碳纳米材料的可控制备、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米材料所具有的多样性结构及各种优异性能,使其在信息、生物、能源、环境保护等各个方面展示了巨大的应用前景。纳米碳材料的结构、维度、形貌、尺寸等因素对它们的性能有着重要影响。因而,碳材料的调控合成是碳纳米科技发展的重要组成部分,也是探索碳材料性能及应用研究的基础。论文借助表面活性剂构筑的限域性微反应器的模板作用可控制备了四种不同的纳米碳材料:碳纳米管、空心碳纳米胶囊、碳包覆铁纳米材料以及纳米碳带,研究了所得碳包覆铁纳米材料用于磁性分离催化剂载体的可行性。具体的研究工作包括以下几个方面:
     借助四元微乳体系,即十六烷基三甲基溴化胺(CTAB)/水/环己烷/正戊醇构筑的反相微乳为模板,以间苯二酚和甲醛为聚合单体,在溶剂热条件下通过乳液聚合反应选择性合成了具有不同形貌特征的碳前驱体,后经炭化分别制备了空心碳纳米胶囊、碳纳米管及碳包覆纳米材料。利用TEM、XRD、EDX、Raman、FT-IR及TG等测试手段,对合成样品的形貌、结构及成分进行了分析。考察了水与表面活性剂的摩尔比值、间苯二酚的加入量、甲醛的用量、三氯化铁的添加、CTAB的浓度、溶剂热过程的温度和时间以及炭化温度和升温速率等实验参数对生成产物的影响。结合测试分析结果,对纳米碳管和纳米碳空囊的形成机理进行了初步讨论。采用该制备工艺可实现在合成过程中对碳纳米材料尺寸和形貌等指标的调控。
     以CTAB为模板剂,问苯二酚和甲醛为聚合单体,草酸亚铁为金属源,通过乳液聚合法制备了酚醛树脂.铁盐前驱体,将其炭化得到了具有完好壳/核包覆结构的碳包覆铁纳米材料(Fe@C);考察了金属盐添加量、炭化温度及炭化升温速率等工艺条件对Fe@C形成的影响;磁性能及N_2吸附测试结果表明Fe@C具有超顺磁性及较高的比表面积。以Fe@C为催化剂载体,采用浸渍法制备了Fe@C负载金属Ru催化剂(Ru/Fe@C),并将其用于苯甲醇选择氧化制备苯甲醛的反应。研究结果表明,反应4.5 h后,苯甲醇的转化率和苯甲醛的选择性均接近100%。利用磁分离技术,Ru/Fe@C可被回收并多次使用,Ru/Fe@C循环使用4次后,苯甲醛的选择性可保持100%,苯甲醇的转化率仍可达80%。
     采用水热法,以葡萄糖为聚合单体,借助十二烷基苯磺酸钠(SDBS)的结构导向作用,制备了带状纳米碳材料。EDX、XPS及FT-IR测试结果表明纳米带为富碳高聚物,表面含有羟基、羰基等有机基团。考察了水热反应温度及时间、SDBS的添加及高温炭化处理对产物形貌及组成的影响:随着水热碳化温度的升高或反应时间的延长,所得碳纳米带/片的尺寸增加,产物的结晶度变好。结合测试分析结果,初步探讨了纳米碳带的形成机理。
     采用胶溶法获得氢氧化铁水溶胶,加入SDBS将其胶凝后,通过在氢气及氮气气氛下的煅烧处理合成了Fe及Fe_3O_4催化剂,于700℃下气相沉积乙炔,分别制备了竹节状及鱼骨状纳米碳管。运用SEM、TEM、XRD等技术手段对碳材料的形貌、结构及组成进行了分析,讨论了气相沉积的时间及温度对产物形貌的影响。此外,不采用任何催化剂,以氮气/氢气混合气为载气,700℃下直接裂解乙炔,可同时制备空心及实心微米碳球,并可于反应器的不同位置收集产物。考察了沉积温度及载气组成对生成产物形貌的影响,根据不同温度下裂解乙炔所得产物的形貌变化,初步推测了空心及实心碳微球的形成机理。
     以十二钨磷酸为氧化剂,在水热条件下对活性炭进行氧化改性,水热氧化改性3天所得改性活性炭的噻吩脱除率为39.6%,远高于初始活性炭的脱硫效果(11.8%)。表面活性剂的加入可以在提高脱硫率的前提下,大大缩短活性炭的水热改性时间。研究结果表明,加入十二烷基苯磺酸钠后,对活性炭的改性时间由3天缩减为1天,所得改性活性炭的脱硫率为50.7%,优于未添加SDBS时,改性3天所得活性炭样品的脱硫效果。考察了SDBS用量及水热反应时间对改性活性炭脱硫性能的影响。结合低温N_2吸附、FT-IR和TPD测试结果,讨论了不同实验条件下,活性炭孔结构及表面化学性质的变化,初步分析了活性炭的自身特性对其吸附转移噻吩的影响。
Recently, carbon nanomaterials attract more and more attention because of their distinctive physical and chemical properties as well as potential applications in many high-tech fields, such as biomedical engineering, catalysis, energy sources, etc. Manipulated synthesis of nanocarbons is one of the most important sections of carbon nanoscience and nanotechnology, and the base to investigate the distinctive properties and applications of carbon nanostructures. In this thesis, carbon nanotubes, hollow carbon nanocapsules, carbon encapsulated iron nanomaterials (Fe@C) and carbon nanobelts are selectively prepared with the assistance of different nano-reactors assembled by surfactants. The possibility of Fe@C as the magnetically separable catalyst support is investigated. The work is now summarized as follow:
     A technique combining microemulsion polymerization and the subsequent carbonization process is proposed for the selective synthesis of carbon nanocapsules, carbon nanotubes and carbon encapsulated nanoparticles. A quaternary microemulsion composed of CTAB (cetyltrimethylammonium bromide)/water/cyclohexane/n-pentanol is chosen as the nano-reactor with resorcinol (R) and formaldehyde (F) as the reactant monomers. The morphologies, structures and components of the as-made carbons are investigated by TEM, EDX, XRD, Raman, FT-IR and TG techniques. The experimental parameters such as the molar ratio of water to CTAB, the concentration of CTAB, the feeding amount of R and FeCl_3, and the solvothermal treating time and temperature are addressed. This method may provide an alternative synthetic route for the controllable preparation of carbon nanomaterials with different morphologies that are of great potential in many high-tech fields.
     Carbon encapsulated iron nanomaterials have been successfully synthesized by pyrolyzing RF polymer/iron oxalate composite in flowing hydrogen. Microemulsion polymerization of R and F is completed via a micelle-template technique with CTAB as the template agent. The as-made Fe@C exhibits well-constructed metal core/carbon shell structure with high BET surface area and superparamagnetic property. The effect of the experimental conditions on the formation of Fe@C is addressed, including iron salt feeding, carbonization temperature and the heating rate. Moreover, Fe@C supported Ru catalyst (Ru/Fe@C) is prepared through an impregnation process. Ru/Fe@C shows excellent catalytic performance for the oxidation of benzyl alcohol. The conversion of benzyl alcohol is 99.6% and the selectivity to benzaldehyde is 100% at 90°C, oxygen atmosphere with water-toluene biphasic system as the solvent. Ru/Fe@C can be easily separated and recovered by using a foreign magnetic field, and shows no obvious loss in catalytic activity after being reused for 4 times.
