增强型复合质子交换膜的结构设计与制备原理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜(Polymer electrolyte membrane,PEM)是燃料电池的关键材料,是决定质子交换膜燃料电池性能(Performance)、寿命(Lifetime)与成本(Cost)的重要因素。当前,燃料电池的产业应用在膜方面的技术障碍主要是质子交换膜较低的面电导(Area conductance)以及使用过程中低的耐久性(Durability)。采用多孔聚四氟乙烯(ePTFE)增强的复合质子交换膜取代广泛使用的均质质子交换膜作为燃料电池的电解质材料被认为是改善这两大技术难点的有效措施。然而,由于全氟磺酸聚合物(Perfluorosulfonic acid polymer,PFSA)与多孔聚四氟乙烯界面特性的差异,作为质子传导材料的全氟磺酸聚合物在作为增强基体的ePTFE中的完全填充十分困难,这大大降低了质子交换膜的质子传导能力和抗气体渗透能力(gas crossover),同时界面不完全复合的结构缺陷也给质子交换膜的稳定性(Stability and Durability)带来了潜在的风险。在提高质子交换膜的耐久性和寿命方面,由于缺乏对质子交换膜退化机理(Degradation mechanism)的系统研究和基于失效机理的有效解决措施,目前取得的进展尚不能满足燃料电池实际运行的需要。本研究从改善增强型质子交换膜(PFSA/ePTFE composite PEM)的复合结构和深入理解膜的失效机理入手,进行了大量的基础研究与分解实验,并在此基础上进行了质子交换膜的结构设计与制备研究。质子交换膜的另外两个重要应用方面是高温质子交换膜燃料电池(Elevated temperature PEM fuel cell)和直接甲醇燃料电池(Direct methanol fuel cell),本论文针对提高膜的高温保湿Water-retention)能力和抗甲醇渗透(methanol-blocking)能力,对质子交换膜进行了适合于这两类电池的改性原理和制备技术的研究。论文取得进展如下:
     (1)减小ePTFE基体膜毛细孔内部的气体压力是制备质子传导树脂完全填充的增强型复合质子结构的最有效措施。采用这种方法制备的PFSA/ePTFE复合质子交换膜十分致密的,H2渗透率比常压下制备的质子交换膜小60%。常压下难以制备致密的复合质子交换膜与多空基体的内部压力有关。在设计的PTFE/Nafion毛细管实验中,改变溶液的表面活性剂含量和毛细管的直径都不能有效地提高溶液在毛细管中的上升高度(Capillary rise),这是由于随着溶液填充量的增加,毛细管内部气体压力相应增大的缘故。当毛细管内部的初始气体压力下降到5×102 Pa时,溶液可以填充98.2%的毛细管体积。改变溶液的表面活性剂含量难以对溶液的Capillary rise产生很大影响还与溶液的毛细管行为有关。这是因为含表面活性剂的毛细管上升是一个新月形液面(liquid meniscus)在毛细管中涂抹表面活性剂,紧跟着一个液柱(liquid column from the capillary bottom to themeniscus)推动溶液在毛细管中前进的过程。因此,表面活性剂在新月形液面、液柱和本体溶液中的浓度梯度下降:Ci,meniscus<Ci,colunm<Ci,solution。由于表面活性剂在本体中的浓度有限,具有临界浓度(critical micelle concentration,CMC),而新月形液面要涂抹表面活性剂的面积与毛细管中溶液体积的比例反比于毛细管孔径(capillary radius)。随毛细管孔径下降,新月形液面中表面活性剂的量下降幅度更大。因此,当孔径小于一定程度时,即使增加本体中表面活性剂的浓度,在新月形液面中表面活性剂的浓度还是趋近于0,对提高Capillary rise影响不是很大。从这个角度来说,直接对PTFE基体进行改性,使之转变为界面亲水结构可以避免这一问题。本研究对PTFE基体进行自由基攻击并接枝官能基团的方面有效提高了PTFE基体的亲水性,在常压下制备出了相对致密的复合质子交换膜。但是在制备过程中,由于内部气体在毛细管作用力下的析出(gasescape)会在膜表面局部形成细小的气孔。因此制备的膜相对与在减小毛细孔内部气体压力状态下制备的膜来说,填充度仍然存在一定的缺陷。
     (2)质子交换膜失效的退化机理是:在自由基攻击下,膜树脂高分子缺陷末端的C原子脱落;脱落后相临的C原子成为缺陷末端,如此往复导致高分子重复单元的脱落;重复单元脱落累计到一定的尺度后可以在质子交换膜上形成小孔;小孔在溶胀应力作用下增大,导致质子交换膜气体渗透从而使质子交换膜失效。因此,减小质子交换膜中缺陷基团的含量,同时减小膜的溶胀应力是提高质子交换膜耐久性的有效措施。本论文采用热交联缺陷基团的方法提高质子交换树脂的化学稳定性,并将树脂固定在PTFE多层多孔结构中,使质子交换膜的溶胀应力相对于均质膜的3.1 MPa下降到0.6 MPa(90 oC,饱水状态到25RH%湿度转变过程中),有效地提高了质子交换膜的稳定性和耐久性。
     (3)采用硅氧化物在不同pH条件下表面电荷可以正负转换的原理,在硅前驱体成核长大的过程中通过质子传导聚离子与氧化硅的静电自组装形成了聚离子包裹无机纳米粒子的胶体复合结构,其中无机纳米粒子的尺寸为3/4nm。以此为前驱体制备了无机保水纳米粒子均匀分布和无机/聚合物界面相容性良好的高温保水质子交换膜。在5wt%的含量下,保水质子交换膜在60 oC、10h干燥后水合系数为7.02,5倍于均质质子交换膜。良好的保水能力使这种质子交换膜具有良好的低湿度与高温工作性能,在60 oC、完全干燥条件下600mA/cm2运行340 min电压下降速度为0.29 mV/min;在100 oC、~50RH%增湿条件下600mA/cm2运行750min电压下降幅度为0.12 mV/min,优于均质膜。
     (4)依据甲醇对全氟质子交换膜的渗透是通过表面磺酸根团簇(φ-4nm)扩散的原理,采用定向堵塞的方法大幅度地减小了质子交换膜的甲醇渗透率。研究中合成了~1.8nm的阳离子修饰纳米Pd颗粒,实现了在负电荷的质子交换膜表面磺酸根团簇上的定向自组装。组装48h后,金属颗粒载量为1.6~1.8μgcm-2,甲醇渗透从340 mA/cm2下降达到28mA/cm2.自组装膜组装成单电池后,电池时的开路(OCV)和输出性能明显上升。
Polymer electrolyte membrane is currently meeting requirements of decreasing proton resistance and improving operation lifetime. Replaced the pure PFSA membrane with PFSA/ePTFE composite membranes is very favourable to obtain a highly stable and super thin proton exchange membrane. However, the PFSA impregnation in the porous PTFE matrix is presently far from 100% density because the incompatibility between the hydrophilic PFSA ionomer and the hydrophobic PTFE polymer. The practical improvement of the PEM operation lifetime is also dissatisfied due to the lack of understanding of degradation mechanism. Furthermore, various demands such as elevated-temperature performance and low methanol crossover have also emerged to the recent PEMs research. This thesis aim to these issues and have made the following achievements:
     (1) The impregnation of PFSA ionomers in the porous ePTFE matrix can be improved by decrease of inner gas pressure in the ePTFE micropores and chemical modification of the ePTFE matrix. In a capillary experiment, the Nafion solution can occupy 98.2% (4.91 cm vs. 5 cm) of the end-sealed PTFE capillary when the P_(inner) is lowered to 5×10~2 Pa. The hydrogen crossover of the PFSA/ePTFE compisite memrbane prepared at this condition was 60% lower than that prepared at standard atmosphere pressure. Chemical modification based on sodium-naphthalene treatment and NMA-grafling had also been shown to be effective in introducing the hydrophilicity to the original hydrophobic ePTFE matrix. It has been found that the composite membranes based on the hydrophilic ePTFE have a higher PFSI impregnation loading, much lower porosity and lower gas crossover or permeability, as compared to that prepared with as-received hydrophobic ePTFE matrix.
