MACC1在卵巢癌中的表达及其基因沉默对卵巢癌OVCAR-3细胞影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     宫颈癌、卵巢癌和子宫内膜癌是女性生殖系统最常见的三大恶性肿瘤,其中卵巢癌的发病率虽然仅占女性恶性肿瘤的4%,但却是死亡率最高的妇科恶性肿瘤。卵巢癌具有起病隐匿、原发灶隐蔽、首次诊断多为晚期、易播散转移、术后易复发和易产生化疗耐药等特点,随着医学水平的进步、临床肿瘤细胞减灭术和联合化疗水平的提高,卵巢癌的五年生存率虽然得到了明显改善,但卵巢癌患者的总体预后仍不满意。多年来全世界投入大量人力、物力进行卵巢癌发病机制的有关研究,试图阐明卵巢癌发生发展的分子机制,尽管在卵巢癌的早期诊断、基因治疗和化疗耐药机制研究等方面取得了令人可喜的成绩和令人巨大的进展,但目前卵巢癌发生发展的分子生物学机制仍不清楚。
     经过多年的研究后,目前科学界趋向于认为肿瘤是一种由基因组多发性改变而引起的疾病,肿瘤发生的基础是癌基因功能区突变而激活和/或抑癌基因功能区突变而失活。持续的生长信号刺激、逃避生长抑制、抵抗程序性细胞死亡无限的复制潜能、诱导血管发生、侵袭和转移的激活、细胞能量代谢的重组和逃避免疫损伤是导致不同类型的肿瘤细胞恶性生长所必需的8种获得性细胞生理学改变。在肿瘤发展过程中大多甚至全部肿瘤都存在类似的细胞生理学特点的改变,因此与这些获得性细胞行为关系密切的癌基因和抑癌基因都成为肿瘤分子机制研究和癌症治疗研究的热点。
     结肠癌转移相关基因1(metastasis-associated in colon cancer-1, MACC1)是Stein等在2009年应用全基因组表达分析技术在结肠癌原发灶和转移灶中发现的一个以前未被描述过的基因,MACC1可在体外实验中促进结肠癌细胞的增殖、侵袭和肝细胞生长因子(hepatocyte growth factor, HGF)诱导的癌细胞播散,且可促进动物实验中结肠癌细胞移植瘤的生长,是可用于结肠癌转移和预后判断的独立标志物。目前的研究发现,MACC1与胃癌、肺癌和肝癌等恶性肿瘤的转移和预后密切相关。MACC1是HGF/C-met信号通路中MET基因的关键调节因子,HGF又称离散因子(scatter factor, SF),能促进多种肿瘤细胞的生长、粘附、移动及侵袭,且可刺激血管内皮细胞生长,在卵巢癌等一系列恶性肿瘤细胞的生长、侵袭及转移过程中发挥重要作用。目前,国内外尚无MACC1与卵巢癌相关关系的研究报道,MACC1是否参与卵巢癌的发生发展、其对卵巢癌的临床意义何在、其与卵巢癌细胞的生物学行为关系如何、其异常表达导致卵巢癌细胞侵袭和转移的分子机制如何等问题尚不清楚。
     目的
     通过检测不同性质卵巢组织中MACC1的表达,初步分析MACC1异常表达与卵巢癌临床病理参数的关系,评价卵巢癌组织中MACC1异常表达的临床意义。进而采用RNA干扰(RNA interference, RNAi)技术研究卵巢癌细胞中MACC1基因沉默后对卵巢癌细胞生长、凋亡、迁移和侵袭的影响,探讨其异常表达与卵巢癌细胞生物学行为的关系。最后,分析MACC1可能参与的信号传导系统,初步探讨MACC1参与卵巢癌侵袭和转移的可能分子机制。本研究分为以下四个部分:
     第一部分MACC1、HGF和C-met在卵巢上皮性癌组织中的表达及其意义
     方法
     1.采用RT-PCR技术检测20例正常卵巢组织、19例良性卵巢上皮性肿瘤和52例上皮性卵巢癌组织中MACC1 mRNA的表达情况。
     2.采用免疫组化和western blot技术检测20例正常卵巢组织、19例良性卵巢上皮性肿瘤和52例上皮性卵巢癌组织中MACC1、HGF和C-met蛋白的表达情况。
     3.分析MACC1、HGF和C-met的异常表达与卵巢癌临床病理参数的关系。
     4.探讨卵巢癌组织中MACC1、HGF和C-met的异常表达的相关性。
     结果
     1. MACC1 mRNA在卵巢癌组织中的表达显著高于良性肿瘤和正常卵巢组织中的表达(F=142.45,P=0.000);卵巢癌临床分期越晚,MACC1 mRNA表达越高(F=51.305,P=0.000)。
     2.卵巢癌组织中MACC1、HGF和C-met蛋白的阳性率显著高于良性肿瘤和正常卵巢组织(χ2=35.845,P=0.000;χ2=24.532,P=0.000;χ2=28.893,P=0.000)。卵巢癌临床分期越晚,MACC1蛋白阳性率越高(χ2=9.707,P=0.024)
     3.卵巢癌组织中MACC1、HGF和C-met蛋白的相对表达量均显著高于良性肿瘤和正常卵巢组织(F=465.790,P=0.000;F=326.289,P=0.000;F=280.871,P=0.000)。
     4.在卵巢上皮性癌中,MACC1、HGF和C-met异常高表达与临床分期、组织分化和淋巴结转移相关,临床分期越晚、组织分化越差、伴随腹腔淋巴结转移的癌组织中MACC1、HGF和C-met表达越高(P<0.05)。
     5.在卵巢上皮性癌中,MACC1的异常表达与HGF和C-met的异常表达呈正相关(r=0.350,P=0.011:r=0.429,P=0.002),HGF表达与C-met表达表达呈正相关(r=0.487,P=0.000)。
     小结
     1. MACC1异常表达与卵巢癌发生发展关系密切,可作为卵巢上皮性癌诊断、治疗和预后分析的标志物。
     2. MACC1、HGF和C-met的异常表达可能协同参与了卵巢癌的恶性进展。
     第二部分MACC1基因特异性shRNA真核表达载体的构建及稳定转染重组载体OVCAR-3细胞的筛选
     方法
     1.设计合成MACC1基因特异性小发卡RNA (short hairpin RNA, shRNA)单链核苷酸序列。
     2.以真核荧光表达载体psuper-EGFP为基础构建MACC1基因特异性shRNA重组真核表达载体。
     3.重组shRNA真核表达载体转染卵巢癌细胞OVCAR-3, G418筛选稳定表达重组载体的卵巢癌细胞株。
     4.采用RT-PCR技术和western blot技术验证和筛选MACC1基因抑制效应最为显著的稳定转染细胞株。
     结果
     1.设计合成的MACC1基因特异性shRNA单链成功退火形成双链shRNA。
     2.经酶切和测序鉴定,双链shRNA插入真核表达载体psuper-EGFP位置正确。
     3.重组质粒成功转染OVCAR-3细胞,采用G418成功筛选获得稳定表达重组质粒的单克隆细胞株。
     4.经RT-PCR和western blot验证和筛选,获得MACC1基因抑制效果最为显著的单克隆稳定转染卵巢癌细胞株OVCAR-3-s3。
     小结
     1.成功构建针对MACC1基因的特异性重组shRNA真核表达载体。
     2.成功筛选获得稳定表达重组shRNA质粒的细胞株,为下一步研究MACC1对HGF/C-met信号通路的调控机制及其与卵巢癌的关系奠定了实验基础。
     第三部分卵巢癌OVCAR-3细胞中MACC1基因抑制效应研究
     方法
     1.采用MTT法和单细胞平板克隆集落形成实验检测MACCl基因沉默前后OVCAR-3细胞增殖能力的变化。
     2.采用流式细胞术和TUNEL法检测MACC1基因沉默前后OVCAR-3细胞凋亡能力的变化。
     3.采用transwell小室和单层细胞划痕实验检测MACC1基因沉默前后OVCAR-3细胞迁移能力的变化。
     4.采用Matrigel侵袭实验和裸鼠移植瘤模型检测MACC1基因沉默前后OVCAR-3细胞侵袭能力的变化。
     结果
     1.与OVCAR-3、OVCAR-3-neo和OVCAR-3-NC细胞相比,OVCAR-3-s3细胞的增殖显著受到抑制;OVCAR-3-s3组的细胞克隆集落形成率显著下降(F=23.725,P=0.000)
     2.与OVCAR-3、OVCAR-3-neo和OVCAR-3-NC组相比,OVCAR-3-s3组细胞凋亡率明显增加(F=1679.406,P=0.000);OVCAR-3-s3细胞中凋亡小体的数目显著增加(F=271.84,P=-0.000)
     3.与OVCAR-3、OVCAR-3-neo和OVCAR-3-NC组相比,无血清培养24h后OVCAR-3-s3细胞的划痕距离明显较宽;聚碳酸酯膜的下室面的OVCAR-3-s3细胞数明显减少(F=44.261,P=0.000)
     4.与OVCAR-3、OVCAR-3-neo和OVCAR-3-NC组相比,在包被Matrigel基质胶的transwell小室的聚碳酸酯膜下室面的OVCAR-3-s3细胞数明显减少(F=40.296,P=0.000);裸鼠皮下注射35天后OVCAR-3-s3形成的移植瘤体积明显小于其他三组细胞(F=32.571,P=0.000)。
     小结
     1. MACC1基因沉默后可明显抑制卵巢癌OVCAR-3细胞的增殖、迁移、和侵袭能力,明显诱导卵巢癌OVCAR-3细胞的凋亡。
     2. MACC1具有作为卵巢癌预防和治疗基因靶点的潜在价值。
     第四部分MACC1异常参与卵巢癌发生发展分子机制研究
     方法
     1.HE染色观察OVCAR-3、OVCAR-3-neo、OVCAR-3-NC和OVCAR-3-s3细胞所致移植瘤肿瘤组织中瘤细胞的形态变化。
     2.免疫组化分析OVCAR-3、OVCAR-3-neo、OVCAR-3-NC和OVCAR-3-s3细胞所致移植瘤肿瘤组织中MACC1和C-met蛋白的表达。
     3. Western blot分析OVCAR-3、OVCAR-3-neo、OVCAR-3-NC和OVCAR-3-s3细胞中C-met、MEK1/2、p-MEK1/2、ERK1/2和p-ERK1/2蛋白的变化。
     4. RT-PCR检测OVCAR-3、OVCAR-3-neo、OVCAR-3-NC和OVCAR-3-s3细胞中cyclinD1、caspase3、caspase、survivin、MMP2、MMP9和VEGFA的表达。
     结果
     1.与OVCAR-3. OVCAR-3-neo和OVCAR-3-NC组相比,OVCAR-3-s3组瘤组织的瘤细胞形态学发生明显变化。
     2.与OVCAR-3、OVCAR-3-neo和OVCAR-3-NC组相比,OVCAR-3-s3细胞所致移植瘤组织中MACC1和C-met蛋白的阳性表达明显减弱。
     3.与OVCAR-3、OVCAR-3-neo和OVCAR-3-NC相比,OVCAR-3-s3细胞中C-met、p-MEK1/2和p-ERK1/2表达明显减低。
     4.与OVCAR-3、OVCAR-3-neo和OVCAR-3-NC组相比,OVCAR-3-s3细胞中cyclinD1、survivin、MMP2、MMP9和VEGFA表达明显减低,caspase3和caspase9表达明显增加。
     小结
     1. MACC1异常表达可能参与了卵巢癌细胞的恶性转化。
     2. MACC1异常可能通过HGF/C-met信号通路和MAPK信号通路介导其下游的肿瘤相关基因参与卵巢癌的侵袭和转移。
     结论
     1. MACC1基因表达异常与卵巢癌的发生发展关系密切,可能参与了卵巢癌细胞的恶性转化
     2. MACC1可能通过HGF/C-met信号通路和MAPK信号通路介导其下游的肿瘤相关基因参与卵巢癌的侵袭和转移
     3. MACC1基因有作为卵巢癌基因治疗靶点的潜在价值
Background
     Cervical cancer, ovarian cancer and endometrial carcinoma are the three hackneyed malignancies in female genital system. The incidence rate of ovarain cancer only accounts to 4% of female malignancies, but the death rate of ovarian cancer is highest in female malignancies. Despite improvements in the application of aggressive cytoreductive surgery and combination chemotherapy, the five year survival rate of ovarian cancer is obvious improved, ovarian cancer has the most unfavorable total prognosis due to its insidious onset, concealed primary focus, diagnosis at late stage, dissemination, relapse, and tendency to develop chemotherapy resistance. Through considerable efforts aimed at elucidating the tumorigenesis of ovarian carcinoma, which gained thumping developments in early dianosisits, gene therapy and mechanism of chemotherapy resistance, the molecular mechanism of ovarian cancer is still unclear.
