新型锂离子二次电池用凝胶聚合物电解质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝胶聚合物锂离子电池是在液体锂离子电池的基础上发展起来的新一代可充电锂离子电池,它不仅具有液态锂离子电池的高电压、高能量密度、长循环寿命等特点,而且改善了液态锂离子电池可能出现的漏液、爆炸等问题,电池的外形设计组装也灵活方便,广泛应用于电动汽车、移动通讯等领域,因此,对凝胶聚合物电解质膜的需求也日益增加,凝胶聚合物电解质膜的研究也得到了众多研究者的关注。尽管目前工业上凝胶聚合物电解质已经开始应用于锂离子电池,但仍存在一些尚需进一步解决的技术问题,主要有:(1)目前凝胶聚合物电解质的室温离子电导率可达10-3S/cm数量级,已经能基本满足应用的要求,但相比液态电解液的电导率(10-2S/cm),凝胶聚合物电解质的电导率仍然偏低,使得由其组装而成得锂离子电池的大电流充放电和低温性能都大大的降低;(2)纯凝胶聚合物电解质膜由于吸收了大量液体电解质而溶胀,使得膜机械强度较差。而提高聚合物电解质电导率的方法通常会降低其机械性能;(3)多孔凝胶聚合物电解质由于存在大量孔隙,容易导致漏液而降低电池的使用性能以及安全问题。
     凝胶聚合物电解质要解决的核心问题是协调离子电导率和机械性能之间的关系。不同类型的凝胶聚合物电解质(纯凝胶和多孔凝胶)存在的问题也不同。本文针对纯凝胶聚合物电解质现存的问题展开了研究,设计了含氟型和杂化型两种聚合物电解质体系,对它们的结构和性能进行了较详细的研究;同时,针对多孔凝胶存在的问题,分别对孔壁和孔中心进行了修饰,设计了有机材料修饰孔壁、无机材料修饰孔壁、有机珠子修饰孔中心、无机珠子修饰孔中心等结构,较为详尽的研究了膜的结构、形貌和性能。另外,对离子在凝胶聚合物电解质的传输机理进行了初步的研究。具体如下:
     1.含氟凝胶聚合物电解质
     为了获得较高的离子电导率和较高的机械强度,用紫外光固化的方法,在交联的PEO网络中引入亲电解液2-丙烯酰胺-2-甲基丙磺酸锂(AMPS-Li)链段以及疏电解液的甲基丙烯酸2,2,2-三氟乙酯(TFEMA)链段。AMPS-Li的引入能够帮助聚合物膜吸收电解液,提高离子电导率;同时,由于TFEMA中的C-F键的键能高,TFEMA链段的引入能够提供良好的化学稳定性和热稳定性。
     研究结果表明,当AMPS含量为35wt%,聚合物电解质膜的室温离子电导率为1.76×10-3S/cm,达到锂离子电池应用的要求;聚合物膜引入TFEMA,提高了凝胶聚合物电解质膜的强度和电化学稳定窗口,对吸液量和离子电导率没有明显降低。
     2.氧化镧杂化凝胶型聚合物电解质
     由于稀土元素的原子结构具有较多的4s、5d和6s空轨道,且这些轨道的能级差很小,稀土化合物(硬酸)易与锂盐中的阴离子(硬碱)通过静电吸引力形成稳定的络合物,减少离子载流体中阴离子数目,降低锂离子电池的极化程度。为进一步提高稀土化合物(氧化镧)的酸性,将氧化镧与磺酸根通过化学键连接起来,制备了“类超强酸”的结构;同时,为了解决氧化镧在聚合物基体中易聚集的问题,将其通过化学键“悬挂”到聚合物网络上。离子电导率和拉曼光谱分析表明,阴离子的含量随着氧化镧的增加而减少。对材料的微结构研究发现这种通过化学键“悬挂”到聚合物网络的氧化镧粒子易均匀的分散在聚合物膜中。
     3. PVdF无纺布接枝PMMA凝胶聚合物电解质
     聚偏氟乙烯(PVdF)的介电常数较高,有利于锂盐的解离,又具有机械性能好、电化学性能稳定等优点,但其也存在结晶度高、吸液量低、与锂金属的界面稳定性差等缺点;聚甲基丙烯酸甲酯(PMMA)由于MMA单元中有一羰基侧基,和碳酸酯类增塑剂中的氧原子有很强的相互作用,能够吸收大量的液体电解质溶液,并与电极有很好的相容性。静电纺丝能够制备具有微孔结构的多孔聚合物纤维无纺布材料,具有高的比表面积和孔隙率,较一般的多孔膜而言,更有利于离子的传输。综合所述的材料和结构上的优点,通过将PVdF无纺布进行预辐照,并将有机物MMA修饰到PVdF纤维的表面,形成两相多孔结构。这种特殊的结构既能赋予聚合物膜以高的离子电导率,并能维持尺寸稳定性。
     4.氟硅橡胶多孔膜聚合物电解质
     在目前所知的聚合物材料中,氟硅橡胶的回弹性是最好的,因而能够改善锂离子电池在充放电过程中产生的体积膨胀-缩小而带来的电池内阻的变化;同时具有优异的化学稳定性和热稳定性;另外氟硅橡胶分子链上含三氟甲基侧基,有利于锂盐的离解。因此氟硅橡胶是聚合物电解质膜的一种较为理想的候选。但是氟硅橡胶与电解液的亲合能力弱,不利于电解液的吸收和保持。为了获得满意的电化学性能,将其为基料,制备了多孔膜,并运用沉淀法在孔壁上修饰了亲电解液的无机颗粒层。研究了制膜工艺对膜形貌的影响、锂盐的种类对电池性能的影响等。
     5.“孔/珠”复合电解质膜
     多孔膜中由于大量孔的存在,使得在装配电池过程中,聚合物膜容易被电极材料刺穿而短路,并且在充放电过程中,多孔膜不能有效的抑制锂枝晶的生长,降低了电池的安全性和能量密度。在本章中运用简单的倒相法在孔中间引入可凝胶珠子,减小膜的孔径,增大孔的曲率,提高膜的刺穿强度。由于珠子可以被凝胶化,所以这种特殊的“孔/珠”结构既提高了电池的安全性,又不降低离子电导率。为制备高性能凝胶聚合物电解质膜提供了有效的方法。
Lithium ion battery based on gel-type polymer electrolyte (GPE) is the new generation of rechargeable system developed from liquid lithium ion battery. It possesses high energy density, long cycle life, negligible leakage, light weight and flexible shape. The polymer electrolyte lithium battery is attractive power source applied in electric vehicle, cellular phones and others. The main technical problems of polymer electrolytes include: first, although the ionic conductivity can reach the magnitude of 10-3S/cm, which can satisfy the practical request, it is still lower than that of liquid electrolyte (10-2S/cm). The low ionic conductivity will limit the discharge rate and low-temperature performance of the battery system. Second, swelling of the pure gel-type polymer membranes due to absorbing a lot of liquid electrolytes leads to the poor mechanical property of GPE. In general, the methods of enhancing the ionic conductivity are unfavorable for the mechanical strength. Third, porous GPE often faces potential safety issues arising from liquid leakage. The core problem of GPE is how to coordinate ionic conductivity and mechanical properties. The existing problems of different types of GPEs (non-porous or porous gels) are also different. In order to solve these problems, we have designed and prepared fluorine-containing polymer electrolytes and hybrid polymer electrolytes. In addition, A modification of the pore wall and pore center in multi-pore membranes have been also conducted. The more details about membrane structure, morphology and performance have been studied, and the ion transfer mechanism in GPE has also been investigated. They are summarized as follows:
     1. Fluorine containing gel polymer electrolytes