     (2) The decomposition of Nafion polymer starts from the defect ends of the main chain and result in the loss of the polymer repeat units. With the increase of repeat unit loss, little voids and pinholes would appear in the proton exchange membrane. These little voids and pinhole can be enlarged by the RH-induced stress, which was higher than membrane safety stress in long time condition, then make the membrane high permeated to reactant gas and failure. Highly durable PEMs can be fabricated by fixing the polymer ionomers in the PTFE matrix micropores to increase the membrane physical stability, and followed by heat-treating the polymer at 270℃after converted the polymer to Na~+ form to decrease the defect groups in the polymer. The experiment in Fenton's reagent revealed that the fluorine emission rate of the home-made PEM was much lower than that of the commercial Nafion membrane. By fixing the polymer ionomers into the PTFE matrix micropores, the home-made PEM showed excellent stability. The RH-generated stress was 0.6 MPa from soaking to drying in 25 RH% gas at 90℃, compared to 3.1 MPa of the Nation membrane at the same condition. On the other hand, the limited PTFE micropore size prevented to enlarge the pinholes during the chemical attack.
     (3) Water-retention polymer electrolyte membrane with uniformly silica distribution and homogeneous polymer/silica interface can be developed with the assistance of Nation ionomer stabilized SiO_2 nanoparticles. By completely dispersing of TEOS in Nation ionomers without water and then employing fourfold excessive water, the diameter of Nation stabilized 5wt% SiO_2 can be lower to 3~4 nm. The as-prepared 5wt% SiO_2 membrane possessed perfect water retention after heated at 60℃for 10h. Theλ_(H2O/SO3H) in the composite membrane was 7.02. This is about 5 times higher than that of the Nation 211 membrane (1.33 at the same condition). The good water-retention property gave the composite membrane a good performance at very low humidity and elevated temperature. Even under absolute dry gas feeding, the decreasing rate of the cell voltage performed at 600mA/cm~2 was 0.29 mV/min at a period of 340 min. For the elevated temperature of 100℃, the degradation rate of the cell voltage assembled with Nafion/SiO_2 nanocomposite membrane was 0.12 mV/min for the period of 750 min against 2.33 mV/min for the period of 180 min for the Nafion 212 membrane.
     (4) Nafion/ePTFE membrane has been improved to meet the requirement of DMFC use by self-assembling of charged Pd nanoparticles. The loading of the Pd nanoparficles assembled on the membrane was 1.6~1.8μgcm~(-2) after a self-assembly precedure of 48 h and had little effect on the high conductivity of the Nafion membrane. With the Pd nanoparticles self-assembly, the methanol permeation have a noticeable decrease from 340 mA/cm~2 to 28 mA/cm~2. As a result, the OCVof the Nafion/ePTFE membrane have a more significant increase from0.55 V to 0.73V. The decrease of methanol crossover also increase the DMFC U-I performance, which gives the self-assembled PEMs a promised prospect in DMFC.
引文
1. A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, J. Power Sources 130 (2004) 42.
    2. M. Williams, J. Strakey, W. Surdoval, J. Power Sources 143 (2005)191.
    3. X.B. Zhu, H. M. Zhang, Y. M. Liang, Y. Zhang, Q. T. Luo, C. Bi, B. L. Yi, J. Mater. Chem. 17 (2007) 386.
    4. C. Wang, Z.X.. Liu, Z.Q. Mao, J.M. Xu, K.Y. Ge, J.Chem. Eng. 112 (2005) 87.
    5. M.L. Perry and T. F. Fuller, J. Electrochem. Soc, 149 (2002) S59.
    6. M. Pan, X..S. Yang, C.H. Shen, R.Z.Yuan, Key Eng. Mater. 249 (2003) 385.
    7. R. Guan, H. Dai, CH. Li, J.H. Liu, J. Xu, J. Membr. Sci, 277 (2006)148.
    8. B. Smitha, S. Sridhar, A.A. Khan, J. Membr. Sci. 259 (2005) 10.
    9. J. Roziere, D.J. Jones, Annu. Rev. Mater. Res. 33 (2003) 503.
    10. Renaud Souzy and Bruno Ameduri, Prog. Polym. Sci. 30 (2005) 644.
    11. T.Imae, Curr Opin Coiloid Interface Sci. 8 (2003) 308.
    12. B. Ameduri, B. Boutevin, Well-architectured fluoropolymers: synthesis, properties and applications. Amsterdam: Elsevier 2004.
    13. M. Doyle, G. Rajendran, Perfluorinated membranes. In: Vielstich W, Hubert A, Gasteiger M, Lamm A, editors. Handbook of fuel cells—fundamentals, technology and applications; fuel cell technology and applications 3 (2003) 351.
    14. V. Arcella, A. Ghielmi, G. Tommasi, Ann NY Acad Sci. 984 (2003) 226.
    15. S. Motupally, A..J. Becker, J.W. Weidner, J. Electrochem. Soc 147 (2000) 3171.
    16. O. Savadogo. J New Mater Electrochem Syst. 1 (1998) 47.
    17. W .Grot. Chem Ing Tech. 50 (1978) 299.
    18. R.K. Nagarale, G. S. Gohil, V. K. Shahi, Adv. Colloid Interfac. 119 (2006) 97.
    19. M. Pineri, R. Duplessix,. S. Gauthier, A.Eisenberg, A.Eisenberg,, American Chemical Society: Washington 187 (1980) 283.
    20. R. Duplessix,. M. Escoubes, B. Rodmacq, F.Volino, E.Roche, A.Eisenberg,, M.Pineri, American Chemical Society: Washington, DC, 127 (1980) 469.
    21. B.Rodmacq, J. M.Coey, M.Escoubes, E.Roche, R .Duplessix, A.Eisenberg,, M.Pineri, American Chemical Society: Washington, DC, 127 (1980) 487.
    22. W. Y.Hsu, T.D. Gierke, J. Membr. Sci. 13 (1983) 307.
    23. T.D.Gierke, G. E.Murm, F. C.Wilson, J. Polym. Sci., Polym.Phys, 19 (1981) 1687.
    24. W. Y.Hsu, T. D. Gierke, Macromolecules 15 (1982) 101.
    25. T. D.Gierke, G E.Munn, F. C. Wilson, In Perfluorinated Ionomer Membranes; A Eisenberg,., H. Yeager, L., Eds.; ACS Symposium Series No. 180; American Chemical Society: Washington, DC (1982)195.
    26. H. W. Starkweather, Macromolecules, 15 (1982)320.
    27. S.C Yeo, A. Eisenberg, J.Appl. Polym. Sci. 21 (1977) 875.
    28. S. H. Almeida, Y, Kawano, J. Therm. Anal.Calor., 58 (1999) 569.
    29. R.A. Smith, Coextruded Multilayer Cation Exchange Membranes, US Patent 4,437,952 (1984).
    30. C. Preischl, P. Hedrich, A. Hahn, Continuous Method for Manufacturing a Laminated Electrolyte and Electrode Assembly, US Patent 6,291,091 B1 (2001).
    31. J. Kohler, K.-A. Starz, S. Wittphal, M. Diehl, Process for Producing a Membrane Electrode Assembly for Fuel Cells, US Patent 2002/0064593 A1 (2002).
    32. C.R. Marlin, T.A. Rhoades and J.A. Ferguson, Dissolution of perfluorinated ion containing polymers.Anal. Chem.. 54 (1982) 161.
    33. H.W. Carla, J. Membr. Sci. 120 (1996) 1.
    34. G. Gebet, P. Aldebert and M. Pineri, Structure and related properties of solution-cast perfluorosulfonated ionomer films, Macromolecules 20 (1987) 1425.
    35. R.B. Moore Ⅲ and C.R. Martin, Chemical and morphological properties of solution-cast perfluorosulfonate ionomers, Macromolecules 21 (1988) 1334.
    36. P. Aldebert, B. Dreyfus, G Gebel+ N. Nakamura, M. Pineri and F. Volino, J. Phys, France, 49 (1988) 2101.
    37. R.B. Moore Ⅲ and C.R. Martin, Macromolecules 21(1988) 1334.
    38. G. Gebel, P. Aldebert, M. Pineri, Macromolecules 20 (1987) 1425.
    39. B. K. Dutta, D. Randolph, S. K. Sikdar, J. Membr. Sci. 54 (1990) 51.
    40. P. Aldebert, B. Dreyfus, M. Pineri, Macromolecules 19 (1986) 2651.
    41. US Patent 4731263 (1986), invs.: C. R. Marlin, R. B. Moore; Chem. Abstr. 1988, 108, 222769k.
    42. R. G. Lundberg, R. R. Phillips, J. Polym. Sci., Polym. Lett. Ed. 22 (1984) 377.
    43. M. Laporta, M. Pegoraro, L. Zanderighi, Macromol. Mater. Eng. 282 (2000) 22.
    44. R.K. Nagarale, G.S. Gohil and Vinod K. Shahi, Adv. Colloid Interfac. 119 (2006) 97.
    45. W. G Gore, US Patent, 3,770, 567 (1973).
    46. I. Watanabe, Y. Yamakoshi, H. Miyauchi, S. Tsushima and M. Fukumoto, US Patent, 4, 072, 793 (1978).
    47. H. Ukihashi, T. Asawa, T. Gunjiama, US Patent, 4, 218, 542 (1980).
    48. A.E. Steck, C. Stone, US Patent 5,834,523, 1998.
    49. J.E. Spethmann, J.T. Keating, WO Patent 9850457A1, 1998.
    50. B. Bahar, A.R. Hobson, J. Kolde, et al., US Patent 5,547,551, 1996.
    51. S. Banerjee, J.D. Summers, WO Patent 9851733A1, 1998.
    52. R.M. Penner, C.R. Martin, Ion-transporting composite membranes. Ⅰ. Nation-impregnated Gore-Tex membranes, J. Electrochem. Soc. 132 (1985) 514.
    53. C. Liu, C.R. Martin, Ion-transporting composite membranes. Ⅱ. Ion transport mechanism in Nation-impregnated Gore-Tex membranes, J. Electrochem. Soc. 137 (1990) 510.
    54. C. Liu, C.R. Martin, Ion-transporting composite membranes, Ⅲ. Selectivity and rote of ion transport in Nation-impregnated Gore-Tex membranes prepared by a high temperature solution-casting method, J. Electrochem. Soc. 137 (1990) 3114,
    55. K.M. Nouel, P.S. Fedldw, Nation based composite polymer electrolyte membrane s, Electrochim. Acta 43 (1997) 2381.
    56. M.W. Verbrugge, R.F. Hill, E.W. Schneider, Composite membranes for fuel cell applications, AIChE J. 38 (1992) 93.
    57. O. Savadogo, Emerging membranes for electrochemical systems: (Ⅰ) solid polymer electrolyte membrane s for fuel cell systems, J. New Mater. Electrochem. 1 (1998) 47.
    58. S. Ahn, Y. Lee, H. Ha, S. Hong, I. Oh, Electrochim.Acta 50 (2004) 571.
    59. K. Nouel, P. Fedkiw, Electrochim.Acta 43 (1998) 2381.
    60. S. Cleghom, J. Kolde, W. Liu, Catalyst coated memrbanes, In: W. Vielstich, A .Hubert, M .Gasteiger, A. Lamm, editors. Handbook of fuel cells—fundamentals, technology and applications; fuel cell technology and applications, New York: Wiley; 3 (2003) 566,
    61. A. Laconti, M. Hamdan, R. Mcdonald, Handbook of fuel cell, John Wiley and Sons Ltd, Chichester, England,3 (2003) 647.
    62. A.B.Laconti, D.I. Macdonald, J. F. Austin, General Electic Company, Technical Memo 68 (1968).
    63. M. Inaba, H. Yamada, J. Tokunaga, and A. Tasaka, Electrochem. Solid-State Lett 7 (2005) A474
    64. M. Tarasevich, R. A. Sadkowski, and E. Yeager, Comprehensive Treatise of Electrochemistry, Plenum Press, New York1 1 (1983) 301.
    65. F. N. Buchi, B. Gupta, O. Haas and G. G. Scherer, Electrochim.Acta 40 (1995) 345.
    66. G. G. Scherer, Ber. Bunsen-Ges. Phys. Chem. 94 (1990) 1008.
    67. M. Watanabe, US Pat., 5 472 799, 1995.
    68. Q. Guo, P. N. Pintauro, H. Tang and S. O'Connor, J. Member. Sci. 154 (1999) 175.
    69. A.Bosnjakovic and S.Schlick., J. Phys. Chem. B 108 (2004) 4332.
    70. K. K. Marsil, A. Bosnjakovic, and S. Schlick., J. Phys, Chem. B 109 (2005) 7664.
    71. K.Taro, I.Minoru, N.Yoko, O.Kazuhito, J. Power Sources 158 (2006) 1222.
    72. M.Pianca, E.Barchiesi, G. Esposto. J. Fluorine Chem. 95 (1999) 71.
    73. J. Healy, C. Hayden, T. Xie, et, al. Fuel Cells, 5 (2005) 303.
    74. A. B. Laconti, ACS polymer division topical workshop on perfluorinated ionomer membranes, Lake Buena Vista, FL, Feb, (1982) 23.
    75. G. Xie, T, Okada, Denki Kagku, 718(1996).
    76. E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto, Electrochem. Solid-State Lett., 7 (2004) A209.
    77. M. Inaba, H. Yamada, J. Tokunaga, M. Kiriake, A. Tasaka, T. Kinumoto, and Z. Ogumi, Abstract 1885, The Electrochemical Society and The Electrochemical Society of Japan Meeting Abstracts, Honolulu, HI, Oct. (2004) 3.
    78. W. Liu and D. Zuckerbrod, J. Electrochem. Soc., 152 (2005) A1165.
    79. A. Bosnjakovic and S. Schlick, J. Phys. Chem., 108 (2004) 4332.
    80. M. Miyake, M. Wakizoe, E. Honda, and T. Ohta, Abstract 1880, Electrochemical Society and The Electrochemical Society of Japan Meeting Abstracts, Honolulu, HI, Oct (2004) 3.
    81. K.Teranishi, K.Kawata, S. Tsushima, and S. Hirai, Electrochem. Solid-State Lett. 9 (2006).A475.
    82. X.Y. Huang, R.Solasi, Y. Zou, M.Fesheler, J. PolymerSci. 3 (2006) 2346.
    83. J..Zhang, X. Zhong, J. Zhang, Y.Tang, C. Song, T. Navessin, Z.Shi, D. Song, H. Wang, D.P. Wilkinson, Z.Liu, S.Holdcroft, J. Power Sources 160 (2006) 872.
    84. H. Xu, Y. Song, H.R. Kunz, J.M. Fenton, J. Electrochem. Soc. 152.(2005) A1828.
    85. Q.F. Li, R.H. He, J.O. Jensen, N.J. Bjerrum, J. Electrochem. Soc. 150 (2003) A1599.
    86. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A.B. Bocarsly, J. Power Sources 103 (2001) 1.
    87. Y. Tang, J. Zhang, C. Song, H.Liu, J.Zhang, H.Wang, S.Mackinnon, T.Peckham, J.Li, S.M.Dermid, and P. Kozakb, J. Electrochem. Soc. 153 (2006) A2036.
    88. Dhar, H. US. Patent 5,242,754, 1993.
    89. J. C.Lin, H. R.Jnuz, J. M.Fenton, In Handbook of Fuel Cells; W.Vielstich, A.Lamm, H. A Gasteiger, Eds.; John Wiley & Sons Ltd.: New York, 3 (2003) 457.
    90. S.Malhotra, R. J. Datta, J. Electrochem. Soc. 144 (1997) L23.
    91. K.T. Adjemian, R.Dominey, L. Krishnan, H. Ota, P.Majsztrik, T.Zhang, J. Mann, B. Kirby, L. Gatto, M. Velo-Simpson, J.Leahy, S.Srinivasan, J.B.Benziger, and A.B. Bocarsly, Chem. Mater. 18 (2005) 2238.
    92. M. Watanabe, H. Uchida,Y. Seki, M. Emori, P. Dtonehart, J. Electrochem. Soc. 143 (1996) 3847
    93. J.Zhang, Z. Xie, J.Zhang, Y. Tang, C. Songa, T.Navessin, Z. Shi, D. Song, H.Wang, D. P. Wilkinson, Z.Liu, S.Holdcroft, J. Power Sources 160 (2006) 872.
    94. Z. Pu and J.E. Mark,. Elastomers, Chem. Mater. 9 (1997) 2442.
    95. Z. Shao, H. Xu, M. Li, I.Hsing, Solid State Ionics 177 (2006) 779.
    96. E.Chalkova, M.V. Fedldn, S.Komameni, S.N.Lvov, J. Electrochem. Soc, 154 (2007) B288.
    97. M. Li, Z. Shao, H.Zhang, Y.Zhang,, X.Zhu, and B.Yi, Electrochem. Solid-State Lett. 9(2006) A92.
    98. Y.Zhai, H. Zhang, J. Hu, B.Yi, J. Membr. Sci. 280 (2006) 148.
    99. W. Apichatachutapan, R. B. Moore, K. A. Mauritz, J. Appl. Polym. Sci. 62 (1996)417
    100. B. Baradie, J.P. Dodelet, D. Guay, J. Electroanal. Chem. 489 (2000) 101.
    101. K.T. Adjemiana, S. Srinivasana, J. Benzigerb, A.B. Bocarsly, J. Power Sources 109 (2002) 356.
    102. K.A. Mauritz, Mater. Sci. Eng. C6 (1998) 121.
    103. Q. Deng, K. M. Cable, B. Moore, K. A. Mauritz, J. Polym. Sci. B: Polym. Phys. 34 (1996) 1917
    104. N. Miyake, J. S. Wainright, and R. F. Savinell, J. Electrochem. Soc. 148 (2001) A898.
    105. E. Chalkova, M. B. Pague, M.V. Fedkin, D. J. Wesolowski, and S. N. Lvova, Elevated Temperature and Reduced Relative Humidity, J. Electrochem. Soc. 152 (2005) A1035.
    106. A. K. Sahu, G. Selvarani, S. Pitchumani, R Sridhar, and A. K. Shukla, J. Electrochem. Soc. 154 (2007) B123.
    107. M.B. Satterfield,1 PAUL W. Majsztrik, H. Ota, J. B. Benziger and R.Bocarsly, Mechanical, J. Polym Sci. B: Polym. Phys. 44 (2006) 2327.
    108. A.S. Arico, S. Srinivasan, V. Antonucci, Fuel Cells 1 (2001)133.
    109. M. R. Verbrugge, J. Electrochem. Soc., 136(1989) 417.
    110. D. L. Maricle, B. L. Murach and L. L. Van Dine, the electrochemical society extendly abstract, San Franscisco, CA, 94-1 (1994)22.
    111. N.Jia, M.C.Lefebvre, J.Halfyard, Z. Qi, P.G. Pickup, Electrochem. Soli-State Lett. 3 (2000) 529.
    112. N. Miyake, J.S.Wainright, R.F.Savinell, J. Electrochem. Soc. 2001.
    113. C.Yang,, S.Srinivasan, A.S.Arico, P.Creti, V.Baglio, V. Antonucci, Electrochem. Solid-State Lett. 4 (2001) A31.
    114. V.J.Tricoly, J. Electrochem. Soc. 145 (1998) 3798.
    115. C.Pu,; W.Huang,; K.L.Ley; E.S.Smotkin, J. Electrochem. Soc. 142 (1995) L119.
    116. Y.J.Kim, W. C.Cho, S..I.Woo, W.H.Hong, Electrochim.Acta 49 (2004) 3227.
    1. M. Williams, J. Strakey, W. Surdoval, J. Power Sources 143 (2005) 191.
    2. M. Perry, T. Fuller, J. Electrochem. Soc. 149 (2002) S59.
    3. M. Williams, J. Strakey, W. Sudoval, J. Power Sources 159 (2006) 1241.
    4. R. Gemmen, C. Johnson, J. Power Sources 159 (2006) 646.
    5. M. Doyle, G. Rajendran, Fuel Cell Handbook V3, Part 3, pp. 351-396
    6. S. Banerjeea, D. E. Curtin, J Fluorine Chem. 125(2004) 1211.
    7. K.A. Mauritz R. B. Moore, Chem. Rev. 104 (2004) 4535.
    8. T. Xu, J. Membr. Sci. 263 (2005) 1.
    9. S. Cleghorn, J. Kolde, W. Liu, Fuel Cell Handbook V3, Part 3,pp 566-575.
    10. X.Y. Huang, R. Solasi, Y. Zou, M. Feshler, K. eifsnider, D. Condit, S. Burlatsky, T. Madden, J. Polym. Sci. Pol. Phys. 44 (2006) 2346.
    11. R.M. Penner, C.R. Martin, J. Electrochem. Soc. 132 (1985) 514.
    12. C. Liu, C.R. Martin, J. Electrochem. Soc. 137 (1990) 510.
    13. B. Bahar, A.R. Hobson, J. Kolde, US Patent 5,547,551 (1996).
    14. B. Bahar, A.R. Hobson, J. Kolde, US Patent 5,599,614 (1997).
    15. W. Liu, K. Ruth, G. Rusch, J. NewMat. Eleectr. S.vs. 4(2001) 227.
    16. F. Liu, B. Yi, D. Xing, J. Yu, H. Zhang, J. Membr. Sci. 212 (2003) 213.
    17. F. Liu, B. Yi, D. Xing, J. Yu, Z. Hou, Y. Fu, J. Power Sources 124 (2003) 81.
    18. J. Shim, H. Ha, S. Hong, I. Oh, J. Power Sources 109 (2002) 412.
    19. H. Lin, T. Yu, K. Shen, L. Huang, J. Membr. Sci. 237 (2004) 1.
    20. T. Yu, H. Lin, K. Shen, L. Huang, Y. Chang, G. Jung, J. Huang, J Polym. Res. 11 (2004) 217.
    21. S. Ahn, Y. Lee, H. Ha, S. Hong, I. Oh, Electrochim. Acta 50 (2004) 571.
    22. K. Nouel, P. Fedldw, Electrochim. Acta 43 (1998) 2381.
    23. L. Labajos-Broncano, J. A. Antequera-Barroso, M.L. Gonzalez-Martin, J.M. Bruque, J.Colloid Inter. Sci. 295 (2006) 578.
    24. V.M. Starov, S. A. Zhdanov, M.G. Velarde, J.Colloidlnter. Sci. 273 (2004) 589.
    25. G. Tae, R. Lammertink, J. A. Kornfield, J. A. Hubbell, Adv. Mater. 15 (2003) 66.
    26. V.M. Starov, Adv. Colloid Interfac. 111 (2004) 3.
    27. N.V. Churaev, G.A. Martynov, V.M. Starov, Z.M. Zorin, Colloid Polym. Sci. 259 (1981) 747.
    28. K.M. Wilkinson, C. D. Bain, H. Matsubara, M. Aratono, Chemphyschem 6 (2005) 547.
    29. L. Labajos-Broncano, J.A. Antequera-Barroso, M.L. Gonzalez-Martin, J.M. Bruque, J Colloid Interf. Sci. 301 (2006) 323.
    30. B. Lavi, A. Marmur, Colloids Surface A 282-283 (2006) 263.
    31. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, M. E. Tisack, J. Power Sources 131 (2004)41.
    32. X. B. Zhu, H. M. Zhang, Y. Zhang Y, Y. M. Liang, X. L. Wang, B. L. Yi, J. Phys. Chem. B, 110 (2006) 14240.
    33. Y. Tang, M. Santare, A. Karlsson, S. Cleghom, W. Johnson, J. Fuel Cell Sci. Technol. 3 (2006) 119.
    34. S. Cleghorn, D. Mayfield, D. Moore, J. Moore, G. Rusch, T. Sherman, N. Sisofo, U. Beuscher, J. Power Sources 158 (2006) 446.
    35. Z. Luo, D. Li, H. Tang, M. Pan, R. Ruan, Int. J. Hydrogen Energ. 31 (2006) 1831.
    36. U. Beuschem, S. Cleghorn, W. Johnson, Int.J. Energy Res. 29 (2005) 1103. J. Yu, T. Matsuura, Y. Yoshikawa, M. Islam, M. Hori, Electrochem. Solid-State Lett. 8 (2005) A156.
    1. S. Hontsu, M. Nakamori, N. Kata, H. Tabata, J. Ishii, T. Matsumoto, T. Kawai, Jpn. J. Appl. Phys. 37 (1998) 1169.
    2. C. Timmons, D. Hess, Electrochem. Solid-State Lett. 7 (2004) G302.
    3. E. Kang, Y. Zhang, Adv. Mater. 12 (2000) 1481.
    4. C. Tu, Y. Wang, C. Li, K. Lee, J. Huang, J. Lai, Eur. Polym. J. 41 (2005) 2343.
    5. J. Garst, Chem. Res.4 (1971) 400.
    6. N. Holy, Chem. Rev. (Washington, D.C.) 74 (1974) 243.
    7. C. Costello, T. McCarthy, Macromolecules, 20 (1987) 2819.
    8. K. Teranishi, K. Kawata, S. Tsushima, S. Hirai, Electrochem. Solid-State Lett. 9 (2006) A475.
    9. K. Uosaki, K. Okazatd, H. Kita, J. Electroanal. Chem. 287 (1990) 163.
    10. Y. Tang, J. Zhang, C. Song, H. Liu, J. Zhang, H. Wang, S. Mackinnon, T. Peckham, J. Li, S. McDermid, P. Kozak, J. Electrochem. Soc. 153 (2006) A2036.
