE Transactions on Systems, Man and Cybernetics-Part C:Applications and Reviews,2010, 40(6):663-675.
    [62]M. F. de Castro, L. B. Ribeiro, C. H. S. Oliveira. An autonomic bio-inspired algorithm for wireless sensor network self-organization and efficient routing[J]. Journal of Network and Computer Applications,2012,35(6):2003-2015.
    [63]A. Mutazono, M. Sugano, M. Murata. Energy efficient self-organizing control for wireless sensor networks inspired by calling behavior of frogs[J]. Computer Communications,2012,35(6):661-669.
    [64]C. Han, J. M. Jornet, E. Fadel, I. F. Akyildiz. A cross-layer communication module for the Internet of Things[J]. Communication Networks,2013,57(3): 622-633.
    [65]M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco, G. Boggia, M. Dohler. Standardized protocol stack for the Internet of (important) Things[J]. IEEE Communications Surveys & Tutorials,2012,6(3):101-118.
    [66]G. Kortuem, F. Kawsar, D. Fitton, V. Sundramoorthy. Smart objects as building blocks for the Internet of Things[J]. IEEE Internet Computing,2010,14(1): 44-51.
    [67]S. Hodges, S. Taylor, N. Villar, J. Scott, D. Bial, P. T. Fischer. Prototyping connected devices for the Internet of Things[J]. Computer,2013,46(2):26-34.
    [68]H.-S. Ning, Z.-O. Wang. Future internet of things architecture:like mankind neural system or social organization framework?[J]. IEEE Communications Letters,2011,15(4):461-463.
    [69]C. Alvarez, I. Chatzigiannakis, A. Duch, J. Gabarro, O. Michail, M. Serna, P. G. Spirakis. Computational models for networks of tiny artifacts:a survey[J]. Computer Science Review,2011,5(1):7-25.
    [70]R. Bush, D. Meyer. Some Internet architectural guidelines and philosophy. RFC 3429, Dec.2002, http://www.faqs.org/rfcs/rfcs3429.html.
    [71]K. Fall. A message-switched architecture for challenged Internets. Intel Research at Berkeley, Jul.2002.
    [72]K. Fall. A delay-tolerant network architecture for challenged Internets[C]. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM'03), Aug.25-29,2003, New York, USA,27-34.
    [73]D. Lcia, F. Ferrucci, G.Tortora, M. Tucci. Emerging methods, technologies, and process management in software engineering[M]. J. Wiley and Sons, New York, 2008.
    [74]K. Gama, L. Touseau, D. Donses. Combining heterogeneous service technologies for building an internet of things middleware[J]. Computer Communications,2012,35(4):405-417.
    [75]J. P. Espada, O. S. Martinez, J. M. C. Lovelle, B. C. P. G-Bustelo, M. A. Alvarez, A. G. Garcia. Modeling architecture for collaborative virtual objects based on services[J]. Journal of Network and Computer Applications,2011,34(5): 1634-1647.
    [76]M. Viroli, F. Zambonelli. A biochemical approach to adaptive service ecosystems[J]. Information Sciences,2010,180(10):1876-1892.
    [77]Q. Duan, Y.-H. Yan, A. V. Vasilakos. A survey on service-oriented network virtualization toward convergence of networking and cloud computing[J]. IEEE Transactions on Network and Service Management,2012,9(4):373-392.
    [78]G. Broll, E. Rukzio, M. Paolucci, M. Wagner, A. Schmidt. Perci:Pervasive service interaction with the internet of things[J]. IEEE Internet Computing,2009, 13(6):74-81.
    [79]S. Haykin. Cognitive radio:brain-empowered wireless communi cations [J]. IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
    [80]S. Dobson, S. Denazis, A. Fenandez, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt, F. Zambonelli. A survey of autonomic communications [J]. ACM Transactions on Autonomous and Adaptive Systems,2006,1(2):223-259.
    [81]I. Chlamtac, M. Conti, J.J.-N Liu. Mobile ad hoc networking:imperatives and challenges[J]. Ad Hoc Networks,2003,1(1):13-64.