     Novel gel network polymer electrolytes containing fluorine and sulfonic acid lithium are prepared by the UV polymerization of poly(ethylene glycol) dimethylacrylate (PEGDMA)/ 2-acrylamido-2-methyl propanesulfonic acid (AMPS)/trifluoroethyl methacrylate (TFEM). They are activated by uptaking the solutions of 1.0 M LiPF6/EC/DMC to prepare gel network polymer electrolytes. The characteristics of the polymer networks including gel fractions, thermal stability, liquid electrolyte uptake and electrochemical properties have been studied. When the weight ratio of PEGDMA/AMPS/TFEM is 60/35/5, the network polymer electrolytes show the highest liquid electrolyte uptake (144%) and ionic conductivity (about the order of 10?3 S/cm) at room temperature (25℃). The network polymer electrolytes are electrochemically stable up to 5.0 V versus Li+/Li. The performances of the network polymer electrolytes suggest that they are suitable for application in high performance lithium ion batteries.
     2. Lanthanum oxide hybrid gel polymer electrolytes
     As the atomic structure of rare earth elements with more of the 4s, 5d and 6s unoccupied orbit, and these can track the differential small, rare earth compounds (hard acid) in the lithium salt-and the anion (hard base) to form a stable complex through electrostatic attraction, to reduce mobile anion numbers in the electrolyte and suppress the polarization degree. To further enhance the acidity of rare earth compounds (lanthanum oxide), acid and lanthanum oxide root through the bond linking of the“super acid like”.In order to prevent lanthanum oxide from aggregation in the polymer matrix, its bond“hanging”to the polymer network is set up. The measurements of ionic conductivity and Raman spectrum indicate that the content of anions decreases with the increase of lanthanum oxide. By examining the microstructure of the materials it is found that lanthanum oxide particles chemically bonded by“hanging”to the polymer network are uniformly dispersed in the polymer membrane.
     3. PMMA grafted PVdF non-woven fabric gel polymer electrolytes
     To achieve high ionic conductivity in polymer electrolyte, dual phase poly(vinylidenefluoride) (PVdF) based fibrous polymer electrolytes membrane is prepared via pre-irradiation. The PVdF fiber serves as supporting phase providing dimensional stability. Poly(methyl methacrylate) (PMMA) as gel phase help for trapping liquid electrolyte and substitute non-conductive PVdF phase to contact with electrodes thus increasing conductive area. PVdF based fibrous membrane can be used as polymer electrolyte in lithium ion battery after it is activated by uptaking 1 M LiPF6/EC-DMC electrolyte solution. Its room-temperature ionic conductivity is enhanced greatly by introduction of PMMA phase, from 2.3×10-3 S/cm (pristine PVdF fibrous membrane) to 7.9×10-3 S/cm (DOG=111.8%). The coin cells containing the dual phase fibrous membrane demonstrate excellent rate performance. The combination PMMA phase to PVdF phase is a novel approach to achieve high ionic conductivity in polymer electrolytes.
     4. Fluorosilicone rubber porous GPE
     In the current knowledge of polymer materials, the elasticity of fluorosilicone rubber is the best. Thus, the electrolyte membrane based on fluorine silicone rubber is favorable for lighting the battery resistance fluctuation caused by volume expansion and contraction in the charge and discharge process. Moreover, the fluorosilicone rubber has excellent chemical stability and thermal stability. On the other hand, trifluoromethyl-side-groups on the fluorosilicone rubber molecular chains are favorable for lithium salt dissociation. Therefore, fluorosilicone rubber polymer is an ideal candidate for electrolyte membrane. But fluorosilicone rubber electrolyte and the weak capacity of affinity, not conducive to the absorption of electrolyte and maintain. In order to obtain the satisfaction of electrochemical properties of the base material of its prepared porous membrane, and use hole in the wall precipitated a loose pro-modified inorganic particles electrolyte layer. Study of the membrane morphology of the film, the type of lithium battery performance, and so on.