     After a quarter century of rapid advances, cancer researches reveal cancer to be a disease involving dynamic changes in the genome. The foundation of cancer has been set in the activation of oncogenes with mutations of dominants and the inactivation of tumor suppressor genes with recessive loss of function. Sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming of energy metabolism and evading immune destruction are eight acquired biological capabilities during the multistep development of different human tumors.Because these capabilities are shared in the development of most and perhaps all types of human tumors, the oncogenes and tumor suppressor genes which are closely related with these acquired capabilities become the hot spot of mechanism and therapy research of cancer.
     Metastasis-associated in colon cancer-1 (MACC1) is an undescribed gene ever before which was detected by genomewide expression analytical technique in primary focus and metastasis focus of colon cancer. MACC1 could promote proliferation, invasion and hepatocyte growth factor (HGF)-induced scattering of colon cancer cells in vitro, and promote the growth of colon cancer cell transplanted tumor, which could serve as a biomarker of metastasis and prognosis of colon cancer. MACC1 aslo were demonstrated to be closely related with the metastasis and prognosis of gastric cancer, lung cancer and liver cancer. MACC1 was proved as a regulator of MET in HGF/C-met signaling, HGF was also called scatter factor which could promote the growth, adhesion, migration and invasion of tumor cells, HGF also could stimulate the growth of vascular endothelial cells which played key roles in the growth, invasion and metastasis of many malignant tumor cells, including ovarian cancer. There was still none report on the relationships between MACC1 and ovarian cancer up to now, it is still unclear that whether MACC1 implicate in ovarian cancer, whether MACC1 has clinical significances to ovarian cancer, how about the relationships between MACC1 and the biological behaviors of ovarian cancer cells, how about the mechanism of MACC1 overexpression induced ovarian cancer cell malignant transformation.
     Objective
     Detect the expression of MACC1 in different ovarian tissues, analyze the relations between overexpression of MACC1 and the clinical pathological features of ovarian cancer, and evaluate the clinical significances of overexpression of MACC 1 in ovarian cancer. Then inhibit the expression of MACC 1 in ovarian cancer cells by RNA interference, investigate the effects of MACC1 knockdown on the growth, apoptosis, migration and invasion of ovarian cancer cells, approach the relationships between overexpression of MACC 1 and the biological behaviors of ovarian cancer cells. At last, analyze the possible signaling in which MACC1 implicated, discuss the possible mechanism of MACC 1 implicate in the development and progress of ovarian cancer. The present research includes four parts as follow:
     Part I Expressions and Significants of MACC1, HGF and C-met in Epithelial Ovarian Cancer
     Methods
     1. The expressions of MACC1 mRNA in 20 specimens normal ovary tissues,19 specimens bengin ovarian tumors and 52 specimens epithelial ovarian cancer (EOC) tissues by RT-PCR.
     2. The expressions of MACC1, HGF and C-met protein in 20 specimens normal ovary tissues,19 specimens bengin ovarian tumors and 52 specimens ovarian cancer tissues by immunohistochemistry and western blot.
     3. The relationships between abnormal expressions of MACC1, HGF and C-met and the clinical pathological characters of ovarian cancer were analyzed.
     4. The correlation of abnormal expression in ovarian cancer among MACC 1, HGF and C-met were discussed.
     Results
     1. The expressions of MACC1 mRNA were significantly higher in EOC tissues than those in normal ovary and bengin ovarian tumor tissues (F=142.45, P=0.000); more advanced FIGO stage of EOC, higher expression of MACC1 mRNA (F=51.305,P=0.000).
     2. The expressions of MACC1, HGF and C-met protein were obviously higher in EOC tissues than those in normal ovary and bengin ovarian tumor tissues (χ2=35.845, P=0.000;χ2=24.532, P=0.000;χ2=28.893, P=0.000); more advanced FIGO stage of EOC, higher expression of MACC1 protein (χ2=9.707, P=0.024).
     3. The relative expression values of MACC1, HGF and C-met prtein were significantly higher in EOC tissues than those in normal ovary and bengin ovarian tumor tissues (F=465.790, P=0.000; F=326.289,P=0.000; F=280.871, P=0.000).
     4. The overexpressions of MACC1, HGF and C-met were related with FIGO stage, histological grade and lymph nodes metastasis, there were more advanced FIGO stage, worse histological grade and accompanied lymph nodes metastasis, there were more high overexpressions of MACC1, HGF and C-met in EOC (P< 0.05).
     5. There were positive correlations between overexpression of MACC1 and overexpressions of HGF and C-met (r=0.350, P=0.011; r=0.429, P=0.002); there was positive correlation between overexpression of HGF and overexpression of C-met (r=0.487, P=0.000).
     Summaries
     1. Overexpression of MACC1 was closely related with EOC, which could serve as a biomarker of diagnosis, therapy and prognosis of EOC.
     2. Overexpressions of MACC1, HGF and C-met might synergistically implicate in the malignant progression of EOC.
     Part II Construction of MACC1 Gene Specific shRNA Eukaryotic Expression Vector and Selection of OVCAR-3 Cells Stably Transfected with Recombinant Vector
     Methods
     1. Designed and synthesized MACC1 specific shRNA oligonucleotide strands.
     2. Constructed MACC1 gene specific shRNA recombinant vector based on eukaryotic fluorescence expression plasmid psuper-EGFP.
     3. Transfected OVCAR-3 cells with recombinant shRNA vectors, selected OVCAR-3 cells stably transfected with recombinant shRNA vectors by G418.
     4. Identified the best inhibited effect of MACC1 in transfected OVCAR-3 cells by RT-PCR and western blot.
     Results
     1. MACC1 specific shRNA oligonucleotides were annealed and ligated to be double-strand shRNA successfully.
     2. Identified by digestion and sequencing, double-strand shRNAs were inserted into psuper-EGFP at right sites.
     3. Transfected OVCAR-3 cells with recombinant vectors, and harvested monoclonal cell lines of OVCAR-3 cells with stably trasnfected recombinant vectors by G418 successfully.
     4. Identified by RT-PCR and western blot, OVCAR-3-s3 were the cell line with best inhibited effect of MACC1.
     Summaries
     1. Constructed specific shRNA recombinant eukaryotic fluorescence expression plasmid against MACC1 gene successfully.
     2. Harvested OVCAR-3 cell lines with stable expression recombinant shRNA vectors successfully, which lay a foundation for the further investigation about the relationships between MACC1 and the development and progression of ovarian cancer and the mechanism of MACC1 regulated HGF/C-met signaling.
     PartⅢEffects of MACC1 Gene Inhibition on the Ovarian Cancer Cell Line OVCAR-3 Cells
     Methods
     1. The proliferation of OVCAR-3 cells before and after inhibition of MACC1 was measured by MTT assay and monocell plate colony formation assay.
     2. The apoptosis of OVCAR-3 cells before and after inhibition of MACC1 was measured by FCM assay and TUNEL assay.
     3. The migration of OVCAR-3 cells before and after inhibition of MACC1 was measured by cell monolayer scratch assay and transwell assay.
     4. The invasion of OVCAR-3 cells before and after inhibition of MACC1 was measured by Matrigel assay and xenograft modle assay.
     Results
     1. Compared with OVCAR-3, OVCAR-3-neo and OVCAR-3-NC cells, the proliferation of OVCAR-3-s3 was suppressed obviously, and the rate of colony formation was decreased significantly (F=23.725, P=0.000).
     2. Compared with OVCAR-3, OVCAR-3-neo and OVCAR-3-NC cells, the apoptosis rate of OVCAR-3-s3 was increased obviously (F=1679.406, P=0.000), and the numbers of apoptosis body were increased significantly (F=271.84, P=0.000).
     3. Compared with OVCAR-3, OVCAR-3-neo and OVCAR-3-NC cells, the scrathes of OVCAR-3-s3 healed more slowly obviously after cultivation 24h without FBS, and the numbers of OVCAR-3-s3 cell on the lower polycarbonate membrane of transwell chamber were decreased significantly (F=44.261,P=0.000).
     4. Compared with OVCAR-3, OVCAR-3-neo and OVCAR-3-NC cells, the numbers of OVCAR-3-s3 cell on the lower polycarbonate membrane of transwell chamber covered matirgel were decreased significantly (F=40.296, P=0.000) (F=23.725, P=0.000), and the volumes of xenograft tumors of OVCAR-3-s3 cells after injection 35 days were obviously smaller (F=32.571, P=0.000).
     Summaries
     1. Inhibition of MACC1 gene could obviously suppress the proliferation, migration and invasion of OVCAR-3 cells, but obviously induce the apoptosis of OVCAR-3 cells.
     2. MACC1 could serve as a potential gene target for prevention and therapy of ovarian cancer.
     Part IV Studies on the Overexpression of MACC1 and the Pathogenesis of Development and Progress of Ovarian Cancer
     Methods
     1. The morphologic changes of xenograft tumors cells caused by OVCAR-3, OVCAR-3-neo,OVCAR-3-NC and OVCAR-3-s3 cells were observed by HE stain.
     2. The expressions of MACC1 and C-met protein in xenograft tumors caused by OVCAR-3, OVCAR-3-neo, OVCAR-3-NC and OVCAR-3-s3 cells were observed by immunohistochemistry.
     3. The expressions of C-met, MEK1/2, p-MEK1/2, ERK1/2 and p-ERK1/2 protein in OVCAR-3, OVCAR-3-neo,OVCAR-3-NC and OVCAR-3-s3 cells were measured by western blot.