    [82]W. Elmenreich, R. Souza, C. Bestetter, J. de Meer. A survey of models and design methods for self-organizing networked systems[J]. LNCS,2009,5918: 37-49.
    [83]L. Xiang, L. Feng, L.-Z. Zhou, Y.-C, Shi. Learning in an ambient intelligent world:enabling technologies and practices[J]. IEEE Transactions on Knowledge and Data Engineering,2009,21(6):910-924.
    [84]W. Elmenreich, R. Souza, C. Bestetter, J. de Meer. Interacting with the SOA-based internet of things:discovery, query, selection, and on-demand provisioning of Web services[J]. IEEE Transactions on Services Computing, 2010,3(1):223-235.
    [85]E. Welbourne, L. Battle, G Cole, K. Gould. Building the internet of things using RFID[J]. IEEE Internet Computing,2009,13(3):48-55.
    [86]P. Kassal, I. M. Steinberg, M. D. Stenberg. Wireless smart tag with potentiometric input for ultra low-power chemical sensing[J]. Sensors and Actuators,2013,184(4):254-259.
    [87]T. Nam, K. Yeom. Business-aware framework for supporting RFID-enabled applications in EPC network[J]. Journal of Network and Computer Applications, 2011,34(3):958-971.
    [88]H.-J. Yang, L.-L. Yang, S.-H. Yang. Hybrid Zigbee RFID sensor network for humanitarian logistics centre management J]. Journal of Network and Computer Applications,2011,34(3):938-948.
    [89]W. Jakkhupan, S. Archint, Y.-F. Li. Business process analysis and simulation for the RFID and EPCglobal network enabled supply chain:a proof-of-concept approach[J]. Journal of Network and Computer Applications,2011,34(3): 949-957.
    [90]G Kortuem, F. Kawsar, D. Fitton, V. Sundramoorthy. Smart objects as building blocks for the internet of things[J]. IEEE Internet Computing,2010,14(1): 44-51.
    [91]Y. Kawamoto, H. Nishiyama, Z. Fadlullah, N. Kato. Effective data collection via Satellite Routed Sensor System (SRSS) to realize global-scaled Internet of Things[J]. IEEE Sensors Journal,2013,5(3):23-32.
    [92]T. Banerjee, B. Xie, D. P. Agrawal. Fault tolerant multiple event detection in a wireless sensor network[J]. Journal of Parallel and Distributed Computing,2008, 68(9):89-97.
    [93]S. Ferrari, G.-X. Zhang, T. A. Wettergren. Probabilistic track coverage in cooperative sensor networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2010,40(6):1492-1504.
    [94]Y. Cao, Z.-L Sun. Routing in delay/disruption tolerant networks:a taxonomy, survey and challenges[J]. IEEE Communications Surveys & Tutorials,2013, 15(2):651-677.
    [95]L. Chen, M. Tseng, X. Lian. Development of foundation models for internet of things[J]. Front. Comput. Sci. China,2010,4(3):376-385.
    [96]D. Guinard, V. Trifa, S. Karnouskos, P. Apiess, D. Savio. Interactiong with SOA-based the internet of things:discovery, query, selection, and on-demand provisioning of web wervices[J], IEEE Transactions on Services Computing, 2010,3(3):223-235.
    [97]F. Michahelles, F. Thiesse, A. Schmidt, J.R. Williams. Pervasive RFID and near field communication technology[J]. IEEE Pervasive Computing,2007,6(3): 94-96.
    [98]D. Smith, S. Singh. Approaches to multisensory data fusion in target tracking:a survey[J]. IEEE Transactions on Knowledge and Data Engineering,2006, 18(12):1696-1710.
    [99]S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung, J.-E. Kim. SNAIL:an IP-based wireless sensor network approach to the internet of things[J]. IEEE Wireless Communications,2010,17(6):34-42.
    [100]N. Koshizuka, K. Sakamura. Ubiquitous ID:standards for ubiquitous computing and the internet of things[J]. IEEE Pervasive Computing,2010,9(4):98-101.
    [101]M. Charalambides, G. Pavlou, P. Flegkas, N. Wang, D. Tuncer. Managing the future Internet through intelligent in-network substrates[J]. IEEE Network,2011, 25(6):34-40.