    11. K. Ramya, G. Velayutham, C. Subramaniam, N. Rajalakshmi, K. Dhathathreyan, J. Power Sources 160 (2006) 10.
    12. F. Liu, B. Yi, D. Xing, J. Yu, Z. Hou, Y. Fu, J. Power Sources 124 (2003) 81.
    1. A. Collier, H. Wang, X.Z. Yuan, J. Zhang, D.P. Wilkinson, Inter. J. Hydrogen Energy 31 (2006) 1838.
    2. Z. Luo, D. Li, H. Tang, M. Pan, R. Yuan, Inter. J. Hydrogen Energy. 31 (2006) 1831.
    3. S. Cleghom, D. Mayfield, D. Moore, J. Moore, G. Rusch, T. Sherman, N. Sisofo, U. Beuscher, J. Power Sources 158 (2006) 446.
    4. Chen WM, Sun GQ, Guo JS, Zhao XS, Yan SY, Tian J, Tang SH, Zhou ZH, Xin Q, Electrochimica Acta 51 (2006) 2391.
    5. O. Vishal Mittal, H. Kunz, J. Fenton, J. Electrochem. Soc. 2006 (153) A1755.
    6. W. Merida, D. Harrington, J. LeCanut, G. McLeand, J. Power Sources 161 (2006) 264.
    7. M. Aoki, H. Uchida, M. Watanabe, Electrochem. Commun. 8 (2006) 1509.
    8. J. Qiao, M. Saito, K. Hayamizu, T. Okadaz,J. Electrochem. Soc. 2006 (153) A967.
    9. V. Mittal, H. Kunz, J. Fentonb, Electrochem.Solid-State Lett., 2006 (9) A299.
    10. A. Pozio, R.F. Silva, M. De Francesco, L. Giorgi, Electrochimica Acta 48 (2003) 1543.
    11. K. Yeranishi, K. Kawata, S. Ysushima, S. Hirai, Electrochem.Solid-State Lett, 2006 (9) A475.
    12. A. Laconti, M. Hamdan, R. Mcdonald, Handbook of fuel cell, Vol.3, John Wiley and Sons Ltd, Chichester, England, 2003, pp647
    13. X Huang, R. Solasi, Y. Zou, M. Feshler, K. Reifsnider, D. Condit, S. Burlatsky, T. Madden, J. Polym. Sci. B, 44 (2006) 2346.
    14. D.A. Stevens, J.R. Dahn, Carbon 43 (2005) 179.
    15. J.Healy, C.Hayden, T.Xie, K.Olson, R.Waldo, M.Brundage, H.Gasteiger, J.Abbott, Fuel Cells 5 (2005) 302.
    16. Du Pont report, DuPontTM Nafion(?) PFSA membranes: NRE111 and NRE212, http://www.dupont.com/fuelcells/pdf/dfc201.pdf.
    17. C. Bao, MG. Ouyang, BLYi, J. Hydrogen Energy. 31 (2006) 1879.
    18. S.pisching, O. lang, Handbook of fuel cell, Vol.4, John Wiley and Sons Ltd, Chichester, England, 2003, pp728
    19. Yu JR, Matsuura T, Yoshikawa Y, Islam MN, Hori M, Phys. Chem. Chem. Phys. 7 (2005) 373.
    20. Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun, Q. Xin, J. Membr. Sci. 233 (2004) 39.
    21. P.C. Foller, R. T. Bombard, J. Appl. Electrochem., 1995(25) 163.
    22. C. Mansano-Weiss, H. Cohen, D. Meyerstein, J. Inorg. Biochem. 91 (2002) 199.
    23. R. A. Morgan, W. H. Sloan, Extrusion finishing of perfluorinated copolymers, U.S. Patent 4,626,587
    24. M. Doyle, G. Rajendran, Perfluorinated membranes, Handbook of fuel cell, Vol.3, John Wiley and Sons Ltd, Chichester, England, 2003, pp351
    25. U. A. Paulus, T. J. Schmidt, H. A. Gasteiger, and R. J. Behm, J. Electroana/. Chem., 2001 (495) 134.
    1. M. Williams, J. Strakey, W. Surdoval, J. Power Sources 143 (2005) 191.
    2. M. Perry, T. Fuller, J. Electrochem. Soc. 149 (2002) S59.
    3. M. Williams, J. Strakey, W. Sudoval, J. Power Sources 159 (2006) 1241.
    4. Wei ZD, Ji MB, Hong Y Sun CX, Chan SH, Shen PK, J. Power Sources 160 (2006) 246.
    5. Z.P. Luo, D. X. Li, H. L. Tang, M. Pan, R. Z. Yuan, Inter. J. Hydrogen Energy. 31 (2006) 1831.
    6. D.E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, M. E. Tisack, J. Power Sources 131 (2004) 41.
    7. R. B. Moore, K. A. Mauritz, G. Escobedo, in 2006 Annual Progress Report, DOE Hydrogen Program, pp766
    8. S. Cleghom, D. Mayfield, D. Moore, J. Moore, G Rusch, T. Sherman, N. Sisofo, U. Beuscher, J. Power Sources 158 (2006) 446.
    9. U.S. Department of Energy, Multi-Year Research, Development and Demonstration Plan: Planned program activities for 2003-2010, pp 3.5-1
    10. U.S. Department of Energy, Draft Funding Opportunity Announcement Research and Development of Polymer electrolyte membrane (PEM) Fuel Cells for the Hydrogen Economy, pp 4.
    11. R.S. Gemmen, C.D. Johnson, J. Power Sources 159 (2006) 646.
    12. Yu JR, Matsuura T, Yoshikawa Y, Islam MN, Hori M, Phys. Chem. Chem. Phys. 7 (2005) 373.
    13. A. Collier, H. Wang, X.Z. Yuan, J. Zhang, D.P. Wilkinson, Inter, J. Hydrogen Energy 31 (2006) 1838.
    14. Cheng X, Chen L, Peng C, Chen ZW, Zhang Y, Fan QB, J. Electrochem. Soc. 151 (2004) A48.
    15. M. Aoki, H. Uchida, M. Watanabe, Electrochem. Commun. 8 (2006) 1509.
    16. A. Laconti, M. Hamdan, R. Mcdonald, Handbook of fuel cell, Vol.3, John Wiley and Sons Ltd, Chichester, England, 2003, pp647
    17. G. Escobedo, K. Raiford, G.S. Nagarajan, K. E. Schwiebert, ECS Trans. 1 (2006) 303.
    18. T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyarna, T. Abeb, Z. Ogumib, J. Power Sources 158 (2006) 1222.
    19. H. L. Tang , P. K. Shen, S. P. Jiang, F. Wang , M. Pan, J. Power Sources, Doi: 10.1016/j.jpowsour.2007.03.061.
    20. A. Pozio, R.F. Silva, M. De Francesco, L. Giorgi, Electrochimica Acta 48 (2003) 1543.
    21. A. Bosnjakovic, S. Schlick, L Phys. Chem. B 108 (2004) 4332.
    22. M. K. Kadirov, A. Bosnjakovic, .S. Schlick, J. Phys. Chem. B 109 (2005) 7664.
    23. H. L. Tang, Mu Pan, S. P. Jiang, X. Wang, Y, Z. Ruan, Electrochimica Acta, 52 (2007) 5304.
    24. H. L. Tang, S. L. Wang, S. P. Jiang, M. Pan, J. Power Sources, 10.1016/j.jpowsour.2007.03.062.
    25. J.L. Qiao, M. Saito, K. Hayamizu, T. Okada, J. Electrochem. Soc. 153 (2006) A967.
    26. J.Healy, C.Hayden, T.Xie, K.Olson, R.Waldo, M.Brundage, H.Gasteiger, J.Abbott, Fuel Cells 5 (2005) 302.
    27. R. A. Morgan, W. H. Sloan, Extrusion finishing of perfluorinated copolymers, U.S. Patent 4,626,587
    28. M. Doyle, G. Rajendran, Handbook of fuel cell, Vol.3, John Wiley and Sons Ltd, Chichester, England, 2003, pp351.
    29. F.W. Hoffmann, J. org. Chem. 14 (1949) 105.
    30. A. M.Lovelace, D. A. Rausch, W. Posteinek: "Alihatic Fluorine Compounds", New York, Reinhold, 1958, pp40.
    31. X Huang, R. Solasi, Y. Zou, M. Feshler, K. Reifsnider, D. Condit, S. Burlatsky, T. Madden, J. Polym. Sci. B, 44 (2006) 2346.