     4. The expressions of cyclinDl, caspase3, caspase9, survivin, MMP2, MMP9 and VEGFA mRNA in OVCAR-3, OVCAR-3-neo, OVCAR-3-NC and OVCAR-3-s3 cells were measured by RT-PCR.
     Results
     1. Compared with OVCAR-3, OVCAR-3-neo and OVCAR-3-NC cells, the morphology of OVCAR-3-s3 cell changed obviously.
     2. Compared with OVCAR-3, OVCAR-3-neo and OVCAR-3-NC cells, the expressions of MACC1 and C-met protein in xenograft tumors caused by OVCAR-3-s3 cells were decreased obviously.
     3. Compared with OVCAR-3, OVCAR-3-neo and OVCAR-3-NC cells, the expressions of C-met, p-MEK1/2 and p-ERK1/2 protein in OVCAR-3-s3 cells were decreased significantly.
     4. Compared with OVCAR-3, OVCAR-3-neo and OVCAR-3-NC cells, the expressions of cyclinD1, survivin, MMP2, MMP9 and VEGFA mRNA in OVCAR-3-s3 cells were decreased significantly, but the expression of caspase3 and caspase9 mRNA were increased obviously.
     Summaries
     1. Overexpression of MACC1 might implicate in the malignant transformation of ovarian cancer cells.
     2. Overexpression of MACC1 might implicate in the invasion and metastasis of ovarian cancer via HGF/C-met signaling and MAPK signaling mediated downstream tumor associated genes.
     Conclusions
     1. Overexpression of MACC1 was closely related with EOC, which might implicate in the malignant transformation of ovarian cancer cells.
     2. Overexpression of MACC1 might implicate in the invasion and metastasis of ovarian cancer via HGF/C-met signaling and MAPK signaling mediated downstream tumor associated genes.
     3. MACC1 could serve as a potential gene target for prevention and therapy of ovarian cancer.
引文
[1]Garber K. Beyond the Nobel Price:cell cycle research offers new view of cancer [J].J Natl Cancer Inst,2001,93(23):1766-1768.
    [2]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009[J]. CA Cancer J Clin 2009; 59(4):225-249.
    [3]Stein U, Walther W, Arlt F, et al.MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis [J]. Nat Med,2009,15(1):59-67.
    [4]Hiscox S, Jiang WGAssociation of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem Biophys Res Commun,1999,261 (2):406-411.
    [5]Maulik G, Shrikhande A, Kijima T, et al.Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition[J].Cytokine Growth Factor Rev,2002,13(1):41-59.
    [6]Wong AS, Leung PC, Auersperg N.Hepatocyte growth factor promotes in vitro scattering and morphogenesis of human cervical carcinoma cells[J].Gynecol Oncol,2000,78(2): 158-165.
    [7]Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product[J].Science,1991,251(4995):802-804.
    [8]Naldini L, Vigna E, Narsimhan RP, et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET[J].Oncogene, 1991,6(4):501-504.
    [9]Wislez M, Rabbe N, Marchal J, et a.l Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma:role in tumor progression and deat [J]. Cancer Res,2003,63(6):1405-1412.
    [10]Qian CN, Guo X, Cao B, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma [J]. Cancer Res,2002,62(2):589-596.
    [11]Zhou HY, Pon YL, Wong AS. HGF/MET signaling in ovarian cancer [J]. Curr Mol Med, 2008,8(6):469-480.
    [12]Zillhardt M, Christensen JG, Lengyel E. An orally available small-molecule inhibitor of c-Met, PF-2341066, reduces tumor burden and metastasis in a preclinical model of ovarian cancer metastasis [J].Neoplasia,2010,12(1):1-10.
    [13]Liotta LA, Stetler-Stevenson WG.Tumor invasion and metastasis:an imbalance of positive and negative regulation [J]. Cancer Res,1991,51(18 Suppl):5054s-5059s.
    [14]Kokoszynska K, Krynski J, Rychlewski L, et al. Unexpected domain composition of MACC1 links MET signaling and apoptosis [J].Acta Biochim Pol,2009;56(2):317-323.
    [15]Arlt F, Stein U.Colon cancer metastasis:MACC1 and Met as metastatic pacemakers [J]. Int J Biochem Cell Biol,2009,41(12):2356-2359.
    [16]Shirahata A, Shinmura K, Kitamura Y, et al.MACCl as a marker for advanced colorectal carcinoma [J]. Anticancer Res,2010,30(7):2689-2692.
    [17]Shirahata A, Sakata M, Kitamura Y, et al. MACC 1 as a marker for peritoneal-disseminated gastric carcinoma[J]. Anticancer Res,2010,30(9):3441-3444.
    [18]Shimokawa H, Uramoto H, Onitsuka T, et al. Overexpression of MACC 1 mRNA in lung adenocarcinoma is associated with postoperative recurrence [J]. J Thorac Cardiovasc Surg,2011,141(4):895-898.
    [19]Shirahata A, Fan W, Sakuraba K, et al. MACC 1 as a Marker for Vascular Invasive Hepatocellular Carcinoma [J]. Anticancer Res,2011,31 (3):777-780.
    [20]Cooper CS, Park M, Blair DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line[J]. Nature,1984,311(5981):29-33.
    [21]Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product [J]. Science,1991,251(4995):802-804.
    [22]Schmidt C, Bladt F, Goedecke S, et al. Scatter factor/hepatocyte growth factor is essential for liver development [J]. Nature,1995,373(6516):699-702.
    [23]Bahary N, Zon LI. Development. Endothelium chicken soup for the endoderm [J]. Science, 2001,294(5542):530-531.
    [24]Wislez M, Rabbe N, Marchal J, et al. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma:role in tumor progression and death[J]. Cancer Res,2003,63(6):1405-1412.
    [25]Nicola MH, Bizon R, Machado JJ, et al. Breast cancer micrometastases:different interactions of carcinoma cells with normal and cancer patients'bone marrow stromata [J]. Clin Exp Metastasis,2003,20(5):471-479.
    [26]Qian CN, Guo X, Cao B, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma [J]. Cancer Res,2002,62(2):589-596.
    [27]Xie Q, Liu KD, Hu MY, et al. SF/HGF-c-Met autocrine and paracrine promote metastasis of hepatocellular carcinoma [J].World J Gastroenterol,2001,7(6):816-820.
    [28]Stein U, Dahlmann M, Walther W. MACC1-more than metastasis? Facts and predictions about a novel gene [J]. J Mol Med,2010,88(1):11-18.
    [29]Fire A, Xu S, Montgonery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-811
    [30]Luo KQ, Chang DC. The gene-silencing efficiency of siRNA is strongly dependent on the local st ructure of mRNA at the targeted region [J].Biochem Biophys Res Commun, 2004,318(1):303-310.
    [31]Sattler M, Salgia R.C-MET and hepatocyte growth factor:potential as novel targets in cancer therapy [J]. Curr Oncol Rep,2007,9(2):102-108.
    [32]Bottaro, DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the C-MET proto-oncogene product [J]. Science,1991,251 (4995):802-804.
    [33]Chmielowiec J, Borowiak M, Morkel M, et al.C-MET is essential for wound healing in the skin [J]. J Cell Biol,2007,177(1):151-162.
    [34]Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J]. N at B iotechnol,2004,22 (3):326-330.
    [35]GongD, Ferrell JE. Picking a winner:new echanistic insights into the design of fective siRNAs [J]. Trends Biotechnol,2004,22(9):451-454.
    [36]Song E, Lee SK, W ang J, et al. RNA interference targeting Fas protects mice from fulm inant hepatitis [J]. Na t M ed,2003,9(3):347-351.
    [37]Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by Virus-mediated RNA interference [J]. Cancer Ce 11,2002,2(3):243-247.
    [38]Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J].Cell,1995,81(4):611-620.
    [39]Montgomery MK, Xu S, Fire A, et al. RNA as a target of double stranded RNA-mediated genetic interference in Caenorhabditis elegans [J]. Proc Natl Acad Sci U S A,1998,95 (26): 15502-15507.
    [40]Paul CP, Good PD, Winer I, et al.Effective expression of small interfering RNA in human cells [J].Nat Biotechnol,2002,20(5):505-508.
    [41]Galimi F, Torti D, Sassi F, et al. Genetic and Expression Analysis of MET, MACC1, and HGF in Metastatic Colorectal Cancer:Response to Met Inhibition in Patient Xenografts and Pathologic Correlations [J]. Clin Cancer Res,2011,17(10):3146-3156.
    [42]Chundong G, Uramoto H, Onitsuka T, et al. Molecular Diagnosis of MACC1 Status in Lung Adenocarcinoma by Immunohistochemical Analysis [J]. Anticancer Res,2011,31(4): 1141-1145.
    [43]Bishop JM, Weinberg RA, eds [M]. Molecular Oncology In Cancer Medicine. New York: Scientific American, Inc.1996.
    [44]Hanahan D, Weinberg RA. The Hallmarks of Cancer [J]. Cell,2000,100(1):57-70,
    [45]Hanahan D, Weinberg RA. Hallmarks of Cancer:The Next Generation [J]. Cell,2011, 144(5):646-674.
    [46]Wynford-Thomas D, Kipling D. Telomerase. Cancer and the knockout mouse [J].Nature, 1997,389(6651):551-552.
    [47]Friend SH, Dryja TP, Weinberg RA.Oncogenes and tumor-suppressing genes [J].N Engl J Med,1988,318(10):618-622.
    [48]Klein G. Oncogenes and tumor suppressor genes [J]. Acta Oncol,1988,27(4):427-437.
    [49]Lewin B. Gene VI [M].New York:Oxford university press,1997.1131-1172.
    [50]Williams RL, Hilton DJ, Pease S, et al. Myeloid leukemia inhibitory factor maintains the developmental of embryonic stem cells [J].Nature,1988,336(6200):684-687.
    [51]Shert J. Cancer cell cycle [J].Science,1996,274(5293):1672-1677.
    [52]Solter D, Gearhart J. Putting stem cells to work [J].Science,1999,283(5407):1468-1470.
    [53]Funk JO. Cancer cell cycle control [J].Anticancer Res,1999,19(6A):4772-4780.
    [54]Molinari M. Cell cycle checkpoints and their inactivation in human cancer [J].Cell Prolif, 2000,33(5):261-274.
    [55]Gorina S, Pavletich NP.Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2 [J].Science,1996,274(5289):1001-1005.
    [56]Somasundaram K.Tumor suppressor p53:regulation and function [J]. Front Biosci,2000,5: D424-437.
    [57]Mihich E. Harlow E. Twelfth annual pezcoller symposium:signaling cross-talks in cancer cell [J].Cancer Res,2000,60(24):7177-7183.
    [58]Collins SJ, Groudine MT. Chronic myelogenous leukemia:amplification of a rearranged c-abl oncogene in both chronic phase and blast crisis [J]. Blood,1987,69(3):893-898.
    [59]Chialvo DR, Jalife J. Non-linear dynamics of cardiac excitation and impulse propagation [J].Nature,1987,330(6150):749-752.
    [60]Sreeramoju P, Libutti SK. Strategies for targeting tumors and tumor vasculature for cancer therapy [J]. Adv Genet,2010,69:135-152.