    [102]C.-H. Liu, B. Yang, T.-C Liu. Efficient naming, addressing and profile services in Internet-of-Things sensory environments[J]. Ad Hoc Networks,2013, http://dx.doi.org/10.1016/j.adhoc.2013.02.008.
    [103]M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein. Energy harvesting active networked tags (EnHANs) for ubiquitous object networking[J]. IEEE Wireless Communications,2010,17(6):18-25.
    [104]J.-M. Liang, J.-J. Chen, H.-H. Cheng, Y.-C. Tseng. An energy-efficient sleep scheduling with QoS consideration in 3GPP LTE-advanced for internet of things[J]. IEEE Emerging and Selected Topics in Circuit and Systems,2013, 3(1):13-22.
    [105]C. Peoples, G Parr, S. M. Clean, B. Scotney. Performance evaluation of green data centre management supporting sustainable growth of the internet of things[J]. Simulation Modelling Practice and Theory,2013,34:221-242.
    [106]D.-B. Zhao, Y.-J. Dai, Z. Zhang. Computational intelligence in urban traffic signal control:a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2012,42(4):485-494.
    [107]D. J. Cook, S. K. Das. Pervasive computing at scale:transforming the state of the art[J]. Pervasive and Mobile Computing,2012,8(1):22-35.
    [108]M. Sitti, A. Menciassi, A. J. Ijspeert, K. H. Low, S. Kim. Survey and introduction to the focused section on bio-inspired mechatronics[J]. IEEE Transactions on Mechatronics,2013,18(2):409-418.
    [109]W.-T. Sung, M.-H. T. Data fusion of multi-sensor for IOT precise measurement based on improved PSO algorithms[J]. Computers & Mathematics with Applications,2012,64(5):1450-1461.
    [110]娄晓俊,鲍必赛,刘海涛.分布式信息融合的物联网事件检测方法[J].南京邮电大学学报(自然科学版),2012,32(1):12-16.
    [111]J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Tings (IoT):a vision, architectural elements, and future directions[J]. Future Generation Computer Systems,2013,29(7):1645-1660.
    [112]A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafindralambo. A survey on facilities for experimental Internet of Things research[J]. IEEE Communications Magazine,2011,49(11):58-67.
    [113]X.-Y. Chen, Z.-G Jin. Research on key technology and applications for Internet of Things[J]. Physics Procedia,2012,33(4):561-556.
    [114]H. Hu, D. Yang, L. Fu, H. Xiang. Semantic Web-based policy interaction detection method with rules in smart home for detecting interactions among user policies[J]. IEEE Transactions on Communications,2011,5(17):2451-2460.
    [115]S. Tozlu, M. Senel, M. Wei, A. Keshavarzian. Wi-Fi enabled sensors for internet of things:a practical approach[J]. IEEE Communication Magzine,2012,50(6): 134-143.
    [116]C. W. Mundt, K. N. Montgomery, U. E. Udoh, V. N. Barker. A multiparameter wearable physiologic monitoring system for space and terrestrial applications [J]. IEEE Transactions on Information Technology in Biomedicine,2005,9(3): 382-391.
    [117]H. Cao, V. C. M. Leung, C. Chow, H. Chan. Enabling technologies for wireless body area networks:a survey and outlook[J]. IEEE Communications Magazine, 2009,47(12):84-93.
    [118]X. Li, R. Lu, X. Liang, X. Shen, J. Chen, X. Lin. Smart community:an Internet of Things application[J]. IEEE Communications Magazine,2011,49(11):68-75.
    [119]M. C. Domingo. An overview of the Internet of things for people with disabilities[J]. Journal of Network and Computer Applications,2012,35(2): 584-596.
    [120]A. Oztekin, F. M. Pjouh, D. Delen, L. K. Swim. An RFID network design methodology for asset tracking in healthcare[J]. Decision Support Systems, 2010,49(1):100-109.
    [121]G. Nussbaum. People with disabilities:assistive homes and environments[J]. LNCS,2006,4061:157-460.