     5.“Pore/bead”gel polymer electrolytes
     A special“pore/bead”composite membrane is prepared by facile approach. The combination of bead into pore is a novel approach to achieve polymer electrolyte with excellent comprehensive properties. The bead (MCM-41) in the composite membrane is considered as the key factor to improve puncture strength and suppress thermal shrinkage, which would greatly improve the safety of lithium ion battery. The composite membrane displays highly ionic conductivity which is attributed to the porous structure both in the binder and the bead. The battery based on the composite electrolyte show satisfactory C-rate performance. Primary results showed that it is promising as polymer electrolyte for scale-up lithium ion battery. In addition, this facile approach also provides a new avenue for further improve polymer electrolyte performances.
引文
1. Tarascon, J.M.M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
    2. Orsini, F., A. du Pasquier, B. Beaudouin, et al., In situ SEM study of the interfaces in plastic lithium cells. Journal of Power Sources, 1999. 82: p. 918-921.
    3. M., L.S.B. . A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes. Journal of Electrochemical Society, 1980. 127(3): p. 773-774.
    4. Amatucci, G.G., N. Pereira, T. Zheng, et al., Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution. Journal of the Electrochemical Society, 2001. 148(2): p. A171-a182.
    5. Armstrong, A.R.P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996. 381(6582): p. 499-500.
    6. Dahn, J.R., U. von Sacken, M.W. Juzkow, et al., Rechargeable LiNiO2/carbon cells Journal of the Electrochemical Society, 1991. 138(8): p. 2207-2211
    7. Dahn, J.R., U. Von Sacken, C.A. Michal, et al., Structure and electrochemistry of Li1+yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure Solid State Ionics 1990. 44(1-2): p. 87-97.
    8. Wakihara, M.O. Yamamoto, Lithium ion batteries: fundamental and performance. Wiley-VCH, 1998.
    9. Neudecker, B.J., N.J. DudneyJ.B. Bates, "Lithium-free" thin-film battery with in situ plated Li anode. Journal of the Electrochemical Society, 2000. 147(2): p. 517-523.
    10. Bates, J.B., N.J. Dudney, B.J. Neudecker, et al., Preferred orientation of polycrystalline LiCoO2 films. Journal of the Electrochemical Society, 2000. 147(1): p. 59-70.
    11. Aurbach, D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218.
    12. Ke, F.S., L. Huang, H.H. Jiang, et al., Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ionbatteries. Electrochemistry Communications, 2007. 9(2): p. 228-232.
    13. Notten, P.H.L., F. Roozeboom, R.A.H. Niessen, et al., 3-D integrated all-solid-state rechargeable batteries. Advanced Materials, 2007. 19(24): p. 4564-4567.
    14. Nathan, M., D. Golodnitsky, V. Yufit, et al., Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. Journal of Microelectromechanical Systems, 2005. 14(5): p. 879-885.
    15. Kim, G.H., A. PesaranR. Spotnitz, A three-dimensional thermal abuse model for lithium-ion cells. Journal of Power Sources, 2007. 170(2): p. 476-489.
    16. Golodnitsky, D., M. Nathan, V. Yufit, et al., Progress in three-dimensional (3D) Li-ion microbatteries. Solid State Ionics, 2006. 177(26-32): p. 2811-2819.
    17. Bing, Z., Y. Yuan, Y. Wang, et al., Electrochemical characterization of a three dimensionally ordered macroporous anatase TiO2 electrode. Electrochemical and Solid State Letters, 2006. 9(3): p. A101-a104.
    18. Ergang, N.S., M.A. Fierke, Z. Wang, et al., Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell. Journal of the Electrochemical Society, 2007. 154(12): p. A1135-a1139.
    19. Jiao, F., A. HarrisonP.G. Bruce, Ordered three-dimensional arrays of monodispersed Mn3O4 nanoparticles with a core-shell structure and spin-glass behavior. Angewandte Chemie-International Edition, 2007. 46(21): p. 3946-3950.
    20. Cao, M.H., X.Y. He, J. Chen, et al., Self-assembled nickel hydroxide three-dimensional nanostructures: A nanomaterial for alkaline rechargeable batteries. Crystal Growth & Design, 2007. 7(1): p. 170-174.
    21. Long, J.W., B. Dunn, D.R. Rolison, et al., Three-dimensional battery architectures. Chemical Reviews, 2004. 104(10): p. 4463-4492.
    22. Garcia, R.E.Y.M. Chiang, Spatially resolved modeling of microstructurally complex battery architectures. Journal of the Electrochemical Society, 2007. 154(9): p. A856-a864.
    23. Lee, C.C.P.V. Wright, Morphology and ionic conductivity of complexes of sodium iodide and sodium thiocyanate with poly(ethylene oxide). Polymer, 1982. 23(5): p. 681-689
    24. Payne, D.R.P.V. Wright, Morphology and ionic conductivity of some lithium ion complexes with poly(ethylene oxide). Polymer, 1982. 23 (5): p. 690-693
    25. Kobayashi, M., T. Kobayashi, Y. Itoh, et al., Another orthorhombic crystal modification of n-hexatriacontane and its vibrational spectra The Journal of Chemical Physics 1980. 72(3): p. 2024-2031
    26. Kobayashi, M., H. TadokoroR.S. Porter, Polarized Raman spectra of n-alkane single crystals with orthorhombic polyethylene-type sublattice The Journal of Chemical Physics 1980. 73(8): p. 3635-3642
    27. Kobayashi, M., K. TashiroH. Tadokoro, Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules, 1975. 8 (2): p. 158-171
    28. MacGlashan, G.S., Y.G. AndreevP.G. Bruce, Structure of the polymer electrolyte poly(ethylene oxide)(6): LiAsF6. Nature, 1999. 398(6730): p. 792-794.
    29. Frech, R., S. Chintapalli, P.G. Bruce, et al., Structure of an amorphous polymer electrolyte, poly(ethylene oxide)(3): LiCF3SO3. Chemical Communications, 1997(2): p. 157-158.
