胶质瘤诱导神经干细胞迁移和向神经元分化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:胶质瘤细胞与神经干细胞之间可能存在某种内在联系。目前研究表明,胶质瘤细胞可分泌多种细胞因子,可促进NSCs的增殖和迁移。然而胶质瘤细胞是否能维持神经干细胞正常分化还不清楚。本课题组通过体内的实验研究分析神经干细胞在肿瘤细胞的诱导下的迁移现象和分化现象。
     体内研究:采用GFP(绿色荧光蛋白)转基因小鼠的神经干细胞在体外扩增后移植脑内进行观察,通过追踪标记细胞分裂、分化后产生细胞谱系构图(lineagemapping),以及对同源标记细胞进行神经元、星形细胞及少突胶质细胞所表达的特异性抗原的流式细胞仪检测,来追踪神经干细胞的存活情况及分化潜能。
     实验一GFP转基因鼠NSCs的分离、培养和鉴定
     目的:建立GFP转基因胎鼠NSCS的分离、培养和鉴定的方法,为胶质瘤模型鼠脑内移植NSCs研究准备供体细胞。
     方法:①分离GFP转基因胎鼠的海马组织,用吸吹打机械方法制成单细胞悬液。采用含B27、碱性成纤维细胞生长因子(bFGF)和表皮生长因子(EGF)的无血清培养基培养。②利用Nestin抗体对原代和传代细胞进行特异性鉴定。③用胎牛血清诱导分化后,荧光显微镜下观察分化细胞的形态和GFP表达情况。利用NeuN、GEAp和04抗体分别对分化后的神经元、星形胶质细胞和少枝胶质细胞进行特异性鉴定。
     结果:①从GFP转基因胎鼠海马组织分离的细胞以悬浮方式生长,可形成典型的神经球,能在体外传代培养和连续形成克隆,且原代和传代细胞GFP表达均呈阳性。②免疫细胞化学染色示原代和传代细胞均为Nestin阳性。③血清诱导分化后的细胞可分别表达神经元、星形胶质细胞和少枝胶质细胞特异性抗原NeuN、GEAp和04,且分化后的细胞GFP表达呈阳性。
     结论:从GFP转基因胎鼠海马组织成功分离培养出了NSCS。培养出的细胞Nestin阳性且具有增殖、自我更新能力及向神经元及神经胶质细胞分化的潜力,且均可稳定表达GFP,因此可作为NSCs脑内移植实验研究的供体细胞。
     实验二神经干细胞体内趋化,分化实验
     目的:验证移植GFP转基因神经干细胞在载瘤动物体内的存活能力,向肿瘤组织的趋化能力,并研究神经干细胞在载瘤大鼠移植区域和肿瘤种植区域的相对分布情况,分化情况
     方法:首先建立胶质瘤模型,证明胶质瘤模型建立成功后,移植干细胞14天组,21天组,假手术组在相应时间段处死实验动物,无菌新鲜取材鼠脑,定位肿瘤种植区和神经干细胞移植区,采集标记中心约4*4*4mm3大小的脑组织块,匀浆脑组织,过滤,破膜剂破膜后,等分匀浆,兔抗鼠:nestin抗体(1:1),neun抗体(1:1),标记匀浆细胞,采用阿PE荧光二抗标记(羊抗兔1:1),上流式细胞仪检测对比不同区域内神经干细胞的分化情况。
     结果:通过流式细胞仪采用抗体荧光标记相关抗体观察到移植的GFP转基因小鼠神经干细胞的生存状态,分布情况,分化情况。
     结论:移植的神经干细胞在动物体内具备向胶质瘤细胞的趋化能力,并且增殖;相对于原移植区域,肿瘤周边迁移的神经细胞明显趋向于向神经元分化,但分化为神经元细胞的增值趋势在7-14天逐渐趋缓。
Background
     Glioma cells and neural stem cells may have an intrinsic link between. The present study showed that glioma cells secrete various cytokines, can promote the proliferation and migration of NSCs. However, the mechanism of the differentiation and Migration of neural stem cells Induced by glioma cell is unclear. The subject our group study the phenomena of migration and differentiation of neural stem cells induced by glioma cells inn vivo and In vitro.