     Under the mediation of SDBS (sodium dodecyl benzene sulfonate) molecules, carbon-rich nanobelts (CNBs) are formed through carbonization of glucose under hydrothermal condition. The morphology evolution of CNBs has been investigated as the functions of the hydrothermal time and temperature. CNBs grow wider and thicker with the time prolonging and the temperature increasing. The EDX, FT-IR and XPS analysis confirm that there are functional groups abounded in as-made carbon framework. A possible growth model of CNBs is proposed and discussed in terms of the process parameters.
     Bamboo-shape and fishbone-like CNTs are selectively prepared by catalytic decomposition of acetylene over Fe-based catalysts that are prepared by SDBS-stabilized colloid chemical method coupled with calcination treatment. XRD analyses and TEM studies indicate that Fe catalysts result in the formation and growth of bamboo-shape CNTs, while Fe_3O_4 catalysts lead to fishbone-like ones. The factors in determining the morphology of the products and the growth mechanism of carbon nanotubes are addressed. Furthermore, simultaneous production of microsize hollow and solid carbon spheres is successfully achieved via non-catalytic chemical vapor deposition of acetylene. The unique feature is that the as-made two ball-like carbons can be collected separately as two individual products. The parameters such as the reaction temperature and the composition of the carrier gas are found to be critical for the formation of microsize hollow and solid carbon spheres.
     A polyoxometalates (POMs)-assisted hydrothermal system is developed for the modification of activated carbon (AC). The AC sample (AC-3) modified with hydrothermal treating for 3 days exhibits good adsorption capability, with thiophene removal ratio of 39.6%, much better than that of raw AC sample (11.8%). By adding SDBS, the hydrothermal reaction time can be reduced to 1 day, with the as-modified AC even showing a higher thiophene removal efficiency (50.7%) than that of AC-3. The functional groups and the porous structure are simultaneously responsible for the desulfurization performance of AC.
引文
[1] Kroto H W, Heath J R, O'Brien S C et al. C_(60): Buckminsterfullerene. Nature, 1985, 318:162-163.
    [2] 成会明.碳纳米管制备、结构、物性及应用.北京:化学工业出版社,2002.
    [3] Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354:56-58.
    [4] Krishnan A, Dujardin E, Treacy M M J et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature, 1997, 388 (6641):451-454.
    [5] Ajayan P M, Nugent J M, Siegel R W et al. Growth of carbon micro-trees - Carbon deposition under extreme conditions causes tree-like structures to spring Upo Nature, 2000, 404 (6775):243-243.
    [6] Gogotsi Y, Libera J A, Kalashnikov Net al. Graphite polyhedral crystals. Science, 2000, 290 (5490):317-320.
    [7] Zhang G Y, Jiang X, Wang E G. Tubular graphite cones. Science, 2003, 300 (5618):472-474.
    [8] 李永峰.煤基纳米和微米炭材料的电弧法制备研究:(博士学位论文).大连:大连理工大学,2004.
    [9] Bonduel D, Bredeau S, Alexandre Met al. Supported metallocene catalysis as an efficient tool for the preparation of polyethylene/carbon nanotube nanocomposites: effect of the catalytic system on the coating morphology. Journal of Materials Chemistry, 2007, 17 (22):2359-2366.
    [10] Guo S Q, Sivakumar R, Kitazawa H et al. Electrical properties of silica-based nanocomposites with multiwall carbon nanotubes. Journal of the American Ceramic Society, 2007, 90 (5):1667-1670.
    [11] Edler F, Baratto A C. h cobalt-carbon eutectic fixed point for the calibration of contact thermometers at temperatures above 1100 ℃. Metrologia, 2005, 42 (4):201-207.
    [12] Keidar M. Factors affecting synthesis of single wall carbon nanotubes in arc discharge. Journal of Physics D-Applied Physics, 2007, 40 (8):2388-2393.
    [13] Journet C, Maser W K, Bernier P et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388 (6644):756-758.
    [14] Landi B J, Raffaelle R P. Effects of carrier gas dynamics on single wall carbon nanotube chiral distributions during laser vaporization synthesis. Journal of Nanoscience and Nanotechnology, 2007, 7 (3):883-890.
    [15] Yacaman M J, Yoshida M M, Rendon Let al. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett., 1993, 62:202-204.
    [16] Endo M, Takeuchi K, Kobori K et al. Pyrolytic Carbon Nanotubes from Vapor-Grown Carbon-Fibers. Carbon, 1995, 33 (7):873-881.
    [17] Dal H J, Rinzler A G, Nikolaev P et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chemical Physics Letters, 1996, 260 (3-4):471-475.
    