    30. Frech, R., S. Chintapalli, P.G. Bruce, et al., Crystalline and amorphous phases in the poly(ethylene oxide)-LiCF3SO3 system. Macromolecules, 1999. 32(3): p. 808-813.
    31. Gadjourova, Z., D.M. Marero, K.H. Andersen, et al., Structures of the polymer electrolyte complexes PEO6 : LiXF6 (X = P, Sb), determined from neutron powder diffraction data. Chemistry of Materials, 2001. 13(4): p. 1282-1285.
    32. Martin-Litas, I., Y.G. AndreevP.G. Bruce, Ab initio structure solution of the polymer electrolyte poly(ethylene oxide)(3): LiAsF6. Chemistry of Materials, 2002. 14(5): p. 2166-2170.
    33. Bhattacharyya, A.J., J. Fleig, Y.G. Guo, et al., Local conductivity effects in polymer electrolytes. Advanced Materials, 2005. 17(21): p. 2630-+.
    34. Fonseca, C.P., C.G.F. Guedes, D.S. Rosa, et al., Influence of LiClO4 on the thermal, mechanical, and morphological properties of P(DMS-co-EO)/P(EPI-co-EO) blends. Journal of Applied Polymer Science, 2004. 93(3): p. 1230-1235.
    35. Fonseca, C.P., T.T. CezareS. Neves, P(DMS-co-EO)/P(EPI-co-EO) blend as a polymeric electrolyte. Journal of Power Sources, 2002. 112(2): p. 395-400.
    36. Fonseca, C.P.S. Neves, Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide). Journal of Power Sources, 2002. 104(1): p. 85-89.
    37. Pennarun, P.Y., S. Papaefthimiou, P. Yianoulis, et al., Electrochromic devices operatingwith electrolytes based on boronate ester compounds and various alkali metal salts. Solar Energy Materials and Solar Cells, 2007. 91(4): p. 330-341.
    38. Pennarun, P.Y., P. Jannasch, S. Papaefthimiou, et al., High coloration performance of electrochromic devices assembled with electrolytes based on a branched boronate ester polymer and lithium perchlorate salt. Thin Solid Films, 2006. 514(1-2): p. 258-266.
    39. Niitani, T., M. Shimada, K. Kawamura, et al., Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochemical and Solid State Letters, 2005. 8(8): p. A385-a388.
    40. Nishimoto, A., K. Agehara, N. Furuya, et al., High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules, 1999. 32(5): p. 1541-1548.
    41. Watanabe, M., T. Hirakimoto, S. Mutoh, et al., Polymer electrolytes derived from dendritic polyether macromonomers. Solid State Ionics, 2002. 148(3-4): p. 399-404.
    42. Hong, L., Y.J. Cui, X.L. Wang, et al., Conductivities and spectroscopic studies on hyperbranched polyurethane electrolytes. Journal of Polymer Science Part B-Polymer Physics, 2003. 41(1): p. 120-126.
    43. Wang, X.L., W.H. Zhu, Y.H. Liu, et al., Ionic conduction of polyurethane/sulfonated polyether blends. Journal of Applied Polymer Science, 2003. 89(9): p. 2369-2373.
    44. Chu, P.P., M.J. ReddyJ. Tsai, Structural and transport characteristics of polyethylene oxide/phenolic resin blend solid polymer electrolytes. Journal of Polymer Science Part B-Polymer Physics, 2004. 42(21): p. 3866-3875.
    45. Zhao, F., M.K. Wang, L. Qi, et al., Properties of a nanocomposite polymer electrolyte from an amorphous comb-branch polymer and nanoparticles. Journal of Solid State Electrochemistry, 2004. 8(5): p. 283-289.
    46. Wang, C.S., X.W. ZhangA.J. Appleby, Solvent-free composite PEO-ceramic fiber/mat electrolytes for lithium secondary cells. Journal of the Electrochemical Society, 2005. 152(1): p. A205-a209.
    47. Gitelman, L., M. Israeli, A. Averbuch, et al., Modeling and simulation of Li-ion conduction in poly(ethylene oxide). Journal of Computational Physics, 2007. 227(2): p. 1162-1175.
    48. Hong, W., L.Y. ZhuM.C. Chen, Effects of La2O3/Li2O/TiO2-coating on electrochemical performance of LiCoO2 cathode. Journal of Rare Earths, 2007. 25(1): p. 124-128.
    49. Gadjourova, Z., Y.G. Andreev, D.P. Tunstall, et al., Ionic conductivity in crystalline polymer electrolytes. Nature, 2001. 412(6846): p. 520-523.
    50. Staunton, E., Y.G. AndreevP.G. Bruce, Structure and conductivity of the crystalline polymer electrolyte beta-PEO6 : LiAsF6. Journal of the American Chemical Society, 2005. 127(35): p. 12176-12177.
    51. Stoeva, Z., I. Martin-Litas, E. Staunton, et al., Ionic conductivity in the crystalline polymer electrolytes PEO6 : LiXF6, X = P, As, Sb. Journal of the American Chemical Society, 2003. 125(15): p. 4619-4626.
    52. Liu, J., Y. Zheng, Y.P. Liao, et al., High lithium conductivities in weakly-ionophilic low-dimensional block copolymer electrolytes. Electrochimica Acta, 2005. 50(19): p. 3815-3826.
    53. Akbulut, O., I. Taniguchi, S. Kumar, et al., Conductivity hysteresis in polymer electrolytes incorporating poly(tetrahydrofuran). Electrochimica Acta, 2007. 52(5): p. 1983-1989.
    54. Staunton, E., Y.G. AndreevP.G. Bruce, Factors influencing the conductivity of crystalline polymer electrolytes. Faraday Discussions, 2007. 134: p. 143-156.