    32. Y. L. Tang, M. H. Santare, A. M. Karlss, S. Cleghorn, W. B. Johnson, J. Fuel Cell Sci. Tech. 3 (2006) 119.
    33. Li MQ, Shao ZG, Zhang HM, Zhang YM, Zhu XB, Yi BL, Electrochem Solid State Lett. 9 (2006) A92.
    34. S. Cleghom, J. Kolde, W. Liu, Furl CellHandbook V3, Part 3, pp 566.
    35. P.C. Foiler, R. T. Bombard, J. Appl. Electrochem., 1995(25) 163.
    36. C. Mansano-Weiss, H. Cohen, D. Meyerstein,J. Inorg. Biochem. 91 (2002) 199.
    37. M. Inaba, H. Yamada, J. Tokunaga, A. Tasaka, Electrochem. Solid-State Lett. 7 (2004) A474.
    38. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, J. Electroanal.Chem. 495 (2001) 134.
    39. V. Mittal, H. Kunz, J. Fenton, Electrochem.Solid-State Lett., 2006 (9) A299.
    40. M. Inaba., T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, Z. Ogumib, Electrochim. Acta 51 (2006) 5746.
    1. (a) Williams, M., Strakey, J., Surdoval, W. J. Power Sources 2005, 143, 191. (b) Perry, M., Fuller, T. J. Electrochem. Soc. 2002, 149, S59. (c) Dyer, C.K.J. Power Sources 2002, 106, 31. (d) Costamagna, P.Srinivasan, S. J. Power Sources 2001, 102, 253.
    2. (a) Samms, S.R., Wasmus, S., Savinell, R.F.J. Electrochem. Soc. 1996, 143, 1498. (b) Saito, M., Arimura, N., Hayamizu, K., Okada, Y. J. Phys. Chem. B 2004, 108, 16064. (c) Costamagna, P. Srinivasan, S. J. Power Sources 2001, 102, 242.
    3. (a) Y. Sone, P. Ekdunge, D. Simonsson, J. Electrochem. Soc. 1996, 143, 1254. (b) Paddison, S.J. Annu. Rev. Mater. Res. 2003, 33, 289. (c) Saito, M., Arimura, N., Hayamizu, K., Okada, T. J. Phys. Chem. B 2004, 108, 16064. (d) Ciureanu, M. J. Appl. Electrochem. 2004, 34, 705.
    4. (a) Bellows, R.J., Lin, M.Y., Arif, M. Thompson, A. K., Jacobson, D. J. Electrochem. Soc. 1999, 146, 1099. (b) Buchi, F.N., Scherer, G.G.J. Electrochem. Soc. 2001, 148, A183. (c) Tsushima, S., Teranishi, K., Hirai, S. Electrochem. Solid-State Lett. 2004, 7, A269.
    5. (a) Yoshikawa, Y., Matsuura, T., Kato, M., Hori, M. J. Power Sources 2006, 158, 143. (b) Kreuer, K.D.J. Membrane Sci. 2001, 185, 29. (c) Kerres, J.A.J. Membrane Sci. 2001, 185, 3.
    6. (a) Ramani, V., Kunz, H.R., Fenton, J.M.J. Membrane Science 2004, 232, 31. (b) Zhu, X., Zhang, H., Zhang, Y., Liang, Y., Wang, X., Yi, B. J. Phys. Chem. B 2006, 110, 14240. (c) Jung, U.H., Park, K.T., Park, E.H., Kim, S.H.J. Power Sources 2006, 159, 529. (d) Shao, Z.-G., Xu, H., Li, M., Hsing, I-M. Solid State Ionics 2006, 177, 779. (e) Chalkova, E., Fedkin, M.V., Komarneni, S., Lvov, S.N.J. Electrochem. Soc. 2007, 154, B288. (f) Li, Q., He, R., Gao, J.A., Jensen, J.O., Bjerrum, N.J.J. Electrochem. Soc. 2003, 150, A1599. (g) Arico, A.S., Baglio, V., Di Blasi, A., Antonucci, V. Electrochem. Commun. 2003, 5, 862. (h) Chalkova, E., Pague, M.B., Fedkin, M.V., Wesolowski, D.J., Lvova, S.N.J. Electrochem. Soc. 2005, 152, A1035.
    7. (a) Adjemian, K.T., Dominey, R., Krishnan, L., Ota, H., Majsztrik, R, Zhang, T., Mann, J., Kirby, B., Gatto, L., Velo-Simpson, M. Leahy, J., Srinivasan, S.. Benziger, J.B., Bocarsly, A.B. Chem. Mater. 2006, 18, 2238. (b) Shao, Z.-G., Joghee, P., Hsing, I.-M. J. Membrane Sci. 2006, 229, 43. (c) Panero, S., Fiorenza, R, Navarra, M.A., Romanowska, J., Scrosati, B. J. Electrochem. Soc. 2005, 152, A2400. (d) Pu, Z., Mark, J.E. Chem. Mater. 1997, 9, 2442. (e) Adjemiana, K.T., Srinivasana, S., Benzigerb, J., Bocarsly, A.B. J. Power Sources 2002, 109, 356.
    8. (a) Miyake, N., Wainright, J.S., Savinell, R.F. J. Electrochem. Soc. 2001, 148, A898. (b) Sahu, A. K., Selvarani, G., Pitchumani, S., Sridhar, R, Shukla, A. K. J. Electrochem. Soc. 2007, 154, B123. (c) W. Apichatachutapan, R. B. Moore, K. A. Mauritz, J. Appl. Polym. Sci., 62, 417(1996). (d) Baradie, B., Dodelet, J.P., Guay, D. J. Electroanal. Chem. 2000, 489, 101. (e) K. A. Mauritz, Mater. Sci. Eng. C, 6, 121 (1998). (f) Deng, Q., Cable, K. M., Moore, B., Mauritz, K. A. J. Polym. Sci. B: Polym. Phys. 1996, 34, 1917. (g) Zoppi, R.A., Nunes, S.P.J. Electroanal. Chem. 1998, 445, 39. (h) Jiang, R., Kunz, H.R., Fenton, J.M.J. Membrane Sci. 2006, 272, 116.
    9. Satterfield, M. B., Majsztrik, P.W., Ota, H., Benziger, J.B., Bocarsly, A. J. Polymer Sci.: Part B: Polymer Physics 2006, 44, 2327.
    10. Mauritz, K.A., Stefanithis, I.D., Davis, S.V., Scheetz, R.W., Pope, R.K., Wilkes, G.L., Huang, H-H. J. Appl. Polym. Sci. 1995, 55, 181.
    11. (a) Zhai, Y., Zhang, H., Hu, J., Yi, B. J. Membrane Sci. 2006, 280, 148. (b) Wang, L., Xing, D.M., Liu, Y.H., Cai, Y.H., Shao, Z.-G., Zhai, Y.F., Zhong, H.X., Yi, B.L., Zhang, H.M.J. Power Sources 2006, 161, 61. (c) Li, M., Shao, Zhi-Gang, Zhang, H., Zhang, Y., Zhu, X., Yi, B. Electrochem. Solid-State Letters 2006, 9, A92.
    12. Kim, D., Scibioh, M.A., Kwak, S., Oh, I.-H., Ha, H.Y. Electrochem. Commun. 2004, 6, 1069.
    13. (a) Tilley, R.D., Yamamoto, K. Adv. Mater. 2006, 18, 2053. (b) Suzuki, K, Ikari, K, Imai, H. J. Am. Chem. Soc. 2004, 126, 462.
    14. (a) Pan, M., Tang, H., Jiang, S.P., Liu, Z. Electrochem. Commun. 2005, 7, 119. (b) Pan, M., Tang, H., Jiang, S. R, Liu, Z. J. Electrochem. Soc. 2005, 152, A1081. (c) Shichun, M., Xiaoen, W., Haolin, T., Peigang, L., Ming, L., Mu, P., Runzhang, Y. J. Electrochem. Soc. 2006, 153, A1868.
    15. (a) Hiemstra, T., De Wit, J.C.M., Van Riemsdijk, W.H., J. Colloids Interface Sci. 1989, 133, 105. (b) Hiemstra, T., Van Riemsdijk, W.H., Bolt, G.H. J. Colloids Interface Sci. 1989, 133, 91.