    [18] Gruneis A, Saito R, Kimura T et al. Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Physical Review B, 2002, 65 (15):155405.
    
    [19] Hsu W K, Terrones M, Hare J P et al. Electrolytic formation of carbon nanostructures. Chemical Physics Letters, 1996, 262 (1-2):161-166.
    
    [20] Chen G Z, Fan X D, Luget A et al. Electrolytic conversion of graphite to carbon nanotubes in fused salts. Journal of Electroanalytical Chemistry, 1998, 446 (1-2):1-6.
    
    [21] Hill J P, Jin W S, Kosaka A et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science, 2004, 304 (5676):1481-1483.
    
    [22] Jiang Y, Wu Y, Zhang S Y et al. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc., 2000, 122 (49): 12383-12384.
    
    [23] Wang X J, Lu J, Xie Y et al. A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature. Journal of Physical Chemistry B, 2002, 106 (5):933-937.
    
    [24] Liu J W, Shao M W, Tang Q et al. Synthesis of carbon nanotubes and nanobelts through a medial-reduction method. Journal of Physical Chemistry B, 2003, 107 (26):6329-6332.
    
    [25] 高永刚,施兴华,赵亚溥.碳纳米管的力学行为.机械强度,2001,23:412.
    
    [26] Vander Wal R L. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes. Chemical Physics Letters, 2000, 324 (1-3):217-223.
    
    [27] Laplaze D, Bernier P, Maser W K et al. Carbon nanotubes: The solar approach. Carbon, 1998, 36 (5-6):685-688.
    
    [28] Dresselhaus M S, Dresselhaus G, Avouris P. Carbon Nanotubes: Synthesis, Structures and Applications.Berlin: Springer, 2001.
    
    [29] Falvo M R, Clary G J, Taylor R M et al. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389 (6651):582-584.
    
    [30] Harris P J F. Carbon nanotube composites. International Materials Reviews, 2004, 49 (1):31-43.
    
    [31] Cho J H, Park C R. Hydrogen storage on Li-doped single-walled carbon nanotubes: Computer simulation using the density functional theory. Catalysis Today, 2007, 120 (3-4) :407-412.
    
    [32] Liu C, Cheng H M. Carbon nanotubes for clean energy applications. Journal of Physics D-Applied Physics, 2005, 38 (14):R231-R252.
    
    [33] Dillon A C, Jones K M, Bekkedahl T A et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386 (6623):377-379.
    
    [34] Ye Y, Ahn C C, Witham C et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters, 1999, 74 (16):2307-2309.
    [35] Xu N S, Huq S E. Novel cold cathode materials and applications. Materials Science & Engineering R-Reports, 2005, 48 (2-5):47-189.
    
    [36] Rinzler A G, Hafner J H, Nikolaev P et al. Unraveling Nanotubes: Field-Emission from an Atomic Wire. Science, 1995, 269 (5230):1550-1553.
    
    [37] Kyung S J, Park J B, Voronko M et al. The effect of atmospheric pressure plasma treatment on the field emission characteristics of screen printed carbon nanotubes. Carbon, 2007, 45 (3): 649-654.
    
    [38]Pan D W, Chen J H, Tao W Y et al. Polyoxometalate-modified carbon nanotubes: New catalyst support for methanol electro-oxidation. Langmuir, 2006, 22 (13):5872-5876.
    
    [39] Ajayan P M, Stephan 0, Redlich P et al. Carbon Nanotubes as Removable Templates for Metal-Oxide Nanocomposites and Nanostructures. Nature, 1995, 375 (6532):564-567.
    
    [40] Caruso R A, Antonietti M. Sol-gel nanocoating: An approach to the preparation of structured materials. Chemistry of Materials, 2001, 13 (10):3272-3282.
    
    [41] Satishkumar B C, Govindaraj A, Vogl E M et al. Oxide nanotubes prepared using carbon nanotubes as templates. Journal of Materials Research, 1997, 12 (3):604-606.
    
    [42] Satishkumar B C, Govindaraj A, Nath M et al. Synthesis of metal oxide nanorods using carbon nanotubes as templates. Journal of Materials Chemistry, 2000, 10 (9) :2115-2119.
    
    [43] Patzke G R, Krumeich F, Nesper R. Oxidic nanotubes and nanorods - Anisotropic modules for a future nanotechnology. Angewandte Chemie-International Edition, 2002, 41 (14):2446-2461.
    
    [44] Gao M, Huang S M, Dai L M et al. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angewandte Chemie-International Edition, 2000, 39 (20): 3664-3667.
    
    [45] Ruoff R S, Lorents D C, Chan B et al. Single crystal metals encapsulated in carbon nanoparticles. Science, 1993, 259:346-348.
    
    [46] Banhart F, Grobert N, Terrones M et al. Metal atoms in carbon nanotubes and related nanoparticles. International Journal of Modern Physics B, 2001, 15 (31) :4037-4069.
    
    [47] Yosida Y, Shida S, Ohsuna T et al. Synthesis, identification, and growth mechanism of Fe, Ni, and Co crystals encapsulated in multiwalled carbon nanocages. Journal of Applied Physics, 1994, 76 (8):4533-4539.
    
    [48] Schaper A K, Hou H, Greiner A et al. Copper nanoparticles encapsulated in multi-shell carbon cages. Applied Physics A: Materials Science & Processing, 2004, 78:73-77.
    
    [49] Zhong Z Y, Chen H Y, Tang S B et al. Catalytic growth of carbon nanoballs with and without cobalt encapsulation. Chemical Physics Letters, 2000, 330 (1-2):41-47.
    
    [50] Liu B H, Ding J, Zhong Z Y et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chemical Physics Letters, 2002, 358 (1-2):96-102.
    [51] 雷中兴,刘静,李轩科等.CVD法制备的碳包覆(Fe,Co)纳米粒子的结构及电磁特性。磁性材料及器件,2003,34(4):4-6.
    [52] Song H H, Chert X H. Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene. Chemical Physics Letters, 2003, 374 (3-4):400-404.
    [53] Walter J, Shioyama H. Quasi two-dimensional palladium nanoparticles encapsulated into graphite. Physics Letters A, 1999, 254 (1-2):65-71.
    [54] Song H H, Chert X H, Chen X Get al. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue. Carbon, 2003, 41 (15):3037-3046.
    [55] Kim J H, Kim J, Park J Het al. Synthesis of carbon-encapsulated iron carbide nanoparticles on a polyimide thin film. Nanotechnology, 2007, 18 (11):I15609-115616.
    [56] Tsang S C, Qiu J S, Harris P J F et al. Synthesis of fullerenic nanocapsules from bio-molecule carbonisation. Chemical Physics Letters, 2000, 322 (6):553-560.
    [57] 邱介山,安玉良,李杞秀等.生物基碳包覆纳米材料(Mn、Co)的制备.物理化学学报,2004,20(3):260-264.
    [58] Koltypin Y, Fernandez A, Rojas T C et al. Encapsulation of nickel nanoparticles in carbon obtained by the sonochemical decomposition of Ni(C_8H_(12))_2. Chemistry of Materials, 1999, 11 (5):1331-1335.
    [59] Wu W Z, Zhu Z P, Liu Z Y et al. Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method. Carbon, 2003, 41 (2):317-321.
    [60] Wang C F, Wang J N, Sheng Z M. Solid-phase synthesis of carbon-encapsulated magnetic nanoparticles. Journal of Physical Chemistry C, 2007, 111 (17):6303-6307.
    [61] Wang Z F, Mao P F, He N Y. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon, 2006, 44 (15):3277-3284.
    [62] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [63] Teunissen W, Bol A A, Geus J W. Magnetic catalyst bodies. Catalysis Today, 1999, 48 (1-4):329-336.
    [64] Lu A H, Li W C, Kiefer Aet al. Fabrication of magnetically separable mesostructured silica with an open pore system. Journal of the American Chemical Society, 2004, 126 (28):8616-8617.
    [65] 张阳德.纳米生物材料学.北京:化学工业出版社,2005.
    [66] Senden T J, Moock K H, Fitz Gerald J D et al. The physical and chemical nature of technegas. Journal of Nuclear Medicine, 1997, 38 (8):1327-1333.
    [67] Chatterjee J, Haik Y, Chert C J. Polyethylene magnetic nanoparticle: a new magnetic material for biomedical applications. Journal of Magnetism and Magnetic Materials, 2002, 246 (3):382-391.
    [68] Cordula G, Joachim T. New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications. Journal of Magnetism and Magnetic Materials, 1999, 194 (1-3):8-15.
    [69] 邓龙征,曹高劭,谢健等.热解碳包覆CoSb_3材料作为锂离子电池的负极材料的研究.材料导报,2004,18(6):99-101。
    [70] 高虹,杨勤峰.锂离子电池正极材料LiCoO_2的碳包覆研究。有色矿冶,2006,22(2):30-33。
    [71] 孙晓明.低维功能纳米材料的液相合成、表征与性能研究:(博士学位论文).北京:清华大学,2005.
    [72] Shammugam S, Gabashvili A, Jacob D Set al. Synthesis and characterization of TiO_2@Ccore-shell composite nanoparticles and evaluation of their photocatalytic activities. Chemistry of Materials, 2006, 18 (9):2275-2282.
    [73] Wu C Z, Zhu X, Ye L L et al. Necklace-like hollow carbon nanospheres from the pentagon-including reactants: Synthesis and electrochemical properties. Inorganic Chemistry, 2006, 45 (21):8543-8550.
    [74] Hou P X, Bai S,0 Yang Q H et al. Multi-step purification of carbon nanotubes. Carbon, 2002, 40 (1):81-85.
    [75] Xu L Q, Zhang W Q, Yang Q et al. A novel route to hollow and solid carbon spheres. Carbon, 2005, 43 (5):1090-1092.
    [76] Hu G, Ma D, Cheng Met al.Direct synthesis of uniform hollow carbon spheres by a self-asembly template approach. Chemical Communications, 2002, (17):1948-1949.
    [77] Zhang W, Liu J W, Huang Z et al. Large scale synthesis of carbon hollow spheres from metal zinc powder and ethanol. Chemistry Letters, 2004, 33 (10):1346-1347.
    [78] Jang J, Lim B. Selective fabrication of carbon nanocapsules and mesocellular foams by surface-modiried colloidal silica templating. Advanced Materials, 2002, 14 (19):1390-1393.
    [79] Tamai H, Sumi T, Yasuda H. Preparation and characteristics of fine hollow carbon particles. Journal of Colloid and Interface Science, 1996, 177 (2):325-328.
    [80] Wang Z L, Yin J S. Graphitic hollow carbon calabashes. Chemical Physics Letters, 1998, 289 (1-2):189-192.
    [81] Ding Y, Xia X H. Facile synthesis of hollow carbon nanospheres from hollow chitosan nanospheres. Journal of Nanoscience and Nanotechnology, 2006, 6 (4):1101-1106.
    [82] Urones-Garrote E, Avila-Brande D, hyape-Katcho N et al. Amorphous carbon nanostructures from chlorination of ferrocene. Carbon, 2005, 43 (5):978-985.
    [83] Han S J, Yun Y K, Park K Wet al. Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell electrodes. Advanced Materials, 2003, 15 (22):1922-1925.
    [84] Vix-Guterl C, Frackowiak E, Jurewicz K et al. Electrochemical energy storage in ordered porous carbon materials. Carbon, 2005, 43 (6):1293-1302.
    
    [85] Kim D J, Lee H I, Yie J E et al. Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan. Carbon, 2005, 43 (9):1868-1873.
    
    [86] Brooks J D, Taylor J H. The Formation of Graphitizable Carbons from the Liquid Phase. Carbon, 1965, 3 (2):185-193.
    
    [87] Miao J Y, Hwang D W, Chang C C et al. Uniform carbon spheres of high purity prepared on kaolin by CCVD. Diamond and Related Materials, 2003, 12 (8):1368-1372.
    