    55. Zhang, C.H., E. Staunton, Y.G. Andreev, et al., Raising the conductivity of crystalline polymer electrolytes by aliovalent doping. Journal of the American Chemical Society, 2005. 127(51): p. 18305-18308.
    56. Song, J.Y., Y.Y. WangC.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources, 1999. 77(2): p. 183-197.
    57. Stephan, A.M.K.S. Nahm, Review on composite polymer electrolytes for lithium batteries. Polymer, 2006. 47(16): p. 5952-5964.
    58. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal, 2006. 42(1): p. 21-42.
    59. Lee, K.H., J.K. ParkW.J. Kim, Electrochemical characteristics of PAN ionomer based polymer electrolytes. Electrochimica Acta, 2000. 45(8-9): p. 1301-1306.
    60. Sawada, H., Y. Ariyoshi, K. Lee, et al., A new approach to highly conductive polymer electrolytes: synthesis of gelling fluoroalkylated end-capped2-acrylamido-2-methylpropanesulfonic acid copolymers containing poly(oxyethylene) units. European Polymer Journal, 2000. 36(11): p. 2523-2526.
    61. Cresswell.T. Anthony, Ionically conductive polymeric gel electrolyte and solid battery. EP-0823744, 1998.
    62. Abraham, K.M., M. AlamgirD.K. Hoffman, Polymer electrolytes reinforced by Celgard(R) membranes Journal of the Electrochemical Society 1995. 142(3): p. 683-687.
    63. Ichino, T., Dual-phase polymer electrolyte prepared from polar and non-polar latices. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1999. 153(1-3): p. 567-574.
    64. Slane, S.M. Salomon, Composite gel electrolyte for rechargeable lithium batteries. Journal of Power Sources, 1995. 55(7): p. 10-18.
    65. Lee, K.H., Y.G. Lee, J.K. Park, et al., Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA) copolymer. Solid State Ionics, 2000. 133(3-4): p. 257-263.
    66. Appetecchi, G.B., P. RomagnoliB. Scrosati, Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochemistry Communications, 2001. 3(6): p. 281-284.
    67. Appetecchi, G.B., F. Croce, R. Marassi, et al., Novel types of lithium-ion polymer electrolyte batteries. Solid State Ionics, 2001. 143(1): p. 73-81.
    68. Tarascon, J.M., A.S. GozdzC.N. Schmutz, Performance of Bellcore's rechargeable Li-ion batteries. Solid State Ionics, 1996. 86-88(49): p. 54-61.
    69. Boudin, F., X. Andrieu, C. Jehoulet, et al., Microporous PVdF gel for lithium-ion batteries. Journal of Power Sources, 1999. 82: p. 804-807.
    70. Michot, T., A. NishimotoM. Watanabe, Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochimica Acta, 2000. 45(8-9): p. 1347-1360.
    71. MaCdonald, J.R., Double layer capacitance and relaxation in electrolytes and solids. Trans. Faraday Soc, 1970. 66: p. 943 - 958.
    72. Bruce, P.G., J. EvansC.A. Vincent, Conductivity and transference number measurements on polymer electrolytes Solid State Ionics, 1988. 28-30: p. 918-922
    73. Bruce, P.G., Ion-polyether coordination complexes: crystalline ionic conductors for clean energy storage. Dalton Transactions, 2006(11): p. 1365-1369.
    74. Chandrasekaran, R.S. Selladurai, Preparation and characterization of a new polymer electrolyte (PEO:NaClO3) for battery application Journal of Solid State Electrochemistry 2001. 5(5): p. 355-361.
    75. Selladurai, S., I.R. ManganiR. Chandrasekaran, Study of Li1.2Mn2O4/(PEO : LiClO4)(8): Ag2SO4/graphite solid state electrochemical cell. Bulletin of Electrochemistry, 1999. 15(9-10): p. 360-365.
    76. Chandrasekaran, R., S. Selladurai, D. Kalpana, et al., Preparation and characterization of Li1.1Mn2O4/polymer electrolyte graphite cell. Indian Journal of Pure & Applied Physics, 1999. 37(4): p. 345-348.
    77. Ferry, A., L. Edman, M. Forsyth, et al., NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN. Electrochimica Acta, 2000. 45(8-9): p. 1237-1242.
    78. Edman, L.M.M. Doeff, Thermal analysis of a solid polymer electrolyte and a subsequent electrochemical investigation of a lithium polymer battery. Solid State Ionics, 2003. 158(1-2): p. 177-186.
    79. Christie, L., A.M. ChristieC.A. Vincent, LiN(CF3SO2)(2) Kynar gels at carbon negative electrodes. Journal of Power Sources, 1999. 82: p. 378-382.
    80. Christie, L., A.M. ChristieC.A. Vincent, Measurement of the apparent lithium ion transference number and salt diffusion coefficient in solid polymer electrolytes. Electrochimica Acta, 1999. 44(17): p. 2909-2913.
    81. Christie, L., A.M. ChristieC.A. Vincent, Rapid measurement of the apparent transference number and salt diffusion coefficient in solid polymer electrolytes. Electrochemical and Solid State Letters, 1999. 2(4): p. 187-188.
    82. Christie, A.M., L. ChristieC.A. Vincent, Selection of new Kynar-based electrolytes for lithium-ion batteries. Journal of Power Sources, 1998. 74(1): p. 77-86.
    83. Subbaraman, R., H. GhassemiT.A. Zawodzinski, 4,5-dicyano-1H-[1,2,3]-triazole as a proton transport facilitator for polymer electrolyte membrane fuel cells. Journal of the American Chemical Society, 2007. 129(8): p. 2238-+.
    84. Walls, H.J.T.A. Zawodzinski, Anion and cation transference numbers determined by electrophoretic NMR of polymer electrolytes sum to unity. Electrochemical and Solid State Letters, 2000. 3(7): p. 321-324.