    16. Pettersson, A., Rosenholm, J.B. Langmuir 2002, 18, 8447.
    17. Doyle, M., Rajendran, G. Fuel Cell Handbook V3, Part 3, pp 351-391.
    18. (a) Khiterer, M., Loy, D.A., Cornelius, C. J., Fujimoto, C. H., Small, J. H., McIntire, T. M., Shea, K. J. Chem. Mater. 2006, 18, 3665.
    (b) Tang, H., Pan, M., Jiang, S., Wan Z., Yuan, R. Colloids and Surfaces A 2005, 262, 65.
    19. (a) Ogoshi, T., Chujo, Y. J. Mater. Chem., 2005, 15, 315.
    (b) Maganov, S. N., Elings, V., Whangbo, M. H. Surf Sci. Lett., 1997, 375, 385.
    (c) Ge, S., Takahara, A., Kajiyama, T. Langmuir, 1995, 11, 1341.
    (d) Sauer, B. B., McLean, R. S., Thomas, R. R. Langmuir, 1998, 14, 3045.
    (e) Lemieux, M., Usov, D., Minko, S., Stamm, M., Shulha, H., Tsukruk, V. V., Macromolecules, 2003, 36, 7244.
    (f) Kopp-Marsaudon, S., Leclere, Ph., Dubourg, F., Lazzaroni, R., Aime, J. P. Langmuir, 2000, 16, 8432.
    20. (a) Hagihara, H., Uchida, H., Watanabe, M., Electrochimica Acta 2006, 51, 3979.
    (b) Shao, Z.-G., Joghee, P., Hsing, I-M., Journal of Membrane Science 2004, 229, 43.
    (c) Adjemian, K. T., Lee, S. J., Srinivasan, S., Benziger, J., Bocarslya, A. B. J. Electrochem. Soc. 2002, 149, A256.
    21. (a) Jung, D.H., Cho, S.Y., Peck, D.H., Shin, D.R., Kim, J.S.J. Power Sources 2002, 106, 173.
    (b) Raghuram, V., Moore, R.B., Mauritz, K.A.J. Polym. Sci. B: Polym. Phys. 1996, 34, 2383.
    22. Wainright, S., Litt, M. H., Savinell, R. F. Fuel Cell Handbook V3, Part 3, pp 436-445.
    23. Zoppi, R.A., Nunes, S.P.J. Electroanal. Chem. 1998, 445, 39.
    24. Adjemian, K.T., Srinivasan, S., Benziger, J., Bocarsly, A.B.J. Power Sources 2002, 109, 356.
    25. Jiang, R., Kunz, H.R., Fenton, J.M.J. Membrane Sci. 2006, 272, 116.
    26. (a) H. Xu, Y. Song, H. Kun, J. Fenton, J. Electrochem. Soc. 152 (2005) A1828.
    (b) J. Zhang, Z. Xie, J. Zhang, et al. J. Power Sources 160 (2006) 872.
    27. (a) Z. Zhou, S. Li, Y. Zhang, M. Liu, W. Li, J. Am. Chem. Soc. 127 (2005) 10824.
    (b) H. Wang, B.A. Holmberg, L. Huang, Z. Wang, A. Mitra, J.M. Norbeck, Y. Yan, J. Mater. Chem. 12 (2002) 834.
    (c) P.L. Antonucci, A.S. Arico, P. Creti, E. Ramunni, V. Antonucci, Solid State lonics 125 (1999) 431.
    (d) K.T. Adjemian, R. Dominey, L. Krishnan, H. Ota, et, al. Chem. Mater. 18 (2006) 2238.
    1. N.W Deluca, Y.A Elabd, J. Polym. Sci. B-Polym. Phys. 44 (2006) 2201.
    2. S.K. Kamarudin, W.R.W. Daud, S.L. Ho, U.A. Hasran, J. Power Sources 163 (2007) 743.
    3. B.Curau, E. S.Smotldn, J. Power Sources 112 (2002) 339.
    4. SJ Paddison, JA Elliott, Phys. Chem. Chem. Phys. 8 (2006) 2193.
    5. M. Doyle, G. Rajendran, Perfluorinated membranes, Handbook of fuel cell, Vol.3, John Wiley and Sons Ltd, Chichester, England (2003) 351.
    6. J.A. Kerres, J. Membr. Sci. 185 (2001) 3.
    7. T. Schaffer, V. Hacker, T. Hejze, T. Tschinder, J.O. Besenhard, P. Prenninger, J. Power Sources 145 (2005) 188.
    8. Jia, N.; Lefebvre, M.C.; Halfyard, J.; Qi, Z.; Pickup, P.G. Electrochem. Soli-State Lett. 3 (2000) 529.
    9. N.Miyake, J.S.Wainrigh, S R.F.avinell, J. Electrochem. Soc.2001.
    10. C.Yang,, S.Srinivasan, A.S.Arico, P.Creti, V.Baglio, V.Antonucci, Electrochem. Solid-State Lett. 4 (2001) A31.
    11. V. Tricoly, J. Electrochem.Soc. 145 (1998) 3798.
    12. C.Pu, W.Huang, K.L.Ley, E.S.Smotkin, J. Electrochem. Soc. 142,(1995) L119.
    13. Y.J.Kim, W. C.Choi, I.Woo S, W.H.Hong, Electrochim.Acta 49(2004) 3227.
    14. M. Pan, H. Tang, S. Jiang, Z. Liu, Electrochem. Commun. 7(2005) 119.
    15. M. Pan, H.olin Tang, S. Jiang, Z.Liu, J. Electrochem. Soc. 152(2005) A1081.
    16. F.A Lewis, Int. J. Hydrogen Energy 21 (1996) 461.
    17. Hoogsteen, W.; Fokkink, L.G. J. Colloid Interface Sci. 175 (1995) 12.
    18. H. L. Yeager, B. Kipling, Ionic diffusion and ion clustering in a perfluorosulfonate ion-exchange membrane, J. Phys. Chem. 83(1979)1836.
    19. F.P. Orfino, S. Holdcroft, The morphology of Nation: are ion cluster bridged by channels or single ionic sites, J. New Mat. Electr. Sys. 3(2000)285.
    20. K.C. Grabar, K.R. Brown, C.K. Keating, S.J. Stranick, S. Tang, M.J. Natan, Anal. Chem. 69 (1997) 471.
    21. Z. Peng, X. Qu, S. Dong, Langmuir 20 (2004)5.
    22. H. Yu, D. Jiang, J. Wuhan Univer. Tech.-Mater. Sci. Ed., 17 (2002)38.
    23. B. Libby, W.H. Smyrl, E.L. Cussler, Electrochem. Solid-State Lett., 4, A197 (2001).
    24. S. Hikita, K. Yamane, Y. Nakajima. JSAE Review, 22, 151 (2001).
    25. Kho BK, Bae B, Scibioh MA, et al. J. Power Sources, 142, 50 (2005).
    1 Mu Pan, Haolin Tang, San Ping Jiang, Zengcai Liu, Self-assembled membrane-electrode-assembly of polymer electrolyte fuel cells, Electrochemistry Communication, 2005, 7(2): 119~124 (SCI-CDE, IF 3.388)
    2 Mu Pan, Haolin Tang, San Ping Jiang, Zengcai Liu, Fabrication and performance of polymer electrolyte fuel cells by serf-assembly of Pt nanoparticles, Journal of the Electrochemical Society, 2005, 152(6)A1081-A1088 (SCI-CDE, IF 2.19)
    3 Pan Mu, Tang Haolin, Mu Shichun and Yuan Runzhang. Synthesis of Platinum/Multi-Wall Carbon Nanotube Catalysts, Journal of Materials Research, 2004, 19(8): 2279~2284 (SCI-CDE, IF 2.104)
    4 Haolin Tang, Mu Pan, Fang Wang, Shen Peikang and San Ping Jiang, Highly Durable Proton Exchange Membranes for Fuel Cells, Journal of physical chemistry B, Doi: 10.1021/jp073136t. (SCI-CDE 源刊, IF 4.033)
    5 Haolin Tang, Zhaohui Wan, Mu Pan and San Ping Jiang, Self-assembled Nation-Silica Nanoparticles for Elevated-High Temperature Polymer electrolyte membrane Fuel Cells, Electrochem. Commun., Accepted for publication Mar. 25, 2007. (SCI-CDE 源刊, IF 3.388)
    6 Haolin Tang, Shenlong Wang, Mu Pan and Runzhang Yuan, Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells, Journal of Power Sources, 2007, 166(1) 41-46 (SCI-CDE, IF 2.77)
    7 Haolin Tang, Shen Peikang, San Ping Jiang, Fang Wang, Mu Pan, A degradation study of Nation polymer electrolyte membrane of PEM fuel cells, Journal of Power Sources, 170 (2007) 85-92. (SCI-CDE, IF 2.77)
    8 Haolin Tang, Shenlong Wang, San Ping Jiang, Mu Pan, A comparative study of CCM and hot-pressed MEAs of PEM fuel cells, Journal of Power Sources, 170 (2007) 140-144. (SCI-CDE, IF 2.77)
    9 Haolin Tang, Shenlong Wang, Mu Pan, San Ping Jiang and Yunzhang Ruan, Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane (CCM), Electrochimica Acta, 2007, 52(11) 3714-3718 (SCI-CDE, IF 2.453)
    10 Haolin Tang, Mu Pan, San Ping Jiang, Xiaoen Wang and Yunzhang Ruan, Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cell, Electrochimica Acta, 52 (2007) 5304-5311 (SCI-CDE, IF 2.453)
    11 Haolin Tang, Shenlong Wang, Mu Pan, San Ping Jiang and Yunzhang Ruan, Performance of DMFCs prepared by hot-pressed MEA and catalyst-coated membrane, Fuel Cells Bulletin, 5 (2007) 12-16 (Fuel Cells Bulletin's feature article, a reprint copy).
    12 Haolin Tang, Mu Pan, Sanping Jiang, Zhaohui Wan and Runzhang Yuan, Self-assembling multi-layer-Pd nanoparticles onto NafionTM membrane to reduce methanol crossover, Colloids and Surfaces A 262 (2005) 65-70 (SCI-CDE, IF1.499)
    13 Haolin Tang, Mu Pan, San Ping Jiang and Yuan Runzhang, Modification of NafionTM membrane to reduce methanol crossover via self-assembly Pd nano-particles, Mater. Lett: 59 (2005) 3766-3770 (SCI-CDE, IF1.299)
    14 Haolin Tang, Mu Pan, San Ping Jiang, Zengcai Liu, Synthesis of Platinum nanoparticles and the self-assembled on Nation membrane as catalyst coated membrane, Journal of chemical research 2005(7)449-451 (SCI-CDE, IF 0.319)
    15 Tang Haolin, Pan Mu, Mu Shichun and Yuan Runzhang, Electrostatic self-assembly Pd particles on NafionTM membrane surface to reduce methanol crossover, Chinese Sci. Bull. 2005, 50(4) 377-379 (SCI-CDE, IF0.783)
    16 Tang Haolin, Pan Mu, Mu Shichun and Yuan Runzhang. Synthesis of Platinum Nanoparticles modified with Nation and the Application in PEM Fuel Cell, Journal of wuhan university of technology, mater. Sci. Ed. 2004, 19(3): 7~9 (SCI-E, IF 0.271)
    17 Tang, Haolin, Pan, Mu; Shichun, Mu; Wan, Zhaohui; Yuan, Runzhang, Performance of direct formic acid fuel cell with self-assembled PEMs, Proceedings of 4th International ASME Conference on Fuel Cell Science, Engineering and Technology, FUELCELL2006, 2006, 6p (EI compedex)
    18 Mu Shichun, Tang Haolin, Wan Zhaohui., Pan Mu and Yuan Runzhang. Au nanoparticles self-assembled onto Nation membranes for use as methanol-blocking barriers. Electrochem. Commun., 7 (2005) 1143-1147. (SCI-CDE, IF 3.388)
    19 Luo Zhiping, Li Daoxi, Tang Haolin, Pan Mu and Ruan Runzhang, Degradation behaviors of membrane-electrode-assembly materials in 10-cell PEMFC stack, International Journal of Hydrogen Energy, 31 (2006) 1831-1837 (SCI-CDE, IF 1.904)
    20 Mu Shichun, Wang Xiaoen Tang Haolin, Li Peigang, Lei Ming, Pan Mu, Yuan RunZhang. A Self-Humidifying Composite Membrane with Self-Assembled Pt Nanoparticles for Polymer electrolyte membrane Fuel Cells, Journal of The Electrochemical Society, 2006, 153 (10) A1868-A 1872 (SCI-CDE, IF 2.19)
    21 Shi-chun Mu, Hao-lin Tang, Sheng-hao Qian, Mu Pan, Run-zhang Yuan, Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration, Carbon 44 (2006) 762-767 (SCI-CDE, IF3.419)
    22 San Ping Jiang, Lin Li, Zengcai Liu, Mu Pan, and Hao Lin Tang, Self-Assembly of PDDA-Pt Nanoparticle/Nafion Membranes for Direct Methanol Fuel Cells, Electrochemical and Solid-State Letters, 2005, 8 (11)A574-A576 (SCI-CDE, IF 1.97)
    23 San Ping Jiang, Zengcai Liu, Hao Lin Tang and Mu Pan, Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells, Electrochimica Acta, 51 (2006) 5721-5730 (SCI-CDE, IF 2.453)
    24 He Xiuchong, Tang Haolin, Pan Mu, and Yuan Runzhang, Synthesis and performance of water-retention PEMs with Nafion-intercalating-montmorillonite hybrid, J. Appl. Poly Sci, Acepted for publication, Feb. 2, 2007 (SCI-CDE 源刊, IF 1.072)
    1 潘牧,唐浩林,宛朝辉,袁润章,谢春华.一种质子交换膜燃料电池核心组件的制作方法.中国发明专利,CN 200410060944.4(已授权)
    2 潘牧,唐浩林,袁润章,宛朝辉,谢春华.一种降低氟化磺酸型质子交换膜甲醇渗透率的方法.中国发明专利,申请号:200410060945.9(已授权)
    3 潘牧,廑造林,李道喜,余军,袁润章.具有自增湿功能的多层纳米复合质子交换膜的制备方法,中国发明专利,CN 200410061104.X(已授权)
    4 唐浩林,潘牧,王晓恩,何秀冲,木士春,袁润章.一种多孔高分子增强质子交换膜 的制备方法,中国发明专利,申请号:200510018578.0(公示期)
    5 唐浩林,潘牧,何秀冲,王晓恩,木士春,袁润章.袁润章采用碱金属离子交换的全氟磺酸树脂制备燃料电池用复合质子交换膜的方法,中国发明专利,申请号:200510018912.2(公示期)
    6 唐浩林,潘牧,王红红,木士春,宛朝晖,袁润章,,一种亲疏水性可调的质子交换膜燃料电池用核心组件的制备方法,中国发明专利,申请号:2006100118633.0(公示期)
    7 唐浩林,潘牧,王红红,木士春,宛朝晖,袁润章,,一种亲疏水性可调的质子交换膜燃料电池用膜电极的制备方法,中国发明专利,申请号:2006100118634.5(公示期)
    8 唐浩林,刘珊珊,王晓恩,潘牧,袁润章,一种基于亲水性多孔聚四氟乙烯基体的复合质子交换膜的制备方法,中国发明专利,申请号:200610019386.6(公示期)
    9 唐浩林,何秀冲,潘牧,袁润章,无机矿物——质子传导树脂插层复合质子交换膜及其制备方法,中国发明专利,申请号:200610019182.2(公示期)
    10 唐浩林, 宛朝辉,潘牧,袁润章,一种燃料电池用核壳催化剂及其制备方法,中国发明专利,申请号:200610019298.6(公示期)
    11 唐浩林,宛朝辉,潘牧,袁润章,一种高效的直接甲醇燃料电池阴极催化剂及其制备方法,中国发明专利,申请号:200610019303.3(公示期)
    12 唐浩林,邬静杰,潘牧,李跃卿,宛朝辉,一种保水组分均匀分散的复合质子交换膜的制备方法,中国发明专利,申请号:200710051677.8
    13 唐浩林,邬静杰,潘牧,宛朝辉,李跃卿,一种燃料电池用无机质子交换膜及其制备方法,中国发明专利,申请号:200710051757.3
    14 唐浩林,潘牧,邬静杰,李跃卿,宛朝辉,一种保水质子交换膜燃料电池膜电极的制备方法,中国发明专利,申请号:200710051759.2
    15 唐浩林,潘牧,一种高温质子交换膜燃料电池用保水扩散层的制备方法,中国发明专利,申请号:200710051755.4
    16 唐浩林,潘牧,一种无机质子交换膜燃料电池膜电极的制备方法,中国发明专利, 申请号:200710051756.9
    17 唐浩林,潘牧,李跃卿,宛朝辉,一种保水质子交换膜燃料电池核心组件的制备方法,中国发明专利,申请号:200710051758.8