     In vivo:producting a model rat with glioma, and transplant the neural stem cells derived from GFP (green fluorescent protein) transgenic mice into the Parahippocampal area of SD rats with glioma, we observe that cell differentiation of the GFP-positive cells into neurons and astrocytes expressed specific antigens by flow cytometry and immunohistochemistry, and track the survival and the differentiation of neural stem cells
     Experiment 1 Isolation,culture and identification of neural stem cells of GFP transgenic mice
     Purposes:
     separation, culture and identification of NSCs of GFP transgenic mice and provide neural stem cells for the transplantation experment of NSCs and the experment in vitro.
     Methods:
     ①isolated GFP transgenic fetal mouse hippocampus, wind and percussion with a mechanical suction into single cell suspension. The method includes the B27, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) in serum-free culture medium.②The Nestin antibody on primary and passaged cells specific identification.③with fetal bovine serum induced differentiation, the differentiated cells were observed under fluorescence microscope morphology and GFP expression. Using NeuN, GEAp and 04 antibody respectively differentiated neurons, astrocytes and glial cells of small sticks of specific identification.
     Results:
     ①from GFP transgenic fetal rat hippocampus cells isolated form of suspended growth, can be formed typical neurospheres, in culture, and continuous subculture in the formation of cloning, and primary and passage cells were positive for GFP expression.②immunocytochemistry showed primary and passaged cells were Nestin positive.③differentiated cells induced by serum can be separately expressed neurons, astrocytes and Oligodendroglioma specific antigen NeuN, GEAp and 04, and the differentiated cells were positive for GFP expression.
     Conclusion: GFP transgenic embryo isolated and cultured rat hippocampus success out NSCS. Nestin-positive cells cultured with proliferation and self-renewal and to the neurons and glial cell differentiation potential, and can be stably expressed GFP, NSCs transplanted into the brain can be used as experimental study of donor cells.
     Experiments two chemotaxis and differentiation experiment of neural stem cells in vivo
     Purposes:validation transplantation GFP transgenic neural stem cells in the parental animals ability to survive, to tumor tissue chemotaxis and to study the neural stem cells contained tumor rats transplanted tumor growing areas of regional and relative distribution of differentiation.
     Methods:First established glioma model, model after successful, stem cell transplantation in 14 days group,21 days group and sham group were killed at the relevant time experimental animals, drawn fresh sterile rat brain tumor growing areas and the positioning of neural stem cell transplantation area, collecting center mark about 4* 4* 4mm3 size of brain tissue, brain tissue homogenate, filtration, breaking Remover rupture of membranes, the attainment homogenate, rabbit anti-mouse nestin antibody (1:1), neun antibody (1:1), labeled cell homogenate, with Alsace red fluorescent secondary antibodies labeled (goat anti-rabbit 1:1), flow cytometry on a comparison of different neural regions stem cell differentiation.
     Results:By flow cytometry using fluorescence labeled antibody associated antibodies observed in GFP transgenic mice transplanted neural stem cells in the living state, the distribution and differentiation.
     Conclusion:The transplantation of neural stem cells in vivo with glioma cells to chemotaxis and proliferation; relative to the original graft area, migration of nerve cells surrounding tumor clear trend in the neuronal differentiation, but differentiated into neurons value-added trends in 7-14 days, gradually slowing down.
引文
1. Reynolds, B.A. and R.L. Rietze, Neural stem cells and neurospheres-re-evaluating the relationship. Nat Methods,2005. 2(5):p.333-6.
    2. Senda, T., et al., Cytoskeletal architecture of the matrix cell and neuroblast in the neural tube of the chick embryo. Arch Histol Cytol,1992.55(1):p.45-55.
    3. Bjornson, C.R., et al., Turning brain into blood:a hematopoietic fate adopted by adult neural stem cells in vivo. Science,1999. 283(5401):p.534-7.
    4. Gordon, D., et al., Enhanced green fluorescent protein-expressing human mesenchymal stem cells retain neural marker expression. J Neuroimmunol,2008.193(1-2):p.59-67.
    5. Ehtesham, M., et al., Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia,2004.6(3):p.287-93.
    6. Tilgner, K., et al., Expression of GFP under the control of the RNA helicase VASA permits fluorescence-activated cell sorting isolation of human primordial germ cells. Stem Cells,2010.28(1): p.84-92.
    7. Kawanami, A., et al., Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun,2009.386(3):p.477-82.
    8. Wang, Q.L., et al., [Green fluorescent protein as a tracer of bone marrow stromal cells in bone tissue engineering in rhesus]. Nan
    Fang Yi Ke Da Xue Xue Bao,2007.27(2):p.156-9.
    9. Glavaski-Joksimovic, A., et al., Survival, migration, and differentiation of Sox1-GFP embryonic stem cells in coculture with an auditory brainstem slice preparation. Cloning Stem Cells, 2008.10(1):p.75-88.
    10. Teng, L., et al., [Establishing mouse embryonic stem cell line carrying a fluorescent undifferentiated marker]. Yi Chuan Xue Bao,2004.31(10):p.1061-5.
    11. Chen, J., et al., Human embryonic stem cells which express hrGFP in the undifferentiated state and during dopaminergic differentiation. Restor Neurol Neurosci,2009.27(4):p.359-70.
    12. Lin, H.J., et al., Neural stem cell differentiation in a cell-collagen-bioreactor culture system. Brain Res Dev Brain Res, 2004.153(2):p.163-73.
    13. Ozolek, J.A., et al., Human embryonic stem cells (HSF-6) show greater proliferation and apoptoses when grown on glioblastoma cells than mouse embryonic fibroblasts at day 19 in culture: comparison of proliferation, survival, and neural differentiation on two different feeder cell types. Stem Cells Dev,2007.16(3):p. 403-12.
    14. Walton, N.M., et al., Gliotypic neural stem cells transiently adopt tumorigenic properties during normal differentiation. Stem Cells, 2009.27(2):p.280-9.
    15. Fu, Y., et al., Gene transfer into primary cultures of fetal neural stem cells by a recombinant adenovirus carrying the gene for green fluorescent protein. J Zhejiang Univ Sci B,2008.9(4):p. 299-305.
    16. Zeng, Z., et al., Manipulation of proliferation and differentiation of human bone marrow-derived neural stem cells in vitro and in vivo. J Neurosci Res,2007.85(2):p.310-20.
    17. Kato, T., et al., A neurosphere-derived factor, cystatin C, supports differentiation of ES cells into neural stem cells. Proc Natl Acad Sci U S A,2006.103(15):p.6019-24.
    18. Gurok, U., et al., Laser capture microdissection and microarray analysis of dividing neural progenitor cells from the adult rat hippocampus. Eur J Neurosci,2007.26(5):p.1079-90.
    19. Rieske, P., et al., Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors. BMC Cancer,2009.9:p.54.
    20. 宗兆文and程天民,绿色荧光蛋白标记在干细胞移植中的应用.中国临床康复,2006(29):p.141-143.
    21. 王屹,季凤清,and杨慧,人脐血干细胞定向分化为神经细胞的诱导方法.中国临床康复,2006(17):p.143-145.
    22. Alcantara Llaguno, S., et al., Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell,2009.15(1):p.45-56.
    23. Zheng, H., et al., p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature,2008. 455(7216):p.1129-33.
    24. Kalev, I., et al., Chemokine receptor CCR5 expression in in vitro differentiating human fetal neural stem/progenitor and glioblastoma cells. Neurosci Lett,2006.394(1):p.22-7.
    1. Weng, M., K.L. Golden, and C.Y. Lee, dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev Cell,2010.18(1):p.126-35.
    2. Shinjyo, N., et al., Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells, 2009.27(11):p.2824-32.
    3. Sun, J., et al., VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain. Biochem Biophys Res Commun,2010.394(1):p.146-52.
    4. Walker, D.J., et al., Down-regulation of diacylglycerol lipase-alpha during neural stem cell differentiation:identification of elements that regulate transcription. J Neurosci Res,2010.88(4):p.735-45.
    5. Jagatha, B., et al., In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun,2009.380(2):p.230-5.
    6. Kuai, X.L., et al., Differentiation of nonhuman primate embryonic stem cells along neural lineages. Differentiation,2009.77(3):p.229-38.
    7. Uemura, M., et al., Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells. J Neurosci Res,2010.88(3):p.542-51.
    8. Mumaw, J.L., et al., Neural differentiation of human embryonic stem cells at the ultrastructural level. Microsc Microanal,2010.16(1):p. 80-90.
    9. Ramasamy, S.K. and N. Lenka, Notch exhibits ligand bias and maneuvers stage-specific steering of neural differentiation in embryonic stem cells. Mol Cell Biol,2010.30(8):p.1946-57.
    10. Rao, G., et al., Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene,2004.23(36):p.6156-62.
    11. Aboody, K.S., et al., Neural stem cells display extensive tropism for pathology in adult brain:evidence from intracranial gliomas. Proc Natl Acad Sci U S A,2000.97(23):p.12846-51.
    12. Lim, D.A., et al., Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol,2007.9(4):p.424-9.
    13. Thu, M.S., et al., Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS One, 2009.4(9):p. e7218.
    14. Bidiwala, S. and T. Pittman, Neural network classification of pediatric
    posterior fossa tumors using clinical and imaging data. Pediatr Neurosurg, 2004.40(1):p.8-15.
    15. Li, S., et al., Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells. Cancer Gene Ther,2005.12(7): p.600-7.
    16. Asanuma, T., et al., Diffusion tensor imaging and fiber tractography of C6 rat glioma. J Magn Reson Imaging,2008.28(3):p.566-73.
    17.楼善贤,王利霞,and刘庆伟,GFAP、Vim、MDR-1与EGFR在颅内星形细胞肿瘤中的表达及意义.实用肿瘤学杂志,2003(03):p.169-171.
    18.张建平,付银根,and刘大全,人参皂苷Rg3对大鼠脑胶质瘤GFAP,Vimentin表达的影响.第四军医大学学报,2009(13):p.1173-1176.
    19. Zhang, Z., et al., In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage,2004.23(1): p.281-7.
    20. Brekke, C., et al., Cellular multiparametric MRI of neural stem cell therapy in a rat glioma model. Neuroimage,2007.37(3):p.769-82.
    21. Jing, M., et al., [Labeling neural stem cells with superparamagnetic iron oxide in vitro and tracking after implantation with MRI in vivo]. Zhonghua Yi Xue Za Zhi,2004.84(16):p.1386-9.
    22. Zhang, C., et al., The modulatory effects of bHLH transcription factors with the Wnt/beta-catenin pathway on differentiation of neural progenitor cells derived from neonatal mouse anterior subventricular zone. Brain Res,2010.1315:p.1-10.
    23. Vreys, R., et al., MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain:validation of various MPIO labeling strategies. Neuroimage,2010.49(3):p.2094-103.
    24. Wittko, I.M., et al., VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci,2009.29(27):p.8704-14.
    25. Wang, H., et al., Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells,2009.27(7):p.1548-58.
    26. Chen, F.X., et al., Reciprocal effects of conditioned medium on cultured glioma cells and neural stem cells. J Clin Neurosci,2009.
    27. Sansom, S.N., et al., The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet,2009.5(6):p. e1000511.
    28. Itoh, T., et al., The relationship between SDF-1alpha/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats. Neurol Res,2009.31(1):p.90-102.
    29. Obayashi, S., et al., Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation. Cell Mol Neurobiol,2009.29(3):p.423-38.
    30. Li, T., et al., In-vitro effects of brain-derived neurotrophic factor on neural progenitor/stem cells from rat hippocampus. Neuroreport,2009. 20(3):p.295-300.
    31. Oya, S., et al., Attenuation of Notch signaling promotes the differentiation of neural progenitors into neurons in the hippocampal CA1 region after ischemic injury. Neuroscience,2009.158(2):p.683-92.
    32. Kalev, I., et al., Chemokine receptor CCR5 expression in in vitro differentiating human fetal neural stem/progenitor and glioblastoma cells. Neurosci Lett,2006.394(1):p.22-7.
    33. Ligon, K.L., et al., Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron,2007.53(4):p.503-17.
    1. REYNOLDS, B.A. and S. WEISS, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science,1992.255(5052):p.1707-10.
    2. SENDA, T., ET AL., Cytoskeletal architecture of the matrix cell and neuroblast in the neural tube of the chick embryo. Arch Histol Cytol, 1992.55(1):p.45-55.
    3. BJORNSON, C.R., ET AL., Turning brain into blood:a hematopoietic fate adopted by adult neural stem cells in vivo. Science,1999.283(5401):
    p.534-7.
    4. DIRKS, P.B., Glioma migration:clues from the biology of neural progenitor cells and embryonic CNS cell migration. J Neurooncol,2001. 53(2):p.203-12.
    5. ORLANDI, A., ET AL., Cardiac myxoma cells exhibit embryonic endocardial stem cell features. J Pathol,2006.209(2):p.231-9.
    6. BLAIR, A., ET AL., Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood,1997.89(9):p.3104-12.
    7. MATSUI, W., ET AL., Characterization of clonogenic multiple myeloma cells. Blood,2004.103(6):p.2332-6.
    8. AL-HAJJ, M., ET AL., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A,2003.100(7):p.3983-8.
    9. SINGH, S.K., ET AL., Identification of a cancer stem cell in human brain tumors. Cancer Res,2003.63(18):p.5821-8.
    10. CHANDEBOIS, R., The problem of automation in animal development: confrontation of the concept of cell sociology with biochemical data. Acta Biotheor,1981.30(3):p.143-69.
    11. LUETTEKE, N.C. and D.C. LEE, Transforming growth factor alpha: expression, regulation and biological action of its integral membrane precursor. Semin Cancer Biol,1990.1(4):p.265-75.
    12. BARCELLOS-HOFF, M.H. and K.B. EWAN, Transforming growth factor-beta and breast cancer:Mammary gland development. Breast Cancer Res,2000.2(2):p.92-9.
    13. CARDILLO, M.R., E. YAP, and G. CASTAGNA, Molecular genetic analysis of TGF betal in breast cancer. J Exp Clin Cancer Res,1997. 16(1):p.57-63.
    14. LEWIS, M.P., Et Al., Tumour-derived TGF-betal modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer,2004.90(4):p.822-32.
    15. HIRASHIMA, Y., ET AL., Transforming growth factor-betal produced by ovarian cancer cell line HRA stimulates attachment and invasion through an up-regulation of plasminogen activator inhibitor type-1 in human peritoneal mesothelial cells. J Biol Chem,2003.278(29):p.26793-802.
    16. SELLERS, R.S., ET AL., Effects of transforming growth factor-betal on parathyroid hormone-related protein mRNA expression and protein secretion in canine prostate epithelial, stromal, and carcinoma cells. Prostate,2004.58(4):p.366-73.
    17. TONG, G.M., ET AL., The effect of antiestrogens on TGF-beta-mediated chemotaxis of human breast cancer cells. Anticancer Res,2002.22(1A):p. 103-6.
    18. KUSMARTSEV, S. AND D.I. GABRILOVICH, Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother,2006.55(3):p.237-45.
    19. KIM, E.S., ET AL., Transforming growth factor-beta inhibits apoptosis induced by beta-amyloid peptide fragment 25-35 in cultured neuronal cells. Brain Res Mol Brain Res,1998.62(2):p.122-30.
    20. BREIER, G., ET AL., Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis. Int J Cancer, 2002.97(2):p.142-8.
    21. COHEN, M.M., JR., The hedgehog signaling network. Am J Med Genet A, 2003.123A(1):p.5-28.
    22. DETMER, K., ET AL., Hedgehog signaling and cell cycle control in differentiating erythroid progenitors. Blood Cells Mol Dis,2005.34(1):p. 60-70.
    23. KENNEY, A.M., M.D. COLE, and D.H. ROWITCH, Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development,2003.130(1):p. 15-28.
    24. KARIM, R., ET AL., The significance of the Wnt pathway in the pathology of human cancers. Pathology,2004.36(2):p.120-8.
    25. TEJPAR, S., ET AL., Analysis of Wnt/Beta catenin signalling in desmoid tumors. Acta Gastroenterol Belg,2005.68(1):p.5-9.
    26. CHEN, M.X., ET AL., [Inhibition of bFGF gene expression and tumor angiogenesis of orthotopic implantation of human gastric carcinoma by N-desulfated heparin]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2008. 25(1):p.78-81.