    85. Payne, V.A., N. Matubayasi, L.R. Murphy, et al., Monte Carlo study of the effect of pressure on hydrophobic association. Journal of Physical Chemistry B, 1997. 101(11): p. 2054-2060.
    86. Markusson, H., H. Tokuda, M. Watanabe, et al., IR spectroscopy and quantum mechanical calculations of lithium ion transport conditions in a single ion conducting polymer electrolyte. Polymer, 2004. 45(26): p. 9057-9065.
    87. Holomb, R., W. Xu, H. Markusson, et al., Vibrational spectroscopy and ab initio studies of lithium bis(oxalato) borate (LiBOB) in different solvents. Journal of Physical Chemistry A, 2006. 110(40): p. 11467-11472.
    88. Markusson, H., P. JohanssonP. Jacobsson, Electrochemical stability and lithium ion-anion interactions of orthoborate anions (BOB, MOB, BMB), and presentation of a novel anion: Tris-oxalato-phosphate. Electrochemical and Solid State Letters, 2005. 8(4): p. A215-a218.
    89. Markusson, H., S. Beranger, P. Johansson, et al., Lithium-pyrazole-3,4,5-tricarbonitrile: Ion pairing and lithium ion affinity studies. Journal of Physical Chemistry A, 2003. 107(47): p. 10177-10183.
    90. Georen, P.G. Lindbergh, Characterisation and modelling of the transport properties in lithium battery polymer electrolytes. Electrochimica Acta, 2001. 47(4): p. 577-587.
    91. Doeff, M.M., P. Georen, J. Qiao, et al., Transport properties of a high molecular weight poly(propylene oxide)-LiCF3SO3 system. Journal of the Electrochemical Society, 1999. 146(6): p. 2024-2028.
    92. Brandell, D., A. Liivat, A. Aabloo, et al., Molecular dynamics simulation of the crystalline short-chain polymer system LiPF6 center dot PEO6 (M-w similar to 1000). Journal of Materials Chemistry, 2005. 15(40): p. 4338-4345.
    93. Brandell, D., A. Liivat, A. Aabloo, et al., Conduction mechanisms in crystalline LiPF6 center dot PEO6 doped with SiF62- and SF6. Chemistry of Materials, 2005. 17(14): p. 3673-3680.
    94. Pai, S.J., Y.C. BaeY.K. Sun, Electrochemical properties for solid polymer electrolyte/salt systems in lithium secondary batteries. Journal of the Electrochemical Society, 2005. 152(5): p. A864-a870.
    95. Pai, S.J., Y.C. BaeY.K. Sun, Ionic conductivities of solid polymer electrolyte/salt systems for lithium secondary battery. Polymer, 2005. 46(9): p. 3111-3118.
    96. Pai, S.J.Y.C. Bae, Open circuit voltage for solid polymer electrolyte/salt systems in lithium batteries. Journal of Applied Electrochemistry, 2005. 35(3): p. 259-265.
    97. Pai, S.J., Y.C. Bae, S.H. Kong, et al., Mathematical modeling of the phase behaviors of solid-polymer-electrolyte/salt systems in lithium secondary batteries: The nonrandomness effect. Journal of Applied Polymer Science, 2004. 94(1): p. 231-237.
    98. Wang, C., Y. Wei, G.R. Ferment, et al., Poly(ethylene oxide)-silica hybrid materials for lithium battery application. Materials Letters, 1999. 39(4): p. 206-210.
    99. Saito, K.S. Miyashita, Enhancement of the thermal conductivity in the spin-Peierls system. Physica B-Condensed Matter, 2003. 329: p. 876-877.
    100. Saito, M., H. Ikuta, Y. Uchimoto, et al., Investigation of the effect of Lewis acid on ionic conductivity of polymer electrolyte containing Mg salt. Journal of the Electrochemical Society, 2003. 150(6): p. A726-a731.
    101. Saito, K., Transport anomaly in the low-energy regime of spin chains. Physical Review B, 2003. 67(6): p. -.
    102. Abe, T., N.Y. Gu, Y. Iriyama, et al., Lithium-ion-conductive polyethylene oxide based polymer electrolytes containing tris(pentafluorophyenyl)borane. Journal of Fluorine Chemistry, 2003. 123(2): p. 279-282.
    103. Lopes, L.S., G.O. Machado, A. Pawlicka, et al., Nuclear magnetic resonance and conductivity study of hydroxyethylcellulose based polymer gel electrolytes. Electrochimica Acta, 2005. 50(19): p. 3978-3984.
    104. Liu, H.K., G.X. Wang, Z.P. Guo, et al., The impact of nanomaterials on Li-ion rechargeable batteries. Journal of New Materials for Electrochemical Systems, 2007. 10(2): p. 101-104.
    105. Ahmad, S., T.K. Saxena, S. Ahmad, et al., The effect of nanosized TiO2 addition on poly(methylmethacrylate) based polymer electrolytes. Journal of Power Sources, 2006.159(1): p. 205-209.
    106. Lin, C.W., C.L. Hung, M. Venkateswarlu, et al., Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 2005. 146(1-2): p. 397-401.
    107. Chiang, C.Y., M.J. ReddyP.P. Chu, Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics, 2004. 175(1-4): p. 631-635.
    108. Forsyth, M., D.R. MacFarlane, A. Best, et al., The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics, 2002. 147(3-4): p. 203-211.
    109. Marcinek, M., M. Ciosek, G. Zukowska, et al., Ionic association in liquid (polyether-Al2O3-LiClO4) composite electrolytes. Solid State Ionics, 2005. 176(3-4): p. 367-376.
    110. Xi, J.Y., X.P. Qiu, J.S. Wang, et al., Effect of molecular sieves ZSM-5 on the crystallization behavior of PEO-based composite polymer electrolyte. Journal of Power Sources, 2006. 158(1): p. 627-634.
    111. Xi, J.Y.X.Z. Tang, Investigations on the enhancement mechanism of inorganic filler on ionic conductivity of PEO-based composite polymer electrolyte: The case of molecular sieves. Electrochimica Acta, 2006. 51(22): p. 4765-4770.