    [61]Levitzki A, Klein S. Signal transduction therapy of cancer [J]. Mol Aspects Med, 2010,31(4):287-329.
    [62]De Wever O, Lapeire L, De Boeck A, et al. Cellular and molecular mechanisms of cancer cell invasion [J]. Verh K Acad Geneeskd Belg,2010,72(5-6):309-326.
    [63]Copeland NG, Jenkins NA. Deciphering the genetic landscape of cancer--from genes to pathways [J]. Trends Genet,2009,25(10):455-462.
    [64]Hunter T.Oncoprotein networks [J]. Cell,1997,88(3):333-346.
    [65]Rommel C, Hafen E. Ras--a versatile cellular switch [J].Curr Opin Genet Dev,1998, 8(4):412-418.
    [66]Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more [J].Nat Rev Mol Cell Biol,2003,4(12):915-925.
    [67]Boccaccio C, Comoglio PM. Invasive growth:a MET-driven genetic programme for cancer and stem cells [J].Nat Rev Cancer,2006,6(8):637-645.
    [68]Takeuchi H, Bilchik A, Saha S, et al. c-MET expression level in primary colon cancer:a predictor of tumor invasion and lymph node metastases [J].Clin Cancer Res,2003,9 (4): 1480-1488.
    [69]Kammula US, Kuntz EJ, Francone TD, et al. Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome [J].Cancer Lett,2007,248(2):219-228.
    [70]Sattler M, Salgia R. C-Met and hepatocyte growth factor:potential as novel targets in cancer therapy [J]. Curr Oncol Rep,2007,9(2):102-108.
    [71]Chmielowiec J, Borowiak M, Morkel M, et al.C-MET is essential for wound healing in the skin [J]. J Cell Biol,2007,177(1):151-162.
    [72]Kolch W. Meaningful relationships:the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions [J]. Biochem J,2000,351 Pt 2:289-305.
    [73]Chang L, Karin M. Mammalian MAP kinase signalling cascades [J].Nature,2001,410 (6824):37-40.
    [74]Giroux S, Tremblay M, Bernard D, et al. Embryonic death of Mekl-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta [J]. Curr Bio,1999,9(7):369-372.
    [75]Simon C, Hicks MJ, Nemechek AJ, et al. PD 098059, an inhibitor of ERK1 activation, attenuates the in vivo invasiveness of head and neck squamous cell carcinoma [J]. Br J Cancer,1999,80(9):1412-1419.
    [76]Mars WM, Zarnegar R, Michalpoulos GK. Activation of hepatocyte growth factor by the plasiminogen activators uPA and Tpa [J]. Am J Pathol,1993,43(3):949-958.
    [77]LiuY.The human hepatocyte growth factor recptor gene:complete structural organization and promoter characterization [J].Gene,1998,215(1):159-169.
    [78]Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase:enhanced signaling through adapter proteins [J]. Oncogene,2000,19(49):5582-5589.
    [79]Wang X, DeFrances MC, Dai Y, et al. A mechanism of cell suvrival:sequesrtation of Fas by the HGF receptor Met [J].Mol Cell,2002,9(2):411-421.
    [80]Mekrulova-Rainon T, England P, Ding S, et al. The N-temrinal domain of hepatocyte growth factor inhibits the angiogenic behavior of endothelial cells independently from binding to the c-met receptor [J]. J Biol Chem,2003,278(39):37400-37408.
    [81]Hamasuna R, Kataoka H, Moriyama T, et al. Reuglation of matrix metalloproteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor in human glioma cells:HGF/SF enhances MMP-2 experssion and activation accompanying up-reuglation of menbrance type-1 MMP [J]. Int J Cnacer,1999,82(2):274-281.
    [82]Li SS. Specificity and versatility of SH3 and other proline-recognition domains:structural basis and implications for cellular signal transduction [J]. Biochem J,2005,390(Pt3): 641-653.
    [83]Liang H, O'Reilly S, Liu Y, et al. Spl regulates expression of MET, and ribozyme-induced downregulation of MET in fibrosarcoma-derived human cells reduces or eliminates their tumorigenicity [J]. Int J Oncol,2004,24(5):1057-1067.
    [84]Boardman LA. Overexpression of MACC1 leads to downstream activation of HGF/MET and potentiates metastasis and recurrence of colorectal cancer [J]. Genome Med,2009, 1(4):36.
    [85]Potempa S, Ridley AJ. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly [J]. Mol Biol Cell,1998,9(8):2185-2200.
    [86]Qiao L, Wong BC. Targeting apoptosis as an approach for gastrointestinal cancer therapy [J].Drug Resist Updat.2009 Jun;12(3):55-64.
    [87]Mendes O, Kim HT, Lungu G, et al.MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2 [J].Clin Exp Metastasis. 2007;24(5):341-351
    [88]Loesch M, Zhi HY, Hou SW, et al. p38gamma MAPK cooperates with c-Jun in trans-activating matrix metalloproteinase 9 [J]. J Biol Chem,2010,285(20):15149-15158.
    [89]You WK, McDonald DM. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis [J].BMB Rep,2008,41(12):833-9.
    [90]Jiang Y, Xu W, Lu J, et al. Invasiveness of hepatocellular carcinoma cell lines:contribution of hepatocyte growth factor, c-met, and transcription factor Ets-1 [J].Biochem Biophys Res Commun,2001,286(5):1123-1130.
    [91]Takeuchi H, Kim J, Fujimoto A, et al.X-Linked inhibitor of apoptosis protein expression level in colorectal cancer is regulated by hepatocyte growth factor/C-met pathway via Akt signaling [J]. Clin Cancer Res,2005,11(21):7621-7628.
    [92]Martin TA, Jiang WG. Hepatocyte growth factor and its receptor signalling complex as targets in cancer therapy [J]. Anticancer Agents Med Chem,2010,10(1):2-6.
    [1]Hanahan D, Weinberg RA. The Hallmarks of Cancer [J]. Cell,2000,100(l):57-70,
    [2]Hanahan D, Weinberg RA.Hallmarks of Cancer:The Next Generation [J]. Cell,2011, 144(5):646-674.
    [3]Fedi P, Tronick SR, Aaronson SA. Growth factors [C]. In:Cancer Medicine, Holland JF, Bast RC, Morton DL, Frei E, Kufe DW, Weichselbaum RR, eds. Williams and Wilkins: Baltimore, MD,1997.41-64.
    [4]Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer:correlation of relapse and survival with amplification of the HER-2/neu oncogene [J]. Science,1987,235:177-182.
    [5]Yarden Y, Ullrich A. EGF and erbB2 receptor overexpression in human tumors. Growth factor recepor tyrosine kinases [J]. Annu Rev Biochem,1988,57:443-478.
    [6]DiFiore PP, Pierce JH, Kraus MH, et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells [J]. Science,1987,237:178-182.
    [7]Lukashev ME, Werb Z. ECM signaling:orchestrating cell behaviour and misbehaviour [J]. Trends Cell Biol,1998,8:437-441.
    [8]Giancotti FG, Ruoslahti E. Integrin signaling [J]. Science,1999,285:1028-1032.
    [9]Aplin AE, Howe A, Alahari SK, et al. Signal transduction and signal modulation by cell adhesion receptors:the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins [J]. Pharmacol Rev,1998,50:197-263.
    [10]Hunter T. Oncoprotein networks [J]. Cell,1997,88:333-346.
    [11]Rommel C, Hafen E. Ras—a versatile cellular switch [J]. Curr Opin Genet Dev,1998, 8:412-418.
    [12]Davies MA, Samuels Y. Analysis of the genome to personalize therapy for melanoma [J]. Oncogene,2010,29:5545-5555.
    [13]Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis [J]. Adv Cancer Res,2009,102:19-65.
    [14]Yuan TL, Cantley LC. PI3K pathway alterations in cancer:variations on a theme [J]. Oncogene,2008,27:5497-5510.
    [15]Wertz IE, Dixit VM. Regulation of death receptor signaling by the ubiquitin system [J]. Cell Death Differ,2010,17:14-24.
    [16]Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis:an emerging feature of cancer [J]. Nat Rev Cancer,2008,8:835-850.
    [17]Cabrita MA, Christofori G. Sprouty proteins, masterminds of receptor tyrosine kinase signaling [J]. Angiogenesis,2008,11:53-62.
    [18]Amit I, Citri A, Shay T, et al. A module of negative feedback regulators defines growth factor signaling [J]. Nat Genet,2007,39:503-512.
    [19]Sudarsanam S, Johnson DE. Functional consequences of mTOR inhibition [J]. Curr Opin Drug Discov Devel,2010,13:31-40.
    [20]O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt [J]. Cancer Res,2006,66:1500-1508.
    [21]Weinberg RA. The retinoblastoma protein and cell cycle control [J]. Cell,1995, 81:323-330.
    [22]Moses HL, Yang E Y, Pietenpol JA. TGF-b stimulation and inhibition of cell proliferation: new mechanistic insights [J]. Cell,1990,63:245-247.
    [23]Hannon GJ, Beach D. P15INK4B is a potential effector of TGF-beta-induced cell cycle arrest [J]. Nature,1994,371:257-261.
    [24]Datto MB, Hu PP, Kowalik TF, et al. The viral oncoprotein E1A blocks transforming growth factor b-mediated induction of p21/WAF1/Cipl and p15/INK4B [J]. Mol Cell Biol, 1997,17:2030-2037.
    [25]Fynan TM, Reiss M. Resistance to inhibition of cell growth by transforming growth factor-b and its role in oncogenesis [J]. Crit Rev Oncog,1993,4:493-540.
    [26]Markowitz S, Wang J, Meyeroff L, et al. Inactivation of the type Ⅱ TGF-b receptor in colon cancer cells with microsatellite instability [J]. Science,1995,268:1336-1338.
    [27]Foley KP, Eisenman RN. Two MAD tails:what the recent knockouts of Madl and Mxl tell us about the MYC/MAX/MAD network [J]. Biochim Biophys Acta,1999, 1423:M37-47.
    [28]Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer [J]. Cell,1996, 87:159-170.
    [29]Okada T, Lopez-Lago M, Giancotti FG. Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane [J]. J Cell Biol,2005, 171:361-371.
    [30]Curto M, Cole BK, Lallemand D, et al. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin [J]. J Cell Biol,2007,177:893-903.
    [31]Hezel AF, Bardeesy N. LKB1, linking cell structure and tumor suppression [J]. Oncogene, 2008,27:6908-6919.
    [32]Partanen JI, Nieminen AI, Klefstrom J.3D view to tumor suppression:Lkb1, polarity and the arrest of oncogenic c-Myc [J]. Cell Cycle,2009,8:716-724.
    [33]Shaw RJ. Tumor suppression by LKB1:SIK-ness prevents metastasis [J]. Sci Signal,2009, 2:pe55.
    [34]Lotem J, Sachs L. Control of apoptosis in hematopoiesis and leukemia by cytokines, tumor suppressor and oncogenes [J]. Leukemia,1996,10:925-931.
    [35]Butt AJ, Firth SM, Baxter RC. The IGF axis and programmed cell death [J]. Immunol Cell Biol,1999,77:256-262.