    [88] Jin Y Z, Gao C, Hsu W K et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon, 2005, 43 (9):1944-1953.
    
    [89] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie-International Edition, 2004, 43 (5):597-601.
    
    [90] Yang X G, Li C, Wang W et al. A chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chemical Communications, 2004, (3):342-343.
    
    [91] Lou Z S, Chen C L, Zhao D J et al. Large-scale synthesis of carbon spheres by reduction of supercritical CO_2 with metallic calcium. Chemical Physics Letters, 2006, 421 (4-6):584-588.
    
    [92] Yoon S B, Sohn K, Kim J Y et al. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Advanced Materials, 2002, 14 (1):19-21.
    
    [93] Zou G F, Yu D B, Lu J et al. A self-generated template route to hollow carbon nanospheres in a short time. Solid State Communications, 2004, 131 (12):749-752.
    
    [94] Sun X M, Li Y D. Ga_20_3 and GaN semiconductor hollow spheres. Angewandte Chemie-International Edition, 2004, 43 (29):3827-3831.
    
    [95] Wang C H, Chu X F, Wu M M. Highly sensitive gas sensors based on hollow SnO_2 spheres prepared by carbon sphere template method. Sensors and Actuators B-Chemical, 2007, 120 (2):508-513.
    
    [96] Yi Z H, Liang Y G, Lei X F et al. Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries. Materials Letters, 2007, 61 (19-20):4199-4203.
    
    [97] Yang R Z, Qiu X P, Zhang H R et al. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon, 2005, 43 (1):11-16.
    
    [98] Honda H. Mesophase pitch and meso-carbon microbeads. Molecular Crystals and Liquid Crystals, 1983, 94:97-108.
    
    [99] Xi G C, Zhang M, Ma D et al. Controlled synthesis of carbon nanocables and branched-nanobelts. Carbon, 2006, 44 (4):734-741.
    [100] Chen M Y, Yeh C M, Syu J S et al. Field emission from carbon nanosheets on pyramidal Si(100). Nanotechnology, 2007, 18 (18):185706.
    [101] Boenm H P. Carbon form carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms. Carbon, 1973, 11:583-590.
    [102] Murayama H, Maeda T. A novel form of filamentous graphite. Nature, 1990, 345 (28):791-793.
    [103] Soneda Y, Makino M. Formation and texture of carbon nanofilaments by the catalytic decomposition of CO on stainless-steel plate. Carbon, 2000, 38 (3):478-480.
    [104] Wu Y H, Qiao P W, Chong T C et al. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Advanced Materials, 2002, 14 (1):64-67.
    [105] 孟祥敏,尚乃贵,李振声等.碳片组成的纳米薄膜材料显微结构研究.电子显微学报,2002,21(5):613—614.
    [106] 郑瑞廷,程国安,赵勇等.乙炔催化裂解制备碳纳米带及其结构表征.新型炭材料,2005,20(4):355-358.
    [107] Zhu M Y, Wang J J, Outlaw R A et al. Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diamond and Related Materials, 2007, 16 (2):196-201.
    [108] 王维彪,夏玉学,陈明等。碳纳米带的合成及场致电子发射.液晶与显示,2004,19(6):411-414.
    [109] 齐静,高颖,唐水花等.直接甲醇燃料电池电催化剂载体碳纳米带的合成与表征。催化学报,2006,27(8):708-712。
    [110] Park K K,Lee J B,Park P Y et al.Development of a carbon sheet electrode for electrosorption desalination.Desalination,2007,206(1-3):86-91.
    [111] 马建中,储芸,高党鸽.表面活性剂在纳米材料领域中的应用.日用化学工业,2004,34(6):374-376.
    [112] Liang C D,Hong K L,Guiochon G A et al.Synthesis 0f a large-scale highly ordered porous carbon film by self-assembly of block copolymers。Angewandte Chemie-International Edition,2004,43(43):5785-5789.
    [113] Tanaka S,Nishiyama N,Egashira Y et al.Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite.Chemical Communications,2005, (16):2125-2127.
    [114] Meng Y,Gu D,Zhang F Q et al.A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly.Chemistry of Materials,2006, 18(18):4447—4464.
    [115] Esumi K,Eshima S,Murakami Y et al.Preparation of hollow carbon-microbeads from water—in-oil emulsion using amphiphilic carbonaceous material.Colloids and Surfaces a-Physicochemical and Engineering Aspects,1996,108(1):113-116。
    [116] 凌立成.一种添加造孔剂制备球形活性炭的方法.中国,发明专利,CNl279125.2001.
    [117] Lee K T, Jung Y S, Oh S M. Synthesis of Tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. Journal of the American Chemical Society, 2003, 125 (19):5652-5653.
    [118] Jang J, Li X L, Oh J H. Facile fabrication of polymer and carbon nanocapsules using polypyrrole core/shell nanomaterials. Chemical Communications, 2004, (7):794-795.
    [119] Zhang F Q, Meng Y, Gu D et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Iaād bicontinuous cubic structure, journal of the American Chemical Society, 2005, 127 (39):13508-13509.
    [120] Yao J F, Wang H T, Liu Jet al. Preparation of colloidal microporous carbon spheres from furfuryl alcohol. Carbon, 2005, 43 (8):1709-1715.
    [121] Lu A H, Li W C, Matoussevitch Net ai. Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chemical Communications, 2005, (1):98-100.
    [122] Jang J, Yoon H. Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small, 2005, 1 (12):1195-1199.
    [123] Fujikawa D, Uota M, Yoshimura T et al. Surfactant-templated synthesis of resorcinol-formaldehyde polymer and carbon nanostructures: Nanospheres and nanowires. Chemistry Letters, 2006, 35 (4):432-433.
    [124] Zhang F Q, Gu D, Yu T et al. Mesoporous carbon single-crystals from organic-organic self-assembly. Journal of the American Chemical Society, 2007, 129 (25):7746-7747.
    [125] Ding L H, Olesik S V. Synthesis of polymer nanospheres and carbon nanospheres using the monomer 1,8-dihydroxymethyl-1, 3,5,7-octatetrayne. Nano Letters, 2004, 4 (11):2271-2276.
    [126] Yu J R, Grossiord N, Koning C Eet al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon, 2007, 45 (3):618-623.
    [127] Peng Y T, Hu Y Z, Wang H. Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribology Letters, 2007, 25 (3):247-253.
    [128] 张宝宏,张光绪,殷金玲等.表面活性剂对双电层电容器性能的影响.电源技术,2007,31(6):484-487.
    [129] Zhang X T, Zhang J, Wang R Met al. Surfactant-directed polypyrrole/CNT nanocables: Synthesis, characterization, and enhanced electrical properties. Chemphyschem, 2004, 5 (7):998-1002.
    [130] 刘忠范,朱涛,张锦.纳米化学。大学化学,2001,16(5):1-10。
    [131] Shin Y S, Hong J Y, Ryu D H et al. The role of H_2 in the growth of carbon nanotubes on an AAO template. Journal of the Korean Physical Society, 2007, 50 (4):1068-1072.
    [132] Schwuger M J, Stickdorn K, Schomacker R. Microemulsions in Technical Processes. Chemical Reviews, 1995, 95 (4):849-864.
    [133] Xiong L F, He T. Synthesis and characterization of ultrafine tungsten and tungsten oxide nanoparticles by a reverse microemulsion-mediated method. Chemistry of Materials, 2006, 18 (9):2211-2218.
    [134] Jang J, Bae J. Fabrication of polymer nanofibers and carbon nanoribers by using a salt-assisted microemulsion polymerization. Angewandte Chemie-International Edition, 2004, 43 (29):3803-3806.
    [135] Jang J S, Yoon H S. Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Advanced Materials, 2003, 15 (24):2088-2091.
    [136] Huang J X, Xie Y, Li Bet al. In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres. Advanced Materials, 2000, 12 (11):808-811.
    [137] Jang J, Oh J H, Li X L. A novel synthesis of nanocapsules using identical polymer core/shell nanospheres. Journal of Materials Chemistry, 2004, 14 (19):2872-2880.
    [138] 贺福,杨永岗.酚醛基活性碳纤维.高科技纤维与应用,2003,28(5):19-26.
    [139] Boutonnet M, Kizling J, Stenins Pet al. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 1982, 5 (3):209-225.
    [140] 李文翠.新型纳米材料炭气凝胶的制备、表征及应用研究:(博士学位论文),大连:大连理工大学,2002.
    [141] Chen D H, Wang C C, Huang T C. Preparation of palladium ultrafine particles in reverse micelles. Journal of Colloid and Interface Science, 1999, 210 (1):123-129.
    [142] 薛伟.微乳液法制备超细包覆型催化剂及其催化苯酚氧化羰基化反应研究:(博士学位论文),北京:北京化工大学,2004.
    [143] Maldonado-Hodar F J, Moreno-Castilla C, Rivera-Utrilla J et al. Catalytic graphitization of carbon aerogels by transition metals. Langmuir, 2000, 16 (9):4367-4373.
    [144] Ugarte D. Onion-Like Graphitic Particles. Carbon, 1995, 33 (7):989-993.
    [145] Cao M H, Hu C W, Pang Get al. Selected-control synthesis of PbO_2 and Pb_3O_4 single-crystalline nanorods. Journal of the American Chemical Society, 2003, 125 (17):4982-4983.
    [146] Cao M H, Hu C W, Wang E B. The first fluoride one-dimensional nanostructures: Microemulsion-mediated hydrothermal synthesis of BaF_2 whiskers. Journal of the American Chemical Society, 2003, 125 (37):11196-11197.
    [147] Mang P, Gao L. Synthesis and characterization of CdS nanorods via hydrothermal microemulsion. Langmuir, 2003, 19 (1):208-210.
    [148] Zhang J, Sun L D, Pan H Yet al. ZnO nanowires fabricated by a convenient route. New Journal of Chemistry, 2002, 26 (1):33-34.
    [149] Zhang X H, Xie S Y, Jiang Z Y et al. Starlike nanostructures of polyoxometalates K_3[PM0_(12)O_(40)] . nH_20 synthesized and assembled by an inverse microemulsion method. Chemical Communications, 2002, (18):2032-2033.
    
    [150] Seto H, Okuhara D, Kawabata Y et al. Pressure and temperature effects on the phase transition from a dense droplet to a lamellar structure in a ternary microemulsion. Journal of Chemical Physics, 2000, 112 (23):10608-10614.
    
    [151] Rees G D, Evans-Gowing R, Hammond S J et al. Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions. Langmuir, 1999, 15 (6):1993-2002.
    
    [152] Clark S, Fletcher P D I, Ye X. Interdroplet exchange rates of water-in-oil and oil-in-water microemulsion droplets stabilized by pentaoxyethylene monododecyl ether. Langmuir, 1990, 6:1301-1309.
    
    [153] Lu Y, Zhu Z P, Liu Z Y. Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon, 2005, 43 (2):369-374.
    
    [154] Sajitha E P, Prasad V, Subramanyam S V et al. Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon. Carbon, 2004, 42 (14):2815-2820.
    
    [155] LesliePelecky D L, Rieke R D. Magnetic properties of nanostructured materials. Chemistry of Materials, 1996, 8 (8):1770-1783.
    
    [156] Zhang L, Papaefthymiou G C, Ying J Y. Size quantization and interfacial effects on a novel gamma-Fe_2O_3/SiO_2 magnetic nanocomposite via sol-gel matrix-mediated synthesis. Journal of Applied Physics, 1997, 81 (10):6892-6900.
    
    [157] Tsai S H, Lee C L, Chao C W et al. A novel technique for the formation of carbon-encapsulated metal nanoparticles on silicon. Carbon, 2000, 38 (5):781-785.
    
    [158] Lu A H, Schmidt W, Matoussevitch N et al. Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie-International Edition, 2004, 43 (33):4303-4306.
    
    [159] Gao X, Yu K M K, Tam K Y et al. Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chemical Communications, 2003, (24):2998-2999.
    
    [160] Zhao W R, Gu J L, Zhang L X et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. Journal of the American Chemical Society, 2005, 127 (25):8916-8917.
    
    [161] Yi D K, Lee S S, Ying J Y. Synthesis and applications of magnetic nanocomposite catalysts. Chemistry of Materials, 2006,. 18 (10):2459-2461.
    
    [162] Teunissen W, de Groot F M F, Geus J et al. The structure of carbon encapsulated NiFe nanoparticles. Journal of Catalysis, 2001, 204 (1):169-174.
    [163] Tsang S C, Caps V, Paraskevas I et al. Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angewandte Chemie-International Edition, 2004, 43 (42):5645-5649.
    [164] Paraskevas L, Caps V, Tsang S C. Syntheses of carbon encapsulated magnetic FeNi nanoparticle via decompositions of methane and benzene. Carbon, 2006, 44 (4):820-823.
    [165] Jun C H, Park Y J, Yeon Y R et al. Demonstration of a magnetic and catalytic Co@Ptnanoparticle as a dual-function nanoplatform. Chemical Communications, 2006, (15):1619-1621.
    [166] Satrio J A B, Doraiswamy L K. Production of benzaldehyde: a case study in a possible industrial application of phase-transfer catalysis. Chemical Engineering Journal, 2001, 82 (1-3):43-56.
    [167] 刘先良.关于醇类的选择性氧化[J].大学化学,1999,14:41-44.
    [168] Yamaguchi K, Mori K, Mizugaki T et al. Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation. Journal of the American Chemical Society, 2000, 122 (29):7144-7145.
    [169] Yamaguchi K, Mizuno N. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angewandte Chemie-International Edition, 2002, 41 (23):4538-4542.
    [170] Ebitani K, Motokura K, Mizugaki T et al. Heterotrimetallic RuMnMn species on a hydrotalcite surface as highly efficient heterogeneous catalysts for liquid-phase oxidation of alcohols with molecular oxygen. Angewandte Chemie-International Edition, 2005, 44 (22):3423-3426.
    [171] Miao S D, Liu Z M, Han B X et al. Ru nanoparticles immobilized on montmorillonite by ionic liquids: A highly efficient heterogeneous catalyst for the hydrogenation of benzene. Angewandte Chemie-International Edition, 2006, 45 (2):266-269.
    [172] 路乘风,崔政斌.防尘防毒技术.北京:化学工业出版社,2004.
    [173] Jia Y F, Thomas K M. Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir, 2000, 16 (3):1114-1122.
    [174] Abad A, Concepcion P, Corma Aet al. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angewandte Chemie-International Edition, 2005, 44 (26):4066-4069.
    [175] Matsushita T, Ebitani K, Zaneda K. Highly efficient oxidation of alcohols and aromatic compounds catalysed by the Ru-Co-Al hydrotalcite in the presence of molecular oxygen. Chemical Communications, 1999, (3):265-266.
    [176] Mallat T, Balker A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chemical Reviews, 2004, 104 (6):3037-3058.
    [177] Ji H B, Ebitani K, Mizugaki T et al. Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature. Catalysis Communications, 2002, 3 (11):511-517.
    [178] Ji H B, Mizugaki T, Ebitani K et al. Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst. Tetrahedron Letters, 2002, 43 (40):7179-7183.
    [179] ten Brink G J, Arends I W C E, Hoogenraad M et al. Catalytic conversions in water. Part 23: Steric effects and increased substrate scope in the palladium-neocuproine catalyzed aerobic oxidation of alcohols in aqueous solvents. Advanced Synthesis & Catalysis, 2003, 345 (12):1341-1352.
    [180] Marko I E, Giles P R, Tsukazaki Met al. Efficient, aerobic, ruthenium-catalyzed oxidation of alcohols into aldehydes and ketones. Journal of the American Chemical Society, 1997, 119 (51):12661-12662.
    [181] 姚允斌.物理化学手册.上海:上海科学技术出版社,1985。
    [182] Nagahara H, Ono M, Konishi Met al. Partial hydrogenation of benzene to cyclohexene. Applied Surface Science, 1997, 121:448-451.
    [183] 宋华.Fe(Ⅵ)化学:绿色有机氧化合成技术研究:(博士学位论文).大庆:大庆石油学院,2005.
    [184] Narayan S, Muldoon J, Finn M Get al. "On water": Unique reactivity of organic compounds in aqueous suspension. Angewandte Chemic-International Edition, 2005, 44 (21):3275-3279.
    [185] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291 (5510):1947-1949.
    [186] Bae S Y, Seo B W, Park J et al. Single-crystalline gallium nitride nanobelts. Applied Physics Letters, 2002, 81 (1):126-128.
    [187] Sun X M, Chen X, Li Y D. Large-scale synthesis of sodium and potassium titanate nanobelts. Inorganic Chemistry, 2002, 41 (20):4996-4998.
    [188] Manning T J, Mitchell M, Stach J et al. Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma. Carbon, 1999, 37 (7):1159-1164.
    [189] Kang Z H, Wang E B, Mao B D et al. Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process. Journal of the American Chemical Society, 2005, 127 (18):6534-6535.
    [190] Shi H T, Qi L M, Ma J M et al. Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Advanced Functional Materials, 2005, 15 (3):442-450.
    [191] Wang Y, Chen J S, Yu S F et al. Synthesis and characterization of a new tungsten sulfide with a lamellar mesostructure. Chemical Journal of Chinese Universities-Chinese, 2000, 21 (2):165-168.
    [192] Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 2002, 418 (6901):964-967.
    [193] Sakaki T, Shibata M, Miki T et al. Decomposition of cellulose in near-critical water and fermentability of the products. Energy & Fuels, 1996, 10 (3):684-688.
    [194] Jacobsen H. "Heterogreeneous" chemistry: Catalysts for hydrogen production from biomass. Angewandte Chemie-International Edition, 2004, 43 (15):1912-1914.
    [195] Sakanishi K, Ikeyama N, Sakaki T et al. Comparison of the hydrothermal decomposition reactivities of chitin and cellulose. Industrial & Engineering Chemistry Research, 1999, 38 (6):2177-2181.
    [196] Nagamori M, Funazukuri T. Glucose production by hydrolysis of starch under hydrothermal conditions. Journal of Chemical Technology and Biotechnology, 2004, 79 (3):229-233.
    [197] Yu J C, Hu X L, Li Q et al. Synthesis and characterization of core-shell selenium/carbon colloids and hollow carbon capsules. Chemistry-A European Journal, 2005, 12 (2):548-552.
    [198] Ilie A, Durkan C, Milne W Iet al. Surface enhanced Raman spectroscopy as a probe for local modification of carbon films. Physical Review B, 2002, 66 (4):045412.
    [199] 李晓林.金属氧化物和硫化物一维纳米材料的合成表征和能研究:(博士学位论文).北京:清华大学,2005.
    [200] Wei Z X, Wan M X. Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Advanced Materials, 2002, 14 (18):1314-1316.
    [201] Zhang D B, Qi L M, Ma J Met al. Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions. Advanced Materials, 2002, 14 (20):1499-1503.
    [202] 谢芹.一维无机纳米材料的液相合成、表征及性质:(博士学位论文).安徽:中国科学技术大学,2006。
    [203] Li Y D, Li X L, Deng Z X et ai. From surfactant-inorganic mesostructures to tungsten nanowireso Angewandte Chemie-International Edition, 2002, 41 (2):333-335.
    [204] Yang P D, Zhao D Y, Margolese D Iet al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396 (6707):152-155.
    [205] 北原文雄.表面活性剂:物性、应用、化学生态学.孙绍曾译.北京:化学工业出版社,1984.
    [206] 章亚东,刘诗飞,黄恩才.正丁基葡萄糖苷合成的反应机理与动力学.华东理工大学学报,1999,25(6):581-583.
    [207] Ivanov V, Nagy J B, Lambia P h et al. The study of carbon nanotubules produced by catalytic method. Chemical physics Letters, 1994, 223:329-335.
    [208] Laurent C, Flahaut E, Peigney A et al. Metal nanoparticles for the catalytic synthesis of carbon nanotubes. New Journal of Chemistry, 1998, 22 (11):1229-1237.
    [209] Kiang C H, Goddard W A. Polyyne ring nucleus growth model for single-layer carbon nanotubes. Physical Review Letters, 1996, 76 (14):2515-2518.
    [210] Lin C H, Chang H L, Hsu C Met al. The role of nitrogen in carbon nanotube formation. Diamond and Related Materials, 2003, 12 (10-11):1851-1857.
    [211] Sacco A, Chang T N, Chiang A S T et al. The Initiation and Growth of Filamentous Carbon from-Iron in H_2, CH_4, H_2O, CO_2 and CO Gas Mixture. 1984, 85:224-236.
    [212] Yu Z X, Chen D, Totdal Bet al. Effect of support and reactant on the yield and structure of carbon growth by chemical vapor deposition. Journal of Physical Chemistry B, 2005, 109 (13):6096-6102.
    [213] Pinheiro P, Schouler M C, Gadelle P et al. Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al_2O_3 catalystso Carbon, 2000, 38 (10):1469-1479.
    [214] Wang Q, Li H, Chen L Q et al. Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001, 39 (14):2211-2214.
    [215] Chang Y C, Sohn H J, Ku C Het al. Anodic performances of mesocarbon microbeads (MCMB) prepared from synthetic naphthalene isotropic pitch. Carbon, 1999, 37 (8):1285-1297.
    [216] Reilly P T A, Whitten W B. The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process. Carbon, 2006, 44 (9):1653-1660.
    [217] Yan X B, Xu T, Xu Set al. Fabrication of carbon spheres on a-C:H films by heat-treatment of a polymer precursor. Carbon, 2004, 42 (12-13):2769-2771.
    [218] Boehm H P. Surface oxides on carbon and their analysis: a critical assessment. Carbon, 2002, 40 (2):145-149.
    [219] 王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003,126(3):24-27。
    [220] 王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997.
    [221] Kang Z H, Wang E B, Jiang Met al. Convenient controllable synthesis of inorganic 1D nanocrystals and 3D high-ordered microtubes. European Journal of Inorganic Chemistry, 2003, (2):370-376.
    [222] Coronado E, Gomez-Garcia C J. Polyoxometalate-based molecular materials. Chemical Reviews, 1998, 98 (1):273-296.
    [223] 木冠南,李琳,杨立英.氧化活性炭吸附Cd(Ⅱ)离子及表面活性剂对其吸附量的影响.云南大学学报(自然科学版),1999,21(4):329-331.
    [224] Shim J W, Park S J, Ryu S K. Effect of modification with HNO_3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 2001, 39 (11):1635-1642.
    [225] Zielke U, Huttinger K J, Hoffman W P. Surface-oxidized carbon fibers: Ⅰ. Surface structure and chemistry. Carbon, 1996, 34 (8):983-998.
    [226] Hsieh C T, Teng H S. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon, 2000, 38 (6):863-869.
    [227] Biniak S, Pakula M, Szymanski G Set al. Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper (Ⅱ) ions from aqueous solution. Langmuir, 1999, 15 (18):6117-6122.
    [228] Salame ⅠⅠ, Bandosz T J. Experimental study of water adsorption on activated carbons. Langmuir, 1999, 15 (2):587-593.
    [229] Figueiredo J L, Pereira M F R, Freitas M M A et al. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37 (9):1379-1389.
    [230] Moreno J M C, Yoshimura M. Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. Journal of the American Chemical Society, 2001, 123 (4):741-742.
    [231] Sano N, Wang H, Chhowalla Met al. Nanotechnology: Synthesis of carbon 'onions' in water. Nature, 2001, 414 (6863):506-507.
    [232] 吴萍.新型表面活性剂改性粘土治理赤潮研究:(博士学位论文).青岛:中国海洋大学,2005.