    112. Xi, J.Y., S.J. MiaoX.Z. Tang, Selective transporting of lithium ion by shape selective molecular sieves ZSM-5 in PEO-based composite polymer electrolyte. Macromolecules, 2004. 37(23): p. 8592-8598.
    113. Xi, J.Y., J. LiX.Z. Tang, PEO-LiClO4-ZSM5 composite polymer electrolyte. Acta Chimica Sinica, 2004. 62(18): p. 1755-1759.
    114. Xi, J.Y., X.M. Ma, M.Z. Cui, et al., Electrochemistry study on PEO-LiClO4-ZSM5 composite polymer electrolyte. Chinese Science Bulletin, 2004. 49(8): p. 785-789.
    115. Reiche, A., A. Weinkauf, B. Sandner, et al., Alternating copolymers for novel polymer electrolytes: the electrochemical properties. Electrochimica Acta, 2000. 45(8-9): p. 1327-1334.
    116. Fleischer, G., H. Scheller, J. Karger, et al., Correlation of self-diffusivity and ionic conductivity in gel electrolytes on basis of oligo(ethylene glycol)(n)-dimethacrylate.Journal of Non-Crystalline Solids, 1998. 235: p. 742-747.
    117. Reiche, A., T. Cramer, G. Fleischer, et al., Ionic conductivity structure property relationship in gel electrolytes on the basis of oligo(ethyleneglycol)(23) dimethacrylate plasticized with oligo(ethyleneglycol)(11) dimethyl ether. Journal of Physical Chemistry B, 1998. 102(11): p. 1861-1869.
    118. Kammer, S., K. Albinsky, B. Sandner, et al., Polymerization of hydroxyalkyl methacrylates characterized by combination of FT-Raman and step-scan FT-ir photoacoustic spectroscopy. Polymer, 1999. 40(5): p. 1131-1137.
    119. Sandner, B., J. Tubke, A. Werther, et al., Ionic association in gel electrolytes of varied polarity as studied by FT Raman spectroscopy. Electrochimica Acta, 1998. 43(10-11): p. 1563-1567.
    120. Sandner, B., N. Kotzian, J. Tubke, et al., Photocalorimetric monitoring of the polymerization of an oligo(ethylene glycol) dimethacrylate in oligo(ethylene glycol) dimethyl ethers. Macromolecular Chemistry and Physics, 1997. 198(9): p. 2715-2727.
    121. Shobukawa, H., H. Tokuda, M.A.H. Susan, et al., Ion transport properties of lithium ionic liquids and their ion gels. Electrochimica Acta, 2005. 50(19): p. 3872-3877.
    122. Bansal, D., F. Cassel, F. Croce, et al., Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. Journal of Physical Chemistry B, 2005. 109(10): p. 4492-4496.
    123. Reiche, A., G. Dlubek, A. Weinkauf, et al., Local free volume and structure of polymer gel electrolytes on the basis of alternating copolymers. Journal of Physical Chemistry B, 2000. 104(27): p. 6397-6407.
    124. Reiche, A., R. Sandner, A. Weinkauf, et al., Gel electrolytes on the basis of oligo(ethylene glycol), dimethacrylates-thermal, mechanical and electrochemical properties in relationship to the network structure. Polymer, 2000. 41(10): p. 3821-3836.
    125. Reiche, A., J. Tubke, R. Sandner, et al., Cationic transport in gel electrolytes on basis of oligo(ethylene glycol) dimethacrylate. Electrochimica Acta, 1998. 43(10-11): p. 1429-1434.
    126. Saito, Y., T. Umecky, J. Niwa, et al., Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. Journal of Physical Chemistry B, 2007.111(40): p. 11794-11802.
    127. Su, Y.Z., Y.P. Niu, Y.Z. Xiao, et al., Novel conducting polymer poly [bis(phenylamino)disulfide]: Synthesis, characterization, and properties. Journal of Polymer Science Part a-Polymer Chemistry, 2004. 42(10): p. 2329-2339.
    128. Bebin, P., M. CaravanierH. Galiano, Nanocomposite Nafion containing sulfonated particles for PEMFC application. Abstracts of Papers of the American Chemical Society, 2005. 230: p. U1648-U1648.
    129. Georen, P.G. Lindbergh, Characterisation and modelling of the transport properties in lithium battery gel electrolytes - Part I. The binary electrolyte PC/LiClO4. Electrochimica Acta, 2004. 49(21): p. 3497-3505.
    1. Li, B., L.D. Wang, B.N. Kang, et al., Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006. 90(5): p. 549-573.
    2. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal, 2006. 42(1): p. 21-42.
    3. Ciuffa, F., F. Croce, A. D'Epifanio, et al., Lithium and proton conducting gel-type membranes. Journal of Power Sources, 2004. 127(1-2): p. 53-57.
    4. Jacob, M.M.E., E. HackettE.P. Giannelis, From nanocomposite to nanogel polymer electrolytes. Journal of Materials Chemistry, 2003. 13(1): p. 1-5.
    5. Zhao, F., X.M. Qian, E.K. Wang, et al., Advances in ionic conductive polymer electrolytes. Progress in Chemistry, 2002. 14(5): p. 374-383.
    6. Song, J.Y., Y.Y. WangC.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources, 1999. 77(2): p. 183-197.
    7. Meyer, W.H., Polymer electrolytes for lithium-ion batteries. Advanced Materials, 1998. 10(6): p. 439-445.
    8. Byrne, N., J. Efthimiadis, D.R. MacFarlane, et al., The enhancement of lithium ion dissociation in polyelectrolyte gels on the addition of ceramic nano-fillers. Journal of Materials Chemistry, 2004. 14(1): p. 127-133.