    [122]H.-Y Luo, S. Ci, D.-L Wu, N. Stergiou, K.-C. Siu. A remote markerless human gait tracking for e-healthcare based on content-aware wireless multimedia communications[J]. IEEE Wireless Communications,2010,17(1):44-50.
    [123]P. Vlacheas, R. Giaffreda, V. Stavroulaki, D. Kelaidonis. Enabling smart cities through a cognitive management framework for the internet of things[J]. IEEE Communication Magzine,2013,51(6):102-111.
    [124]X. Li, R.-X. Lu, X.-H. Liang, X.-M. Shen. Smart community:an Internet of Things application[J]. IEEE Communications Magazine,2011,49(11):68-75.
    [125]Y. Ye, Y. Qian, H. Sharif, D. Tipper. A survey on smart grid communication infrastructures:motivations, requirements and challenges[J]. IEEE Communication Surveys & Tutorials,2013,15(1):5-20.
    [126]V. C. Gungor, D. Sahin, T. Kocak, S. Ergut. Smart grid technologies: communication technologies and standards[J]. IEEE Transactions on Industrial Informatics,2011,7(4):529-539.
    [127]M. Eorl-Kantarci, H. T. Mouftah. Smart grid forensic science:applications, challenges, and open issues[J]. IEEE Communications Magzine,2013,51(1): 68-74.
    [128]N. Bui, A. P. Castellani, P. Casari, M. Zorzi. The internet of energy:a web-enabled smart grid system[J]. IEEE Network,2012,26(4):39-45.
    [129]W.-C. Su, H. Eichi, W.-T. Zeng, M.-Y. Chow. A survey on the electrification of transportation in a smart grid environment[J]. IEEE Transactions on Industrial Informatics,2012,8(1):1-10.
    [130]F. Akyildiz, T. Melodia, K. R. Chowdhury. A survey on wireless multimedia sensor networks[J]. Communications Networks,2007,51(4):921-960.
    [131]L. Ren, F. Tian, X. Zhang, L. Zhang. DaisyViz:a model-based user interface toolkit for interactive information visualization systems[J]. Journal of Visual Languages and Computing,2010,21(4):209-229.
    [132]M. C. Domingo. An overview of the internet of underwater things[J]. Journal of Network and Computer Applications,2012,35(6):1879-1890.
    [133]S. Kabaday, C. Julien. Participatory sensing:application and architecture[J]. IEEE Internet Computing,2010,14(1):12-42.
    [134]R. J. Lehmann, R. Reiche, G. Schiefer. Future internet and the agri-food sector: state-of-the-art in literature and research[J]. Computers and Electronics in Agriculture,2012,89(4):158-174.
    [135]A. Kaloxylos, R. Eigenmann, F. Teye, Z. Politopouliu, S. Wolfert, C. Shrank. Farm management systems and the future internet era[J]. Computers and Electronics in Agriculture,2012,89:130-144.
    [136]P. Kumar, S. Ranganath, W.-M Huang, K. Sengupta. Framework for real-time behavior interpretation from traffic video [J], IEEE Transactions on Intelligent Transportation Systems,2005,6(1):43-53.
    [137]L. Zhou, H.-C. Chao. Multimedia traffic security architecture for the internet of things[J]. IEEE Network,2011,25(3):35-40.
    [138]L. D. Baskar, B. D. Schutter, J. Hellendoorn, Z. Papp. Traffic control and intelligent vehicle highway systems:a survey[J]. IEEE Intelligent Transport Systems,2011,5(1):38-52.
    [139]Mogelmose, M. M. Trivedi, T. B. Moeslund. Vision-based traffic sign detection and analysis for intelligent driver assistance systems:perspectives and survey[J]. IEEE Transactions on Intelligent Transportation Systems,2012,13(4): 1484-1497.
    [140]W. Thompson, F. Hagstrom. Modeling healthcare logistics in a virtual world[J]. IEEE Internet Computing,2008,12(5):100-104.
    [141]P. Giner, C. Cetina, J. Fons, V. Pelechano. Developing mobile business processes for the internet of things[J]. IEEE Pervasive Computing,2010,9(2): 18-26.
    [142]C. K. M. Lee, W. Ho, G. T. S. Ho, H. C. W. Lau. Design and development of logistics workflow systems for demand management with RFID[J]. Expert Systems with Applications,2011,38(5):5428-5437.
    [143]Z.-D Guo, Z.-R. Zhang, W.-D. Li. Establishment of intelligent identification management platform in railway logistics system by means of the internet of things[J]. Procedia Engineering,2012,29:726-730.
    [144]S. Piramuthu, P. Farahani, M. Grunow. RFID-generated traceability for contaiminated product recall in perishable food networks[J]. European Journal of Operational Research,2013,225(2):253-262.
    [145]L. Filipe, M. Vieira, U. Lee, M. Gerla. Phero-trail:a bio-inspired location service for mobile underwater sensor networks[J]. IEEE Journal on Selected Areas in Communications,2010,28(4):553-563.
    [146]A. Bahga, V. K. Madisetti. Analyzing massive machine maintenance data in a computing cloud[J]. IEEE Transactions on Parallel and Distributed Systems, 2012,23(10):1831-1843.
    [147]D. Kiritsis. Closed-loop PLM for intelligent products in the era of the Internet of Things[J]. Computer-Aided Design,2011,43(5):479-501.
    [148]丁永生.自然计算与网络智能[M].上海:上海交通大学出版社,2008.
    [149]B. Atakan, O. B. Akan. Distributed audio sensing with homeostasis-inspired autonomous communication[J]. Ad Hoc Networks,2011,9(4):552-564.
    [150]姚泰.生理学[M].北京:人民卫生出版社,2005.
    [151]B. Mravec, Y. Gidron, B. Kukanova, J. Bizik, A. Kiss, I. Hulin. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses[J]. Journal of Neuroimmunology,2006, 180(1-2):104-116.
    [152]S. Marinai, M. Gori, G. Soda. Artificial neural network for document analysis and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):23-35.
    [153]S. Ferrari, R. F. Stegel. Smooth function approximation using neural networks[J]. IEEE Transactions on Neural Networks,2005,16(1):24-38.
    [154]M. Bkassiny, Y. Li, S. K. Jayaweera. A survey on machine-learning techniques in cognitive radios[J]. IEEE Communications Surveys & Tutorials,2013, 15(3):1136-1159.
    [155]J. Misra, I. Saha. Artificial neural network in hardware:a survey of two decades of progress[J]. Neurocomputing,2010,74(1-3):239-255.
    [156]H. Y. K. Lau, V. W. K. Wong. An immunity-based distributed multiagent-control framework[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and humans,2006,36(1):91-108.
    [157]J. Timmis, A. Hone, T. Stibor, E. Clark. Theoretical advances in artificial immune systems[J]. Theoretical Computer Science,2008,403(1):11-32.
    [158]刘星宝.人工免疫系统的若干关键问题研究[D].中南大学博士论文,中国:长沙,2010,6.
    [159]D. Dasgupta. Advances in artificial immune systems[J]. IEEE Computational Intelligence Magazine,2006,1(4):40-49.
    [160]L. N. de Castro, F. J. Von Zuben. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation,2002, 6(3):239-251.
    [161]J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G Tedesco, J. Twycross. Immune system approaches to intrusion detection-a review[J]. Natural Computing,2007,6(4):413-466.
    [162]V. Cutello, G. Narzisi, G. Nicosia. A multi-objective evolutionary approach to the protein structure prediction problem[J]. Journal of the Rayal Society Interface,2006,3(6):139-151.
    [163]K. M. Woldemariam, G. G. Yen. Vaccine-enhanced artificial immune system for multimodal function optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2010,40(1):218-228.
    [164]J. Timmis, M. Neal. A resource limited artificial immune system for data analysis[J]. Knowledge Based Systems,2001,14(3-4):121-130.
    [165]L. N. de Castro, F. J. Von Zuben. Immune and neural network models: theoretical and empirical comparisons[J]. International Journal of Computational Intelligence and Applications,2001,1(3):239-257.
    [166]E. A. Kravitz. Hormonal control of behavior:amines and the biasing of behavioral output in lobsters[J]. Science,1988,241(4874):1775-1781.
    [167]M. Neal, J. Timmis. Timidity:a useful emotional mechanism for robot control?[J]. Informatica,2003,4(27):197-204.
    [168]R. A. Brooks. Integrated systems based on behaviors[J]. ACM SIGART Bulletin, 1991,2(4):45-50.
    [169]R. C. Arkin. Homeostatic control for a mobile robot:dynamic replanning in hazardous environments[J]. Journal of Robotic Systems,1992,9(2):197-214.
    [170]D. Canamero. Modeling motivations and emotions as a basis for intelligent behavior[C]. In:Proceedings of the 1th International Conference on Autonomous Agents (AGENTS'97),1997, New York, USA,148-155.
    [171]W.-M. Shen, B. Salemi, P. Will. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots[J]. IEEE Transactions on Robotics and Automation,2002,18(5):700-712.
    [172JW.-M. Shen, P. Will, A. Galstyan, C.-M. Chuong. A hormone-inspired self-organization and distributed control of robotic swarms[J]. Autonomous Robots,2004,17(1):93-105.
    [173]W. Trumler, T. Thiemann, T. Ungerer. An artificial hormone system for self-organization of networked nodes[J], IFIP International Federation for Information Processing,2006,216P:85-94.
    [174]Y.-S. Ding, X. Liang, K.-R. Hao, H.-P. Wang. An intelligent cooperative decoupling controller for coagulation bath in poluacrylonitrile carbon fiber[J]. IEEE Transactions on Control Systems Technology,2013,21(2):467-479.
    [175]黄国锐,曹先彬,徐敏,王煦法.基于内分泌调节机制的行为自组织算法[J].自动化学报,2004,30(3):460-465.
    [176]黄国锐.人工内分泌模型及其应用研究[D].中国科学技术大学博士论文,中国:合肥,2003,6.
    [177]D.-B. Chen, F. Zou, J.-T. Wang. A multi-objective endocrine PSO algorithm and application[J]. Applied Soft Computing,2011,11(8):4508-4520.
    [178]董大源,李霞,王煦法.基于激素调节的传感器覆盖算法[J].计算机应用研究,2011,28(2):517-520.
    [179]F. Dressler. A study of self-organization mechanisms in ad hoc and sensor networks[J]. Computer Communications,2008,31(13):3018-3029.
    [180]X. Wang, J.-J. Ma, S. Wang, D.-W. Bi. Distributed energy optimization for target tracking in wireless sensor networks[J]. IEEE Transactions on Mobile Computing,2009,9(1):73-86.
    [181]O. Demigha, W.-K. Hidouci, T. Ahmed. On energy efficiency in collaborative target tracking in wireless sensor network:a review[J]. IEEE Communications Surveys & Tutorials,2012,5(1):11-23.
    [182]S. Pattem, S. Poduri, B. Krishnamachari. Energy-quality tradeoffs for target tracking in wireless sensor networks[J]. LNCS,2003,2634:32-46.
    [183]Oscar Garcia, Alejandro Quintero, Samuel Pierre. A global profile-based algorithm for energy minimization in object tracking sensor networks[J]. Computers Communications,2010,33(6):736-744.
    [184]S. Samarah, M. Al-Hajri, A. Boukerche. A predictive energy-efficient technique to support object-tracking sensor networks[J]. IEEE Transactions on Vehicular Technology,2011,60(2):656-663.
    [185]S. Samarah, M. Al-Hajri, A. Boukerche. A predictive energy-efficient technique to support object-tracking sensor networks[J]. IEEE Transactions on Vehicular Technology,2011,60(2):656-663.
    [186]N. Hubbell, Q. Han. DRGON:detection and tracking of dynamic amorphous events in wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems,2012,24(7):1193-1204.
    [187]X. Wang, M.-X. Xu, Y. Wu, H.-Y. Shi. Combination of interactiong multiple models with the particle filter for three-dimensional target tracking in underwater wireless sensor networks[J]. Mathematical Problems in Engineering, 2012,829451:1-16.
    [188]R. Tharmarasa, T. Kirubarajan, A. Sinha, T. Lang. Decentralized sensor selection for large-scale multisensor-multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):1307-1324.
    [189]J,-W. Lee, B.-S. Choi, J.-J. Lee. Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones[J]. IEEE Transactions on Industrial Informatics,2011,7(3):419-427.
    [190]A. Aziz, Y. A. Sekercioglu, P. Fitzpatrick, M. Ivanovich. A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks[J]. IEEE Communications Surveys & Tutorials,2013, 15(1):121-144.
    [191]J.-J Niu, Z.-D. Deng. Distributed self-learning scheduling approach for wireless sensor network[J]. Ad Hoc Network,2013,11(4):1276-1286.
    [192]O. Paunovsks, G. Eleftherakis, K. Dimopoulos, T. Cowling. Evaluation of a selective distributed discovery strategy in a fully decentralized biologically inspired environment[J]. Information Sciences,2010,180(10):1865-1875.
    [193]Y. He, M. Li. COSE:a query-centric framework of collaborative heterogeneous sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2012,23(9):1-13.
    [194]J.-H. Li, Q.-S. Jia, X.-H. Guan, X. Chen. Tracking a moving object via a sensor network with a partial information broadcasting scheme[J]. Information Sciences,2011,181(20):4733-4753.
    [195]A. Sehgal, V. Perelman, S. Kuryla, J. Schonwalder. Management of resource constrained devices in the internet of things[J]. IEEE Communication Magazine, 2012,50(12):144-149.
    [196]X. Wang, S. Wang. Collaborative signal processing for target tracking in distributed wireless sensor network[J]. Journal of Paralled and Distributed Computing,2007,67(5):501-515.
    [197]J. A. Fuemmeler, V. V.Veeravalli. Smart sleeping policies for energy efficient tracking in sensor networks[J]. IEEE Transactions on Signal Processing,2008, 56(5):2091-2101.
    [198]X. Wang, J.-J Ma, S. Wang, D.-W. Bi. Distributed energy optimization for target tracking in wireless sensor networks[J]. IEEE Transactions on Mobile Computing,2009,9(1):73-86.
    [199]H.-Y Shi, W.-L Wang, N. Kwok. Energy dependent divisible load theory for wireless sensor network workload allocation[J]. Mathematical Problems in Engineering,2012,235289:1-16.
    [200]J. A. Fuemmeler, G K. Atia, Venugopla V. Veeravalli. Sleep control for tracking in sensor networks[J]. IEEE Transactions on Signal Processing,2011,59(9): 4354-4366.
    [201]J.-M. Chen, K.-J. Cao, K.-Y. Li, Y.-S. Sum. Distributed sensor activation algorithm for target tracking with binary sensor networks[J]. Cluster Computing, 2011,14(1):55-64.
    [202]Y. Busnel, L. Querzoni, M. Bertier, A. Kermarrec. Analysis of deterministic tracking of multiple objects using a binary sensor networkfJ]. ACM Transactions on Sensor Networks,2011,8(1):Article 8.
    [203]D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, D. Savio. Interacting with the SOA-Based internet of things:discovery, query, selection, and on-demand provisioning of web services[J]. IEEE Transactions on Services Computing, 2010,3(3):223-235.
    [204]S. Chaisiri, B.-S. Lee, D. Niyato. Optimization of resource provisioning cost in cloud computing[J]. IEEE Transactions on Service Computing,2012,5(2): 164-177.
    [205]R. V. Kulkarni, G K. Venayagamoorthy. Particle swarm optimization in wireless-sensor networks:a brief survey [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews,2011,41(2):262-267.
    [206]N. Heo, P. K. Vashney. Energy-efficient deployment of intelligent mobile sensor networks[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2005,35(1):78-92.
    [207]H. H. K. Lau, V. W. K. Wong. An immunity-based distributed multiagent-control frameworkfJ]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2006,36(1):91-108.
    [208]N. Bui, A. P. Castellani, P. Casari, M. Zorzi. The internet of energy:a web-enabled smart grid system[J]. IEEE Network,2012,26(4):39-45.
    [209]V. Kyrylov, L. A. Severyanova, A. Vieira. Modeling robust oscillatory behavior of the hypothalamic-pituitary-adrenal axis[J]. IEEE Transactions on Biomedical Engineering,2005,52(12):1977-1983.
    [210]W. K. Waldhausl, P. Bratusch-Marrain, M. Komjati, F. Breitenecker, I. Troch. Blood glucose response to stress hormone exposure in healthy man and insulin dependent diabetic patients:prediction by computer modeling[J]. IEEE Transactions on Biomedical Engineering,1992,39(8):779-790.
    [211]M. Shichiri, H. Kishikawa, M. Sakakida, K. Kjiware, Y. Hashiguchi, K. Nishida, T. Uemura, Y. Konno, K. Ichinose. Artificial endocrine pancreas and optimal blood glucose regulation in diabetic patients-from bedside-type[J], Diabetes Research and Clinical Practice,1994,24:S251-S259.
    [212]L. Atzori, A. Iera, G. Morabito, M. Nitti. The social internet of things (SIoT)-When social network meet the Internet of Things:concept, architecture and network chatacterization[J]. Computer Networks,2012,56(16):3594-3608.
    [213]S. Tozlu, M. Senel, W. Mao, A. Keshavarzian. Wi-Fi enabled sensors for the Internet of Things:a practical approach[J]. IEEE Communications Magazine, 2012,50(6):134-143.
    [214]M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis. Cloud computing:distributed internet computing for IT and scientific research[J]. IEEE Internet Computing, 2009,13(5):10-13.
    [215]N. Fernando, S. W. Loke, W. Rahayu. Mobile cloud computing:a survey[J]. Future Generation Computer Systems,2013,29(1):84-106.
    [216]Y.-S. Ding, H.-B. Sun, K.-R. Hao. A bio-inspired emergent system for intelligent Web service composition and management[J]. Knowledge-Based Systems,2007, 20(5):457-465.
    [217]A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, D. H. J. Epema. Performance analysis of cloud computing services for many-tasks scientific computing[J]. IEEE Transactions on Service Computing,2012,5(2): 164-177.
    [218]I. Corredor, J. F. Martinez, M. S. Familiar, L. Lopez. Knowledge-aware and service-oriented middleware for deploying pervasive services[J]. Journal of Network and Computer Applications,35(2):562-576.
    [219]G Branca, L. Atzori. A survey of SOA technologies in NGN network architectures[J]. IEEE Communications Surveys & Tutorials,2012,14(3): 644-661.
    [220]I. Corredor, J. F. Martinez, M. S. Familiar. Bring pervasive embedded networks to the service cloud:a lightweight middleware approach[J]. Journal of Systems Architecture,2011,57(10):916-933.
    [221]M. P. Papazoglou, W.-J. van den Heuvel. Service oriented architectures:a approaches, technologies and research issues[J], The VLDB Journal,2007, 16(3):389-415.
    [222]M. Chaudhry, A. H. Akbar, Q. Ahmad, I. Sarwar. SOARware:treading through the crossroads of RFID middleware and SOA paradigm[J]. Journal of Network and Computer Applications,2011,34(3):998-1014.
    [223]J. Jahnert, P. Mancic, A. Cuevas, S. Wesner, J. I. Moreno, V. Villagra, V. Olmedo, V. Stiller. A prototype and demonstrator of Akogrimo architecture:an approach of merging grids, SOA, and the mobile Internet[J]. Computer Communications, 2010,33(1):1304-1317.
    [224]M. G Pedersen, C. D. Man, C. Cobelli. Multiscale modeling of insulin secretion[J]. IEEE Transactions on Biomedical Engineering,2011,58(10): 3020-3023.
    [225]K. M. Heppner, K. M. Habegger, J. Day, P. T. Pfluger, D. Perez-Tilve, B. Ward, V. Gelfanov, S. C. Woods, R. DiMarchi, M. Tschop. Glucagon regulation of energy metabolism[J]. Physiology & Behavior,2010,100(5):545-548.