    [36]Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors [J]. Curr Opin Cell Biol,1999,11:255-260.
    [37]Evan G, Littlewood T. A matter of life and cell death [J]. Science,1998,281:1317-1322.
    [38]Giancotti FG, Ruoslahti E. Integrin signaling [J]. Science,1999,285:1028-1032.
    [39]Ishizaki Y, Cheng L, Mudge AW, et al. Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells [J]. Mol Biol Cell,1995,6:1443-1458.
    [40]Green DR, Reed JC. Mitochondria and apoptosis [J]. Science,1998,281:1309-1312.
    [41]Thornberry NA, Lazebnik Y. Caspases:enemies within. [J] Science,1998,281:1312-1316.
    [42]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26:239-257.
    [43]Korsmeyer SJ. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes [J]. Annu Rev Immunol,1992,10:785-807.
    [44]Vaux DL, Cory S, Adams TM. Bcl-2 promotes the survival of hematopoietic cells and cooperates with c-myc to immortalizepre-B cells [J]. Nature,1988,335:440-442.
    [45]Harris CC. p53 tumor suppressor gene:from the basic research laboratory to the clinic—an abridged historical perspective [J]. Carcinogenesis,1996,17:1187-1198.
    [46]Levine AJ. p53, the cellular gatekeeper for growth and division [J]. Cell,1997, 88:323-331.
    [47]Downward J. Mechanisms and consequences of activation of protein kinase B/Akt [J]. Curr Opin Cell Biol,1998,10:262-267.
    [48]Cantley LC, Neel BG. New insights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway [J]. Proc Natl Acad Sci USA,1999,96:4240-4245.
    [49]Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer [J]. Nature,1998,396:699-703.
    [50]Levine B, Kroemer G. Autophagy in the pathogenesis of disease [J]. Cell,2008, 132:27-42.
    [51]Mizushima N. Autophagy:process and function [J]. Genes Dev,2007,21:2861-2873.
    [52]Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer [J]. Nat Rev Cancer,2007,7:961-967.
    [53]Sinha S, Levine B. The autophagy effector Beclin 1:a novel BH3-only protein [J]. Oncogene,2008,27 (Suppl 1):S137-S148.
    [54]White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer [J]. Clin Cancer Res,2009,15:5308-5316.
    [55]Hayflick L. Mortality and immortality at the cellular level. A review [J]. Biochemistry, 1997,62:1180-1190.
    [56]Wright WE, Pereira-Smith OM, Shay JW. Reversible cellular senescence:implications for immortalization of normal human diploid fibroblasts [J]. Mol Cell Biol,1989, 9:3088-3092.
    [57]Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity [J]. EMBOJ,1992,11:1921-1929.
    [58]Kawai T, Hiroi S, Nakanishi K, et al. Telomere length and telomerase expression in atypical adenomatous hyperplasia and small bronchioloalveolar carcinoma of the lung [J]. Am J Clin Pathol,2007,127:254-262.
    [59]Hansel DE, Meeker AK, Hicks J, et al. Telomere length variation in biliary tract metaplasia, dysplasia, and carcinoma [J]. Mod Pathol,2006,19:772-779.
    [60]Blasco MA. Telomeres and human disease:ageing, cancer and beyond [J]. Nat Rev Genet, 2005,6:611-622.
    [61]Shay JW, Wright WE. Hayflick, his limit, and cellular ageing [J]. Nat Rev Mol Cell Biol, 2000,1:72-76.
    [62]Bryan TM, Cech TR. Telomerase and the maintenance of chromosome ends [J]. Curr Opin Cell Biol,1999,11:318-324.
    [63]Bryan TM, Englezou A, Gupta J, et al. Telomere elongation in immortal human cells without detectable telomerase activity [J]. EMBO J,1995,14:4240-4248.
    [64]Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic [J]. Adv Cancer Res, 1996,69:135-174.
    [65]Folkman J. Tumor angiogenesis [C]. In:Cancer Medicine, Holland JF, Bast RC, Morton DL, Frei E, Kufe DW, Weichselbaum RR, eds. Williams and Wilkins:Baltimore, MD, 1997.181-204.
    [66]Hanahan D, Folkman J. Patterns and emergingme chanisms of the angiogenic switch during tumorigenesis [J]. Cell,1996,86:353-364
    [67]Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis [J]. Semin Cancer Biol,2009,19:329-337.
    [68]Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch [J]. Nat Rev Cancer, 2003,3:401-410.
    [69]Fedi P, Tronick SR, Aaronson SA. Growth factors [C]. In:Cancer Medicine, Holland JF, Bast RC, Morton DL, Frei E, Kufe DW, Weichselbaum RR, eds. Williams and Wilkins: Baltimore, MD,1997.41-64.
    [70]Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis [J]. Semin Cancer Biol,1999, 9:211-220.
    [71]Bull HA, Brickell PM, Dowd PM. Src-related protein tyrosine kinases are physically associated with the surface antigen CD36 in human dermal micro vascular endothelial cells [J]. FEBS Lett,1994,351:41-44.
    [72]Folkman J. Role of angiogenesis in tumor growth and metastasis [J]. Semin Oncol,2002, 29(6,Suppl16):15-18.
    [73]Folkman J. Angiogenesis [J]. Annu Rev Med,2006,57:1-18.
    [74]Kazerounian S, Yee KO, Lawler J. Thrombospondins in cancer [J]. Cell Mol Life Sci,2008, 65:700-712.
    [75]Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis [J]. Cancer Res,2005, 65:3967-3979.
    [76]Ribatti D. Endogenous inhibitors of angiogenesis:a historical review [J]. Leuk Res,2009, 33:638-644.
    [77]Varner JA, Cheresh DA. Integrins and cancer [J]. Curr Opin Cell Biol,1996,8:724-730.
    [78]Hynes RO, Wagner DD. Genetic manipulation of vascular adhesion molecules in mice [J]. J Clin Invest,1996,98:2193-2195.
    [79]Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis:a moving target for therapeutic intervention [J]. J Clin Invest,1999,103:1237-1241.
    [80]Whitelock JM, Murdoch AD, Iozzo RV, et al. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases [J]. J Biol Chem,1996,271:10079-10086.
    [81]Gately S, Twardowski P, Stack MS, et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin [J]. Proc Natl Acad Sci USA,1997, 94:10868-10872.
    [82]Mac Gabhann F, Popel AS. Systems biology of vascular endothelial growth factors [J]. Microcirculation,2008,15:715-738.
    [83]Ferrara N. Vascular endothelial growth factor [J]. Arterioscler ThrombVasc Biol,2009, 29:789-791.
    [84]Carmeliet P. VEGF as a key mediator of angiogenesis in cancer [J]. Oncology,2005,69 (Suppl 3):4-10.
    [85]Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases:Regulators of the tumor microenvironment [J]. Cell,2010,141:52-67.
    [86]Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo [J]. Nature,1993,362:841-844.
    [87]Millauer B, Shawver LK, Plate KH, et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant [J]. Nature,1994,367:576-579.
    [88]Bergers G, Javaherian K, Lo KM, et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice [J]. Science,1999,284:808-812.
    [89]Singh RK, Gutman M, Bucana CD, S et al. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas [J]. Proc Natl Acad Sci USA,1995,92:4562-4566.
    [90]Volpert OV, Dameron KM, Bouck N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity [J]. Oncogene,1997,14:1495-1502.
    [91]Dameron KM, Volpert OV, Tainsky MA, et al. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1 [J]. Science,1994,265:1582-1584.
    [92]Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis [J]. Nature,1999, 399:271-275.
    [93]Rak J, Filmus J, Finkenzeller G, et al. Oncogenes as inducers of tumor angiogenesis [J]. Cancer Metastasis Rev,1995,14:263-277.
    [94]Sporn MB. The war on cancer [J]. Lancet,1996,347:1377-1381.
    [95]Fidler IJ. The pathogenesis of cancer metastasis:the'seed and soil'hypothesis revisited [J]. Nat Rev Cancer,2003,3:453-458.
    [96]Talmadge JE, Fidler IJ. AACR centennial series:the biology of cancer metastasis: historical perspective [J]. Cancer Res,2010,70:5649-5669.
    [97]Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene [J]. Trends Bio chem Sci,1999,24:73-76.
    [98]Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer [J]. Nat Rev Cancer,2004,4:118-132.
    [99]Berx G, van Roy F. Involvement of members of the cadherin superfamily in cancer [J]. Cold Spring Harb Perspect Biol,2009, 1:a003129.
    [100]Johnson JP. Cell adhesion molecules of the immunoglobulin supergene family and their role in malignant transformation and progression to metastatic disease [J]. Cancer Metastasis Rev,1991,10:11-22.
    [101]Kaiser U, Auerbach B, Oldenburg M. The neural cell adhesion molecule NCAM in multiple myeloma [J]. Leuk Lymphoma,1996,20:389-395.
    [102]Fogar P, Basso D, Pasquali C, et al. Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias [J]. Anticancer Res,1997,17:1227-1230.
    [103]Perl AK, Dahl U, Wilgenbus P, et al. Reduced expresion of neural cell adhesion molecule induces metastatic dissemination of pancreatic b tumor cells [J]. Nat Med,1999, 5:286-291.
    [104]Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer [J]. Chem Biol,1996,3:895-904.
    [105]Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis [J]. J Natl Cancer Inst,1997,89:1260-1270.
    [106]Bergers G, Coussens LM. Extrinsic regulators of epithelial tumor progression: metalloproteinases [J]. Curr Opin Genet Dev,2000,10:120-127.
    [107]Johnsen M, Lund LR, Romer J, et al. Cancer invasion and tissue remodeling:common themes in proteolytic matrix degradation [J]. Curr Opin Cell Biol,1998,10:667-671.
    [108]Werb Z. ECM and cell surface proteolysis:regulating cellular ecology [J]. Cell,1997, 91:439-442.
    [109]Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer [J]. Development,2005,132:3151-3161.
    [110]Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition:a cancer researcher's conceptual friend and foe [J]. Am J Pathol,2009,174:1588-1593.
    [111]Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits [J]. Nat Rev Cancer,2009,9:265-273.
    [112]Thiery JP, Acloque H, Huang RY, et al. Epithelial mesenchymal transitions in development and disease [J]. Cell,2009,139:871-890.
    [113]Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion [J]. Cancer Metastasis Rev,2009,28:15-33.
    [114]Hlubek F, Brabletz T, Budczies J, et al. Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer [J]. Int J Cancer,2007,121:1941-1948.
    [115]Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression [J]. J Mammary Gland Biol Neoplasia,2010,15:117-134.
    [116]Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer [J]. Cancer Metastasis Rev,2009,28:151-166.
    [117]Taube JH, Herschkowitz JI, Komurov K, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes [J]. Proc Natl Acad Sci USA,2010,107:15449-15454.
    [118]Yang J, Weinberg RA. Epithelial-mesenchymal transition:At the crossroads of development and tumor metastasis [J]. Dev Cell,2008,14:818-829.
    [119]Peinado H, Marin F, Cubillo E, et al. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo [J]. J Cell Sci,2004,117:2827-2839.
    [120]Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis [J]. Cell,2010,141:39-51.
    [121]Kalluri R, Zeisberg M. Fibroblasts in cancer [J]. Nat Rev Cancer,2006,6:392-401.
    [122]Joyce JA, Pollard JW. Microenvironmental regulation of metastasis [J]. Nat Rev Cancer, 2009,9:239-252.
    [123]Egeblad M, Nakasone ES, Werb Z. Tumors as organs:complex tissues that interface with the entire organism [J]. Dev Cell,2010,18:884-901.
    [124]Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis [J]. Nature,2007,449:557-563.
    [125]Gocheva V, Wang HW, Gadea BB, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion [J]. Genes Dev, 2010,24:241-255.
    [126]Mohamed MM, Sloane BF. Cysteine cathepsins:multifunctional enzymes in cancer [J]. Nat Rev Cancer,2006,6:764-775.
    [127]Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer [J]. Trends Pharmacol Sci,2008,29:22-28.
    [128]Wyckoff JB, Wang Y, Lin EY, et al. Direct visualization of macrophage assisted tumor cell intravasation in mammary tumors [J]. Cancer Res,2007,67:2649-2656.
    [129]Warburg OH. The Metabolism of Tumours:Investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlem [M]. London:Arnold Constable,1930.6.
    [130]Warburg O. On the origin of cancer cells [J]. Science,1956,123:309-314.
    [131]Warburg O. On respiratory impairment in cancer cells [J]. Science,1956,124:269-270.
    [132]Hsu PP, Sabatini DM. Cancer cell metabolism:Warburg and beyond [J]. Cell,2008, 134:703-707.
    [133]Jones RG, Thompson CB. Tumor suppressors and cell metabolism:a recipe for cancer growth [J]. Genes Dev,2009,23:537-548.
    [134]DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer:Metabolic reprogramming fuels cell growth and proliferation [J]. Cell Metab,2008,7:11-20.
    [135]Semenza GL. HIF-1:upstream and downstream of cancer metabolism [J]. Curr Opin Genet Dev,2010,20:51-56.
    [136]Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics [J]. Oncogene,2010,29:625-634.
    [137]Kroemer G, Pouyssegur J. Tumor cell metabolism:Cancer's Achilles'heel [J]. Cancer Cell, 2008,13:472-482.
    [138]Potter VR. The biochemical approach to the cancer problem [J]. Fed Procl,1958, 7:691-697.
    [139]Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation [J]. Science,2009,324:1029-1033.
    [140]Semenza GL. Tumor metabolism:cancer cells give and take lactate [J]. J Clin Invest,2008, 118:3835-3837.
    [141]Feron O. Pyruvate into lactate and back:from the Warburg effect to symbiotic energy fuel exchange in cancer cells [J]. Radiother Oncol,2009,92:329-333.
    [142]Kennedy KM, Dewhirst MW. Tumor metabolism of lactate:the influence and therapeutic potential for MCT and CD 147 regulation [J]. Future Oncol,2010,6:127-148.
    [143]Hardee ME, Dewhirst MW, Agarwal N, et al. Novel imaging provides new insights into mechanisms of oxygen transport in tumors [J]. Curr Mol Med,2009,9:435-441.
    [144]Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer:alterations at a crossroads of cellular metabolism [J]. J Natl Cancer Inst,2010,102:932-941.
    [145]Yen KE, Bittinger MA, Su SM, et al. Cancer-associated IDH mutations:biomarker and therapeutic opportunities [J]. Oncogene,2010,29:6409-6417.
    [146]Vajdic CM, van Leeuwen MT. Cancer incidence and risk factors after solid organ transplantation [J]. Int J Cancer,2009,125:1747-1754.
    [147]Teng MW, Swann JB, Koebel CM, et al. (). Immune-mediated dormancy:an equilibrium with cancer [J]. J Leukoc Biol,2008,84:988-993.
    [148]Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape [J]. Immunology,2007,121:1-14.
    [149]Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting:the roles of immunity in suppressing tumor development and shaping tumor immunogenicity [J]. Adv Immunol,2006,90:1-50.
    [150]Bindea G, Mlecnik B, Fridman WH, et al. Natural immunity to cancer in humans [J]. Curr Opin Immunol,2010,22:215-222.
    [151]Ferrone C, Dranoff G. Dual roles for immunity in gastrointestinal cancers [J]. J Clin Oncol, 2010,28:4045-4051.
    [152]Nelson BH. The impact of T-cell immunity on ovarian cancer outcomes [J]. Immunol Rev, 2008,222:101-116.
    [153]Page's F, Galon J, Dieu-Nosjean MC, et al. Immune infiltration in human tumors:a prognostic factor that should not be ignored [J]. Oncogene,2010,29:1093-1102.
    [154]Strauss DC, Thomas JM. Transmission of donor melanoma by organ transplantation [J]. Lancet Oncol,2010,11:790-796.
    [155]Yang L, Pang Y, Moses HL. TGF-beta and immune cells:an important regulatory axis in the tumor microenvironment and progression [J]. Trends Immunol,2010,31:220-227.
    [156]Shields JD, Kourtis IC, Tomei AA, et al. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21 [J]. Science,2010,328:749-752.
    [157]Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells:linking inflammation and cancer [J]. J Immunol,2009,182:4499-4506.
    [158]Mougiakakos D, Choudhury A, Lladser A, et al. Regulatory T cells in cancer [J]. Adv Cancer Res,2010,107:57-117.
    [159]Jones PA, Baylin SB. The epigenomics of cancer [J]. Cell,2007,128:683-692.
    [160]Esteller M. Cancer epigenomics:DNA methylomes and histone-modification maps [J]. Nat Rev Genet,2007,8:286-298.
    [161]Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer:How cellular identity goes awry [J]. Dev Cell,2010,19:698-711.
    [162]Salk JJ, Fox EJ, Loeb LA. Mutational heterogeneity in human cancers:origin and consequences [J]. Ann Rev Pathol,2010,5:51-75.
    [163]Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer [J]. Nat Rev Mol Cell Biol,2010,11:220-228.
    [164]Collado M, Serrano M. Senescence in tumours:evidence from mice and humans [J]. Nat Rev Cancer,2010,10:51-57.
    [165]DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro-versus anti-tumor immunity [J]. Cancer Metastasis Rev,2010,29: 309-316.
    [166]de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development [J]. Nat Rev Cancer,2006,6:24-37.
    [167]Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer [J]. Cell,2010, 140:883-899.
    [168]Brabletz T, Jung A, Spaderna S, et al. Opinion:migrating cancer stem cells-an integrated concept of malignant tumour progression [J]. Nat Rev Cancer,2005,5:744-749.
    [169]Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions [J]. Nat Rev Mol Cell Biol,2006,7:131-142.
    [170]Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells [J]. Nature, 2001,414:105-111.
    [171]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J]. Nat Med,1997,3:730-737.
    [172]Gilbertson RJ, Rich JN. Making a tumour's bed:glioblastoma stem cells and the vascular niche [J]. Nat Rev Cancer,2007,7:733-736.
    [173]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells [J]. Proc Natl Acad Sci USA,2003,100:3983-3988.
    [174]Ahmed Z, Bicknell R. Angiogenic signaling pathways [J]. Methods Mol Biol,2009, 467:3-24.
    [175]Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases [J]. Nature,2000, 407:249-257.
    [176]Dejana E, Orsenigo F, Molendini C, et al. Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees [J]. Cell Tissue Res,2009,335:17-25.
    [177]Pasquale EB. Eph receptors and ephrins in cancer:bidirectional signaling and beyond [J]. Nat Rev Cancer,2010,10:165-180.
    [178]Pietras K, Ostman A. Hallmarks of cancer:interactions with the tumor stroma [J]. Exp Cell Res,2010,316:1324-1331.
    [179]Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance [J]. Neuro-oncol,2005,7:452-464.
    [180]Gaengel K, Genove'G, Armulik A, et al. Endothelialmural cell signaling in vascular development and angiogenesis [J]. Arterioscler Thromb Vasc Biol,2009,29:630-638.
    [181]Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression [J]. Nature,2004,432:332-337.
    [182]Dirat B, Bochet L, Escourrou G, et al. Unraveling the obesity and breast cancer links:a role for cancer-associated adipocytes [J]. Endocr Dev,2010,19:45-52.
    [183]Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma [J]. Exp Cell Res,2010, 316:2713-2722.
    [184]Shimoda M, Mellody KT, Orimo A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin [J]. Cell Dev Biol,2010,21:19-25.
    [185]Nakamura T, Nawa K, Ichihara A, et al. Purification and subunit structure of hepatocyte growth factor from rat platelets [J]. FEBS Lett,1987,224:311-316.
    [186]Miyazawa K, Tsubouchi H, Naka D, et al. Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor [J]. Biochem Biophys Res Commun,1989, 163:967-973.
    [187]Nakamura T. Molecular characterization of hepatocyte growth factor (HGF) [J]. Seikagaku, 1989,61:1243-1247.
    [188]Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor [J]. Nature,1989,342:440-443.
    [189]Donate LE, Gherardi E, Srinivasan N, et al. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP) [J]. Protein Sci,1994, 3:2378-2394.
    [190]Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product [J]. Science,1991,251:802-804.
    [191]Naldini L, Vigna E, Narsimhan RP, et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET [J]. Oncogene,1991,6:501-504.
    [192]Dean M, Park M, Le Beau MM, et al. The human met oncogene is related to the tyrosine kinase oncogenes [J]. Nature,1985,318:385-388.
    [193]Montesano R, Matsumoto K, Nakamura T, et al. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor [J]. Cell,1991,67:901-908.
    [194]Tsarfaty I, Resau JH, Rulong S, et al. The met proto-oncogene receptor and lumen formation [J]. Science,1992,257:1258-1261.
    [195]Tsarfaty I, Rong S, Resau JH, et al. The Met proto-oncogene mesenchymal to epithelial cell conversion [J]. Science,1994,263:98-101.
    [196]Prat M, Narsimhan RP, Crepaldi T, et al. The receptor encoded by the human c-MET oncogene is expressed in hepatocytes, epithelial cells and solid tumors [J]. Int J Cancer, 1991,49:323-328.
    [197]Huntsman D, Resau JH, Klineberg E, et al. Comparison of c-met expression in ovarian epithelial tumors and normal epithelia of the female reproductive tract by quantitative laser scan microscopy [J]. Am J Pathol,1999,155:343-348.
    [198]Klominek J, Baskin B, Liu Z, et al. Hepatocyte growth factor/scatter factor stimulates chemotaxis and growth of malignant mesothelioma cells through c-met receptor [J]. Int J Cancer,1998,76:240-249.
    [199]Ponzetto C, Bardelli A, Zhen Z, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family [J]. Cell, 1994,77:261-271.
    [200]Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase:enhanced signaling through adapter proteins [J]. Oncogene,2000,19:5582-5589.
    [201]Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more [J]. Nat Rev Mol Cell Biol,2003,4:915-925.
    [202]Boccaccio C, Ando M, Tamagnone L, et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway [J]. Nature,1998,391:285-288.
    [203]Vande Woude GF, Jeffers M, Cortner J, et al. Met-HGF/SF:tumorigenesis, invasion and metastasis [J]. Ciba Found Symp,1997,212:119-130; discussion 130-132,148-154.
    [204]To CT, Tsao MS. The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers [J]. Oncol Rep,1998,5:1013-1024.
    [205]Jiang WG, Hiscox SE, Parr C, et al. Antagonistic effect of NK4, a novel hepatocyte growth factor variant, on in vitro angiogenesis of human vascular endothelial cells [J]. Clin Cancer Res,1999,5:3695-3703.
    [206]Rosen EM, Lamszus K, Laterra J, et al. HGF/SF in angiogenesis [J]. Ciba Found Symp, 1997,212:215-26; discussion 227-229.
    [207]Zhang YW, Su Y, Volpert OV, et al. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation [J]. Proc Natl Acad Sci USA,2003,100:12718-12723.
    [208]Sawada K, Radjabi AR, Shinomiya N, et al. c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion [J]. Cancer Res,2007,67:1670-1679.
    [209]Sowter HM, Corps AN, Smith SK. Hepatocyte growth factor (HGF) in ovarian epithelial tumour fluids stimulates the migration of ovarian carcinoma cells [J]. Int J Cancer,1999, 83:476-480.
    [210]Saga Y, Mizukami H, Suzuki M, et al. Expression of HGF/NK4 in ovarian cancer cells suppresses intraperitoneal dissemination and extends host survival [J]. Gene Ther,2001, 8:1450-1455.
    [211]Matsumoto K, Nakamura T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics [J]. Cancer Sci,2003,94:321-327.
    [212]Yashiro M, Chung YS, Inoue T, et al. Hepatocyte growth factor (HGF) produced by peritoneal fibroblasts may affect mesothelial cell morphology and promote peritoneal dissemination [J]. Int J Cancer,1996,67:289-293.
    [213]Warn R, Harvey P, Warn A, et al. HGF/SF induces mesothelial cell migration and proliferation by autocrine and paracrine pathways [J]. Exp Cell Res,2001,267:258-266.
    [214]Matsuzaki H, Kobayashi H, Yagyu T, et al. Reduced syndecan-1 expression stimulates heparin-binding growth factor-mediated invasion in ovarian cancer cells in a urokinase-independent mechanism [J]. Oncol Rep,200514,449-457
    [215]Zhou HY, Pon YL, Wong AS. Synergistic effects of epidermal growth factor and hepatocyte growth factor on human ovarian cancer cell invasion and migration:role of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase [J]. Endocrinology,2007,148:5195-5208.
    [216]Zhou HY, Wong AS. Activation of p70S6K induces expression of matrix metalloproteinase 9 associated with hepatocyte growth factor-mediated invasion in human ovarian cancer cells [J]. Endocrinology,2006,147:2557-2566.
    [217]Baykal C, Demirtas E, Al A, et al. Comparison of HGF (hepatocyte growth factor) levels of epithelial ovarian cancer cyst fluids with benign ovarian cysts [J]. Int J Gynecol Cancer, 2003,13:771-775.
    [218]Di Renzo MF, Olivero M, Katsaros D, et al. Overexpression of the Met/HGF receptor in ovarian cancer [J]. Int J Cancer,1994,58:658-662.
    [219]Moghul A, Lin L, Beedle A, et al. Modulation of c-MET proto-oncogene (HGF receptor) mRNA abundance by cytokines and hormones:evidence for rapid decay of the 8 kb c-MET transcript [J]. Oncogene,1994,9:2045-2052.
    [220]Ivan M, Bond JA, Prat M, et al. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells [J]. Oncogene, 1997,14:2417-2423.
    [221]Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene [J]. Cancer Cell,2003,3:347-361.
    [222]Di Renzo MF, Narsimhan RP, Olivero M, et al. Expression of the Met/HGF receptor in normal and neoplastic human tissues [J]. Oncogene,1991,6:1997-2003.
    [223]Rasola A, Anguissola S, Ferrero N, et al. Hepatocyte growth factor sensitizes human ovarian carcinoma cell lines to paclitaxel and cisplatin [J]. Cancer Res,2004, 64:1744-1750.
    [224]Coltella N, Rasola A, Nano E, et al. p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis [J]. Int J Cancer,2006,118:2981-2990.
    [225]Olivero M, Ruggiero T, Saviozzi S, et al. Genes regulated by hepatocyte growth factor as targets to sensitize ovarian cancer cells to cisplatin [J]. Mol Cancer Ther,2006, 5:1126-1135.
    [226]Kitamura S, Kondo S, Shinomura Y, et al. Met/HGF receptor modulates bcl-w expression and inhibits apoptosis in human colorectal cancers [J]. Br J Cancer,2000,83:668-673.
    [227]Abounader R, Ranganathan S, Lal B, et al. Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression [J]. J Natl Cancer Inst,1999,91:1548-1556.
    [228]Shinomiya N, Gao CF, Xie Q, et al. RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival [J]. Cancer Res,2004, 64:7962-7970.
    [229]Dalmay T, Edwards DR. MicroRNAs and the hallmarks of cancer [J]. Oncogene,2006, 25:6170-6175.
    [230]Webb CP, Hose CD, Koochekpour S, et al. The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network [J]. Cancer Res,2000,60:342-349.
    [231]Morotti A, Mila S, Accornero P, et al. K252a inhibits the oncogenic properties of Met, the HGF receptor [J]. Oncogene,2002,21:4885-4893.
    [232]Christensen JG, Schreck R, Burrows J, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo [J]. Cancer Res,2003,63:7345-7355.
    [233]Zou HY, Li Q, Lee JH, et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms [J]. Cancer Res,2007,67:4408-4441.
    [234]Cao B, Su Y, Oskarsson M, et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models [J]. Proc Natl Acad Sci USA,2001,98:7443-7448.
    [235]Burgess T, Coxon A, Meyer S, et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors [J]. Cancer Res,2006,66:1721-1729.
    [236]Jun HT, Sun J, Rex K, et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts [J]. Clin. Cancer Res,2007,13:6735-6742.
    [237]Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases [J]. Science,2002:1911-1912
    [238]Fanger GR. Regulation of the MAPK family members:Role of subcellular localization and architectural organization [J]. Histol Histopathol,1999,14:887-894.
    [239]Verhac MH, Kubiak J Z, Clarke HJ, et al. Microtubule and chromatin behavior followMAP kinase activity but notMPF activity during meiosis in mouse oocytes [J].Development, 1994,120(3):1017-1025.
    [240]Gebauer F, Richter J D. Synthesis and function of Mos:the control switch of vertebrate oocyte meiosis [J]. BioEssays,1996,19(1):23-28.
    [241]Vantery C, Campana A, Schorderet-Slatkine S. A role for the MEK-MAPK pathway in okadaic acid-induced meiotic resumption of incompetent growing mouse oocytes [J].Biol Reprod,2000,63(2):658-665
    [242]Sun QY, Lai L, Park KW, et al. Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilizationin vitro [J].Biol Reprod,2001,64(3):871-889.
    [243]Cohen P. The search for physiological substrates of MAP and SAP kinases in mammalian cells [J].Trands Cell Biol,1997,7(2):353-361.
    [244]Erlhac MH, Lefebvre C, Kubiak J Z. Mos activatesMAP kinase in mouse oocytes through two opposite pathways [J].The EMBO Journal,2000,22(10):6065-6074.
    [245]LinLL, WartmannM, Lin AY, et al. cPLA2 is phosphorylated and activated by MAP kinase.Cell,1993,72(2):269-278.
    [246]Gross SD, Schwab MS, Lewellyn AL. Induction of metaphase arrest in cleaving Xenopusembryos by the protein kinase p90rsk [J].Science,1999,286(8):1365-1367.
    [247]Garrington T, Johnson GL. Organization and regulation ofmitogen-activated protein kinase signaling pathway [J]. Curr Opin Cell Biol,1999,11:211-218.
    [248]Robinson MJ, Cobb MH. Mitogen activated protein kinase pathways [J]. Curr Opin Cell Biol,1997,9:180-186.
    [249]Han J, Sun P.The pathways to tumor suppression via route p38[J]. Trends Biochem Sci, 2007,32(8):364-371.
    [250]Sun P, Yoshizuka N, New L, et al.PRAKis essential for ras-induced senescence and tumor suppression [J].Cell,2007,128(2):295-308.
    [251]Wong SH, Shih RS, Schoene NW, et al.Zinc-induced G2/M blockage is p53 and p21 dependent in normal human bronchial epithelial cells [J]. Am J Physiol Cell Physiol,2008, 294(6):1342-1349.
    [252]Martinez-Caballero S, Dejean LM, Jonas EA, et al.The role of the mitochondrial apoptosis induced channel MAC in cytochrome c release [J]. J Bioenerg Biomembr,2005,37(3): 155-164.
    [253]Shyu KG, Lin S, Lee CC, et al. Evodiamine inhibits in vitro angiogenesis:Implication for antitumorgenicity [J].Life Sci,2006,78(19):2234-2243.
    [254]Thant AA, Nawa A, Kikkawa F, et al. Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells [J]. Clin Exp Metastasis,2000,18:423-428.
    [255]Gum R, Juarez J, Allgayer H, et al. Stimulation of urokinase-type plasminogen activator receptor expression by PMA requires JNK1-dependent and -independent signaling modules [J]. Oncogene,1998,17:213-225.
    [256]Davidson B, Givant-Horwitz V, Lazarovici P, et al. Matrix metalloproteinases(MMP), EMMPRIN(extracellular matrix metalloproteinase inducer) and mitogen-activated protein kinases (MAPK):co-expression in metastatic serous ovarian carcinoma [J].Clin Exp Metastasis,2003,20:621-631.
    [257]Steinmetz R, Wagoner HA, Zeng P, et al. Mechanisms regulating the constitutive activation of the extracellular signal-regulated kinase (ERK) signaling pathway in ovarian cancer and the effect of ribonucleic acid interference for ERK1/2 on cancer cell proliferation [J]. Mol Endoerinol,2004,18(10):2570-2582.
    [258]Suga S, Kato K, Ohgami T, et al. An inhibitory effect on cell proliferation by blockage of the MAPK/estrogen receptor/MDM2 signal pathway in gynecologic cancer [J].Gynecol Oncol,2007,105(2):341-350.
    [259]Persons DL, Yazlovitskaya EM, Cui W, et al. Cisplatin induced activation of mitogen-activated protein kinases in ovarian carcinoma cells:inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin [J]. Clin Cancer Res,1999, 5:1007-1014.
    [260]Wang TH, Popp DM, Wang HS, et al. Microtubule dysfunction induced by paclitaxel initiates apoptosis through both c-Jun N-terminal kinase (JNK)-dependent and-independent pathways in ovarian cancer cells [J]. J Biol Chem,1999,274:8208-8216.
    [261]Vecca F, Bagnato A, Catt KJ, et al. Transactivation of the epidermal growth factor receptor in endothelin-1 induced mitogenic signaling in human ovarian carcinoma cells [J]. Cancer Res,2000,60:5310-5317.
    [262]Kimura A, Ohmichi M, Kurachi H, et al. Role of mitogen-activated protein kinase/ extracellular signal-regulated kinase cascade in gonadotropin-releasing hormoneinduced growth inhibition of a human ovarian cancer cell line [J]. Cancer Res,1999,59:5133-5142.
    [263]Choi KC, Kang SK, Tai CJ, et al. Folliclestimulating hormone activates mitogen-activated protein kinase in preneoplastic and neoplastic ovarian surface epithelial cells [J]. J Clin Endocrinol Metab,2002,87:2245-2253.
    [264]Choi KC, Tai CJ, Tzeng CR, et al. Adenosine triphosphate (ATP) activates mitogen-activated protein kinases (MAPKs) in neoplastic ovarian surface epithelium (OSE) cells [J]. Biol Reprod,2003,68:309-315.
    [265]Baudhuin LM, Cristina KL, Lu J, et al. Akt activation induced by lysophosphatidic acid and sphingosine-1-phosphate requires both mitogen-activated protein kinase kinase and p38 mitogen-activated protein kinase and is cell-line specific [J]. Mol Pharmacol,2002, 62:660-671.
    [266]Venkatakrishnan G, Salgia R, Groopman JE. Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells [J]. J Biol Chem,2000,275:6868-6875.
    [267]Yazlovitskaya EM, Pelling JC, Persons DL. Association of apoptosis with the inhibition of extracellular signal-regulated protein kinase activity in the tumor necrosis factor alpharesistant ovarian carcinoma cell line UCI 101 [J]. Mol Carcinog,1999,25:14-20.
    [268]Beiner ME, Niv H, Haklai R, et al. Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells [J].Int J Gynecol Cancer,2006,16(Suppl 1):200-206.
    [269]Losa JH, Parada Cobo C, Viniegra JG, et al. Role of the p38 MAPK pathway in cisplatin-based therapy [J]. Oncogene,2003,22(26):3998-4006.
    [270]Mansouri A, Ridgway LD, Korapati AL, et al.Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells [J].J Biol Chem,2003,27(21):19245-19256.
    [271]Wei SQ, Sui LH, Zheng JH, et al.Role of ERK1/2 kinase in cisplatin-induced apoptosis in human ovarian carcinoma cells [J]. Chin Med Sci J,2004,19(2):125-129.
    [272]Hayakawa J, Ohmichi M, Kurachi H, et al. Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line [J]. J Biol Chem,1999,274:31648-31654.
    [273]Gebauer G, Mirakhur B, Nguyen Q, et al. Cisplatin-resistance involves the defective processing of MEKK1 in human ovarian adenocarcinoma 2008/C13 cells [J]. Int J Oncol, 2000,16:321-325.
    [274]Cui W, Yazlovitskaya EM, Mayo MS, et al. Cisplatin-induced response of c-jun N-terminal kinase 1 and extracellular signal-regulated protein kinases 1 and 2 in a series of cisplatin-resistant ovarian carcinoma cell lines [J]. Mol Carcinog,2000,29:219-228.
    [275]Mansouri A, Ridgway LD, Korapati AL, et al. Sustained activation of JNK-p38 MAP kinase pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells [J]. J Biol Chem,2003,278(21):19245-19256.
    [276]Seidman R, Gitelman I, Sagi O, et al. The role of ERK 1/2 and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian carcinoma cells [J]. Exp Cell Res,2001, 268:84-92.
    [277]Losa JH, Parada Cobo C, Viniegra JG, et al.Role of the p38 MAPK pathway in cisplatin-based therapy [J].Oncogene,2003,22(26):3998-4006.
    [278]Kavanagh JJ, Gershenson DM, Choi H, et al.Multi-institutional phase 2 study of TLK286 (TELCYTA,a glutathione S-transferase P1-1 activated glutathione analog prodrug) in patients with platinum and paclitaxel refractory or resistant ovarian cancer [J].Int J Gynecol Cancer,2005,15(4):593-600.
    [279]Daouti S, Wang H, Li WH, et al.Characterization of a novel mitogen-activated protein kinase kinase 1/2 inhibitor with a unique mechanism of action for cancer therapy[J].Cancer Res,2009,69(5):1924-1932.
    [280]Osaki M, Oshimura M, Ito H. PI3KAkt pathway:its functions and alterations in human cancer [J].Apoptosis,2004,9(6):667-676.
    [281]Edwards LA, Thiessen B, Dragowska WH, et al. Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth [J]. Oncogene,2005,24 (22):3596-3605.
    [282]Song G, Ouyang GL, Bao SD. The activation of Akt/PKB signaling pathway and cell survival [J]. J Cell Mol Med,2005,9(1):59-71.
    [283]Douglas AL, Faina B, Cindy JY, et al. Frequent mutation of the PIK3CA gene in ovarian and breast cancer [J].Clin Cancer Res,2005,11 (8):2875-2878.
    [284]Knobbe CB, Kieslich AT, Reifenberger G. Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas [J].Neuropathol Appl Neurobiol,2005,31(5):486-490.
    [285]Oda K, Stokoe D, Taketani Y, et al. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma [J]. Cancer Res,2005,65(23):10669-10673.
    [286]Hartmann W, Digon-Sontgerath B, Koch A, et al. Phosphatidylinositol 3'-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN [J]. Clin Cancer Res,2006,12(10):3019-3027.
    [287]Or YY, Hui AB, Tam KY, et al. Characterization of chromosome 3q and 12q amplicons in nasopharyngeal carcinoma cell lines [J]. Int J Oncol,2005,26(1):49-56.
    [288]Nyakern M, Tazzari PL, Finelli C, et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients [J]. Leukemia,2006,20(2):230-238.
    [289]Ahmed NN, Grimes HL, Bellacosa A, et al. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase[J]. Proc Natl Acad Sci USA,1997,94(8):3627-3632.
    [290]Hernando E, Nahle Z, Juan G, et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control [J].Nature,2004,430(7001): 797-802.
    [291]TeradaY, Inoshita S, Nakashima O, et al. Regulation of cyclin D1 expression and cell-cycle progression by mitogen-activated protein kinase cascade[J].Kidney Int,1999,56(4): 1258-1261.
    [292]Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces Glcell cycle arrest in human glioblastoma cells [J]. Proc Natl Acad Sci USA,1998,95(26): 15406-15411.
    [293]Sun H, Lesche R, Li DM, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5-trisphosphate and Akt/protein kinase B signaling pathway [J]. Proc Natl Acad Sci USA,1999,96(11):6199-6204.
    [294]Graff JR, Konicek BW, McNulty AM, et al. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression [J]. J Biol Chem,2000,275(32):24500-24505.
    [295]Zhou BP, Liao Y, Xia W,et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu overexpressing cells[J].Nat Cell Bio,2001, 3(3):245-252.
    [296]Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy [J]. Curr Opin Pharmacol,2003,3(4):371-377.
    [297]Gao N, Flynn DC, Zhang Z, et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells [J]. Am J Physiol Cell Physiol,2004,287 (2):C281-291.
    [298]Niquet J, Wasterlain CG. Bim, Bad, and Bax:a deadly combination in epileptic seizures [J]. J Clin Invest,2004,113 (7):960-962.
    [299]XinM, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation [J]. J Biol Chem,2005,280 (11):10781-10789.
    [300]Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase9 by phosphorylation [J]. Science,1998,282(5392):1318-1321.
    [301]Jeong SJ, PiseMasison CA, Radonovich MF, et al. Activated Akt regulates NF-KappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells [J]. Oncogene, 2005,24 (44):671926728.
    [302]Qian Y, Corum L, Meng Q, et al. PI3K induced actin filament remodeling through Akt and p70S6Kl:implication of essential role in cell migration[J]. Am J Physiol Cell Physio,2004, 286(1):C153-C163.
    [303]Kim D, Kim S, Koh H, et al. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production [J].FASE J,2001,15 (11):195321962.
    [304]Grille SJ, Bellacosa A, Up son J, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines [J].Cancer Res,2003,63(9):2172-2178.
    [305]Dan HC, Sun M, Kaneko S, et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP)[J]. J Biol Chem,2004,279(7):5405-5412.
    [306]Yang X, Fraaser M, Abedini MR, et al. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt [J]. Br J Cancer,2008,26,98(4):803-808.
    [307]Shi XY, Cai XJ, Lei JX. Reversal effectofPI-3K/Aktpathway inhibitor LY294002 on multidrug resistance of ovarian cancer cell line A2780/Taxol [J]. Ai Zheng,2008,27(4): 343-347.
    [308]Lee S, Choi EJ, Jin C, et al. Activation of PI3K/AKT pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line [J]. Gynecol Oncol,2005,97(1):26-34
    [309]Wu H, Weng D, Xing H. Reversal of multidrug resistance and inhibition of phosphorylation of AKT in human ovarian cancer cell line by wild-type PTEN gene [J]. J Huazhong Univ Sci Technolog Med Sci,2007,27(6):713-716.
    [310]Hing H, Weng D, Chen G, et al. Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxelby regulating surviving protein expression in ovarian and breast cancer cells[J]. Cancer Lett,2008,261(1):108-119.
    [311]Reagan-Shaw S, Ahmad N. RNA interference-mediated depletion of phosphoionositide 3-kinase active forkhead box class o transcription factor and induce cell cycle arrest and apoptosis in breast carcinoma cells [J]. Cancer Res,2006,66(2):1062-1069.
    [312]Rychahou PG, Murillo CA, Evers BM, et al. Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis inducing ligand (TRAIL) [J]. Surgery,2005,138 (2):391-397.
    [313]Chang F, Lee J T, Navolanic P M, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation:a target forcancer chemotherapy [J]. Leukemia,2003,17(3):590-603.
    [314]康春生,浦佩玉,李捷,等.反义及显性负调节AKT2 RNA对脑胶质瘤细胞增殖抑制作用的体外研究[J].癌症,2004,23(11):1267-1272.
    [315]Ohta T, Ohmichi M, Hayasaka T, et al. Inhibition of phosphatidylinositol 3-kinase increases efficacy of cisplatin in vivo ovarian cancer models [J]. Endocrinology,2006,147 (4):1761-1769.
    [316]Barnes N L, Warnberg F, Farnie G, et al. Cyclooxygenase-2 inhibition:effects on tumour growth, cell cycling and lymphangiogenesis in a xenograft model of breast cancer [J]. Br J Cancer,2007,96(4):575-582.
    [317]Atkins M B, Hidalgo M, Stadler WM, et al. Randomized phase Ⅱ study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma [J]. J Clin Oncol,2004,22(5):909-918.
    [318]Kuorelahti A, Rulli S, Huhtaniemi I, et al. Human chorionic gonadotropin (hCG) up-regulates wnt5b and wnt7b in the mammary gland, and hCGbeta transgenic female mice present with mammary Gland tumors exhibiting characteristics of the Wnt/beta-catenin pathway activation [J]. Endocrinology,2007,148(8):3694-3703.
    [319]Terry KL, Tworoger SS, Gates MA, et al. Common genetic variation in IGF1, IGFBP1 and IGFBP3 and ovarian cancer risk [J]. Carcinogenesis,2009,30(12):2042-2046.
    [320]Maggiora P, Lorenzato A, Fracchioli S, et al. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness [J]. Exp Cell Res,2003,288:382-389.