    9. Williamson, S.L., R.S. Armentrout, C.M. Stafford, et al., Electrolyte and pH responsive surfactant association in ionic semi-interpenetrating networks containing cellulose or chitin synthesized in lithium chloride N,N-dimethylacetamide. Journal of Applied Polymer Science, 1999. 71(6): p. 989-998.
    10. Iojoiu, C., F. AlloinJ.Y. Sanchez, Fluorine, omnipresent in devices of electrochemical storage and conversion of energy: unavoidable? Actualite Chimique, 2006: p. 135-143.
    11. Mandal, B.K.R. Filler, New fluorine-containing plasticized low lattice energy lithium salt for plastic batteries. Journal of Fluorine Chemistry, 2005. 126(5): p. 845-848.
    12. Geiculescu, O.E., J. Yang, H. Blau, et al., Solid polymer electrolytes from dilithium saltsbased on new bis[(perfluoroalkyl)sulfonyl]diimide dianions. Preparation and electrical characterization. Solid State Ionics, 2002. 148(1-2): p. 173-183.
    13. Videa, M., W. Xu, B. Geil, et al., High Li+ self-diffusivity and transport number in novel electrolyte solutions. Journal of the Electrochemical Society, 2001. 148(12): p. A1352-A1356.
    14. Tadic, T., M. Jaksic, C. Capiglia, et al., External microbeam PIGE study of Li and F distribution in PVdF/HFP electrolyte gel polymer for lithium battery application. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2000. 161: p. 614-618.
    15. Min, K.H., D.B. Kim, Y.K. Kang, et al., Ionic conductivity and morphology of semi-interpenetrating-type polymer electrolyte entrapping poly(siloxane-g-allyl cyanide). Journal of Applied Polymer Science, 2008. 107(3): p. 1609-1615.
    16. Choi, N.S., Y.M. Lee, B.H. Lee, et al., Nanocomposite single ion conductor based on organic-inorganic hybrid. Solid State Ionics, 2004. 167(3-4): p. 293-299.
    17. Kim, D.W., K.A. Noh, J.H. Chun, et al., Highly conductive polymer electrolytes supported by microporous membrane. Solid State Ionics, 2001. 144(3-4): p. 329-337.
    18. Lee, K.H., K.H. KimH.S. Lim, Studies on a new series of cross-linked polymer electrolytes for a lithium secondary battery. Journal of the Electrochemical Society, 2001. 148(10): p. A1148-A1152.
    1. Weston, J.E.B.C.H. Steele, Effects of inert filters on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics, 1982. 7(1): p. 75-79.
    2. Weston, J.E.B.C.H. Steele, Effects of preparation method on properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics, 1998. 7(1): p. 81-88.
    3. Pitawala, H.M.J.C., M.A.K.L. DissanayakeV.A. Seneviratne, Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)(9)LiTf. Solid State Ionics, 2007. 178(13-14): p. 885-888.
    4. Egashira, M., Y. Utsunomiya, N. Yoshimoto, et al., Effects of the surface treatment of the Al2O3 filler on the lithium electrode/solid polymer electrolyte interface properties. Electrochimica Acta, 2006. 52(3): p. 1082-1086.
    5. Li, Z.H., G.Y. Su, D.S. Gao, et al., Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochimica Acta, 2004. 49(26): p. 4633-4639.
    6. Wang, Z.X., X.J. HuangL.Q. Chen, Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochemical and Solid State Letters, 2003. 6(11): p. E40-E44.
    7. Jayathilaka, P.A.R.D., M.A.K.L. Dissanayake, I. Albinsson, et al., Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)(9)LiTFSI polymer electrolyte system. Electrochimica Acta, 2002. 47(20): p. 3257-3268.
    8. Tambelli, C.C., A.C. Bloise, A. Rosario, et al., Characterisation of PEO-Al2O3 composite polymer electrolytes. Electrochimica Acta, 2002. 47(11): p. 1677-1682.
    9. Qian, X.M., N.Y. Gu, Z.L. Cheng, et al., Impedance study of (PEO)(10)LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes. Electrochimica Acta, 2001. 46(12): p. 1829-1836.
    10. Wu, M.S.T.C. Wen, The addition of Al2O3 in composite electrolytes consisting of polyethylene oxide and polytetramethylene glycol-based waterborne polyurethane.Journal of the Chinese Institute of Chemical Engineers, 2001. 32(1): p. 47-56.
    11. Marcinek, M., M. Ciosek, G. Zukowska, et al., Ionic association in liquid (polyether-Al2O3-LiClO4) composite electrolytes. Solid State Ionics, 2005. 176(3-4): p. 367-376.
    12. Opallo, M., J. Kukulka-Walkiewicz, E. Utzig, et al., Solid electrolyte based on silicate matrix solvated by tetraalkylammonium salt solution in organic polar. Electrochimica Acta, 2003. 48(7): p. 799-805.
    13. Wierzejewska, M.R. Wieczorek, Infrared matrix isolation and ab initio studies on isothiocyanic acid HNCS and its complexes with nitrogen and xenon. Chemical Physics, 2003. 287(1-2): p. 169-181.
    14. Sumathipala, H.H., J. Hassoun, S. Panero, et al., Li-LiFePO4 rechargeable polymer battery using dual composite polymer electrolytes. Journal of Applied Electrochemistry, 2008. 38(1): p. 39-42.
    15. Sumathipala, H.H., J. Hassoun, S. Panero, et al., High performance PEO-based polymer electrolytes and their application in rechargeable lithium polymer batteries. Ionics, 2007. 13(5): p. 281-286.
    16. Reale, P., D. Privitera, S. Panero, et al., An investigation on the effect of Li+/Ni2+ cation mixing on electrochemical performances and analysis of the electron conductivity properties of LiCo0.33Mn0.33M0.33O2. Solid State Ionics, 2007. 178(23-24): p. 1390-1397.
    17. Hassoun, J., P. RealeB. Scrosati, