α-硫辛酸对糖尿病小鼠骨骼肌谷氨酰胺:6-磷酸果糖转酰胺酶基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:了解抗氧化剂α-硫辛酸对己糖胺通路的限速酶谷氨酰胺:6-磷酸果糖转酰胺酶(glutamine: fructose-6-phosphate amidotransferase, GAFT)基因表达的影响,为进一步研究抗氧化剂对糖尿病的治疗提供理论依据和实验基础。
     方法:1.应用四氧嘧啶制备糖尿病小鼠模型。
     2.将糖尿病小鼠分层随机分成四组,分别腹腔注射安慰剂或不同剂量(15、30、60mg/kg体重)α-硫辛酸14天。
     3.使用TBA法检测小鼠血清和后肢骨骼肌中丙二醛(malondialdehyde, MDA)含量。
     4.提取小鼠后肢骨骼肌中的总RNA,采用半定量RT-PCR的方法测定GFAT1mRNA的辉度。
     结果:1.四氧嘧啶制备糖尿病小鼠模型成功率69.2%。
     2.安慰剂组血清、骨骼肌组织中MDA含量最高(P<0.05):正常对照组与高剂量组、中剂量组血清MDA含量未见差异(P>0.05),低剂量组高于正常对照组(P<0.05):低、中、高剂量三组小鼠骨骼肌组织中MDA含量随α-硫辛酸用量的增加而减少(P<0.05),高剂量组与正常对照组未见差异(P>0.05)。
     3.安慰剂组骨骼肌GFAT1mRNA的辉度高于正常对照组、中、高剂量组(P<0.05),与低剂量组间未见差异(P>0.05),但数值高于低剂量组;中、高剂量组间未见差异(P>0.05),但高于正常对照组(P<0.05)。
     4.骨骼肌组织中MDA含量与GFAT1mRNA的辉度成正相关(P<0.05)。
     5.高、中、低剂量组小鼠给药前后体重均未见差异(P>0.05),血糖较给药前下降(P<0.05);正常对照组体重增加(P<0.05)。
     结论:糖尿病动物体内MDA含量和GFAT1mRNA表达增加,给予抗氧化
Objective:To learn the effect of alpha-lipoic acid on the expression of glutamine: fructose-6-phosphate amidotransferase 1, which is the rate-limiting enzyme of hexosamine biosynthesis pathway, in the diabetic mouse hind-limb skeletal muscle, and provide the theory basis for applying the antioxidant alpha-lipoic acid in preventing and treating diabetes. Methods:1. Diabetes was induced with a single intravenous injection of alloxan into KM mice.2. Diabetic mice were divided into four groups at random. The placebo (30mg/kg ip) or different doses alpha-lipoic acid (15,30,60mg/kg ip) was administered daily to these mice for fourteen days.3. Malondialdenhyde levels serve as a marker for lipid peroxidation. These were measured using thiobarbituric acid in the serum and the skeletal muscle among normal and diabetic mice.4. The expression of glutamine: fructose-6-phosphate amidotransfer -ase 1 gene was analyzed by semi-quantitative reverse transcrip -tion polymerase chain reaction.Result:1. The incidence of diabetes induced by alloxan was 69.2%.2. The placebo group's MDA content in the serum and the skeletal muscle was the highest among groups (P<0.05). In the serum, the second was the low dosage group (P<0.05), and there was no significantly different among normal, medium dosage, and high dosage (P>0.05). The skeletal muscle's MDA content reduced with the increase of alpha-lipoic acid among diabetic mice (P<0.05), but between high dosage group and normal group there was no obviously different (P>0.05).3. In the skeletal, the placebo group's glutamine: fructose-6 -phosphate amidotransferase 1 mRNA level is as more as the low dosage group's (P>0.05), however, it's mean was higher than the low dosage group's. The two groups were higher than the medium and high dosage groups (P<0.05), and between the later two groups there was no significantly
引文
1. Diabetes control and complications trial research group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in the insulin-dependent diabetes mellitus. N Eng J Med, 1993; 329:977-985.
    2. UKPDS group study. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk or complications in patients with type 2 diabetes (UKPDS33). Lancet, 1998; 352: 837-850.
    3. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13; 414(6865): 813-20.
    4. CerielloA. Oxidative stress and glycemic regulation. Metabolism 2000; 49 (2,Suppl1): 27-29.
    5. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 1999; 48:1-9.
    6. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405-412.
    7. Robinson KA. Sens DA, Buse MG. Preexposure to glucosamine induces insulin resistance of glucose transport and glycogen systhesis in isolated rat skeletal muscles. Diabetes, 1993; 42: 1333-1346.
    8. Crook ED, Zhou J, Daniels M,et al. Regulation of glycogen synthase by glucose, glucosamine, and glutamine:fructose-6-phosphate amidotransferase. Diabetes, 1995; 44(3): 314-20.
    9. Crook ED, McClain DA. Regulation of glycogen synthase and protein phosphatase-1 by hexosamines. Diabetes, 1996;45(3):322-7.
    10. Rosetti, L M, Hawkins W, Chen J, et al. In vivo glucosamine infusion induces insulin resistance in normaoglycemic but not in hyperglycemic conscious rat. J. Clin. Invest, 1995; 96: 132-140.
    11. Baron AD, Zhu J, Weldon H, et al. Glucosamine induces insulin resistance in vivo by affecting GLUT4 translocation in skeletal muscle. J Clin Invest, 1995;96: 2792-2801.
    12. Barzilai N, Hawkins M, Angelox I, et al. Glucosamine-induced inhibition of liver glucokinase impairs the ability of hyperglycemia to suppress endogenous glucose production. Diabetes, 1996; 45: 1329-1335.
    13. Balkan B, Dunning BE. Glucosamine inhibits glucokinase in vitro and produces a glucose-specific impairment of in vivo insulin secretion in rats. Diabetes, 1994; 43:1173-1179.
    14. Wang J, Liu R, Hawkins MA, et al. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature, 1998; 393(6686): 684-8.
    15. Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. J Biol Chem, 1991 Mar 15; 266(8): 4706-12.
    16. Cooksey RC, Hebert LF, Zhu JH, et al. Mechanism of Hexosamine-induced insulin resistance in transgenic mice overexpression glutamine: fructose-6-phosphate amidotransferase decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazonedione. Endocrinology, 1999; 140: 1151.
    17. Tang J, Neidigh JL, Cooksey RC, et al. Transgenic mice with increased hexosamine flux specifically targeted to beta-cells exhibit hyper insulinemia and peripheral insulin resistance. Diabetes, 2000; 49(9): 1492-1499.
    18. Verena KL, Ulrich S, Andreas N, et al. High glucose-induced transforming growth factor beta-1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest, 1998; 101(1): 160-9.
    19. Goldberg HJ, Scholey J, Fantus IG. Glucosamine activates the plasminogen activator inhibitor lgene promoter through Spl DNA binding sites in glomerular mesangial cells. Diabetes, 2000; 49(5): 863-871.
    20.J.萨姆布鲁克等著黄培堂译,《分子克隆》第二版。科学出版社:604-608。
    21. Grankvist K, Marklund S, Taljedal IB. Superoxide dismutase is a prophylactic against alloxan diabetes. Nature, 1981; 294:158-60.
    22. Korshunov S.S, Skulachev V.P, Starkov A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett., 1997; 416:15-18.
    23. Lee Y, Chung S.K, Chung S.S. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc.Natl Acad. Sci. USA, 1995; 92: 2780-2784.
    24. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Mel, 1995; 46:223-234.
    25. Koya D, King G.L. Protein kinase C activation and the development of diabetic complications. Diabetes, 1998;47:859-866.
    26. Giardino I, Edelstein D, Brownlee M. BCL-2 expression or antioxidants prevent hyperglycemina-induced formation of intracellular advanced glycation endproductes in bovine endothelial cells. J. Clin. Invest, 1996; 97:1442-1428.
    27. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000; 404: 787-790.
    28. Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by inceasing Splglycosylation. Proc Natl Acad Sci USA, 2000; 97: 12222-12226.
    29. Zhou J, Neidigh JL, Espinosa R, et al. Human glutamine: fructose-6-phosphate amidotransferase: characterization of mRNA and chromosomal assignment to 2p13. Hum Genet, 1995; 96(1): 99-101.
    30. Oki T, Yamazaki K, Kuromitsu J, et al. cDNA cloning and mapping of a novel subtype of glutamine: fructose-6-phosphate amidotransferase (GFAT2) in human and mouse. Genomics, 1999; 57(2):227-34.
    31. Sayeski PP, Paterson AJ, Kudlow JE. The murine glutamine: fructose-6-phosphate amidotransferase-encoding cDNA sequence. Gene,1994;140: 289-290.
    32. Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. J Biol Chem, 1991; 266:4706-4721.
    33. Marshall S, Bacote V, Traxinger RR. Complete inhibition of glucose-induced desensitization of the glucose transport system by inhibitors of mRNA synthesis. Evidence for rapid turnover of glutamine: fructose-6-phosphate amidotransfer-ase. J Biol Chem, 1991; 266: 10151-61.
    34. Traxinger RR, Marshall S. Coordinated regulation of glutamine: fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem, 1991; 266: 10148-54.
    35. Traxinger RR, Marshall S. Insulin regulation of pyruvate kinase activity in isolated adipocytes. Crucial role of glucose and the hexosamine biosynthesis pathway in the expression of insulin action. J Biol Chem, 1992; 267:9718-9723.
    36. Akinoto Y, Kreppel LK, Hirano H, et al. Localization of the O-linked N-acetylglucosamine transferase in rat pancrease. Diabetes, 1999;48: 2407-2413.
    37. Giaccari A, Morviducci L, Zorretta D, et al. In vivo effects of glucosamine on insulin secretion and insulin sensitivity in the rat: possible relevance to the maladaptive responses to chronic hyperglycaemia. Diabetologia, 1995; 38: 518-524.
    38. Shankar RR, Zhu JS, Baron AD. Glucosamine infusion in rats mimics the β-cell dysfunction of non-insulin-dependent diabetes mellintus. Metabolism, 1998; 47:573-577.
    39. Hebert LF, Daniels MC, Zhou J, et al. Overexpression of glutamine: fructose-6-phosphate amidotransferase in rat-1 fibroblasts. Diabetes, 1993; 42: 1289-96.
    40. Veerababu G, Tang J, Hoffman RT, et al. Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of trans-genic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes, 2000;49:2070-2078.
    41. Yki-Jarvinen H, Daniels MC, Virkamaki A. Increased glutamine: fructose -6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes, 1996; 45(3): 302-7.
    42. The Diabetes Control and Complications Trial Research Group. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. N. Engl. J. Med, 1993; 329:977-986.
    43. Lorenzi M. Glucose toxicity in the vascular complications of diabetes: the cellular perspective. Diabetes Metab Rev. 1992; 8(2): 85-103.
    44. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973 Jun 29; 180(93): 1332-9.
    45. McClain DA, Paterson AJ, Roos MD, et al. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells. Proc Natl. Acad Sci. USA,1992; 89:8150-8154.
    46. Sayeski PP, Kudlow JE. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-β gene transcription. J Biol Chem,1996;271:15237-15243.
    47. Daniels MC, Kansal P, Smith TM, et al. Glucose regulation of transforming growth factor alpha expression is mediated by products of the hexosamine biosynthesis pathway. Mole Endocrinology, 1993; 7: 1041-1048.
    48. Daniels MC, Crook ED. Regulation of TGF-β by the hexosamine biosysthesis pathway in rat proximat tubule cells. J Am Soc Nephrol, 1995; 6:1040.
    49. James LR, Fantus IG, Goldberg H, et al. Overexpression of GFAT activate PAI-1 promoter in mesangial cells. Am J Physiol, 2000; 279: F718-F727.
    50. Hanover JA. Glycan-dependent signaling:O-linked N-acetylglucoseamine. FASBE J, 2001; 15:1865-1876.
    51. Hart GW, Hartwanger RS, Holt GD, et al. Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem, 1989;58:841-874.
    52. Roos MD, Han IO, Kudlow JE. Role of glucosamine synthesis in the stimulation of TGF-alpha gene transcription by glucose and EGF. Am J Physiol, 1996; 270: C803-11.
    53. Yki-Jarvinen H, Virkamaki A, Daniels MC, et al. Insulin and glucosamine infusions increase O-linked N-acetyl-glucosamine in skeletal muscle proteins in vivo. Metabolism, 1998; 47(4):449-455.
    54. Han I, Kudlow JE. Reduced O glycosylation of Spl is associated with increased proteasome susceptibility. Mol Cell Biol, 1997; 17: 2550-2558.
    55. Hresko RC, Heimberg H, Chi MMY, et al. Glucosamine-induced insulin resistance in 3T3-Lladipocyte is caused by depletion of intracellular ATP. J Biol Chem, 1998;273:20658-20668.
    56. Zhou J, Huynh QK, Hoffman RT, et al. Regulation of glutamine: fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase. Diabetes, 1998; 47:1836-40.
    57. Filippis A, Clark S, Proietto J. Increased flux through the hexosamine biosynthesis pathway inhibits glucose transport acutely by activation of protein kinase C. Biochem J, 1997;324:981-985.
    58. Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest, 2003; 112: 1049-1057.
    59. Szkudelski T. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res, 2001;50:536-546.
    60.徐叔云主编。《药理实验方法学》第二版,人民卫生出版社,2002:1519。
    61. Trujillo M, Radi R.Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Arch Biochem Biophys, 2002; 397(1): 91-8.
    62. Ou P, Tritschler HJ, Wolff SP.Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem Pharmacol, 1995; 50(1): 123-6.
    63. Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med, 1995; 19:227-250.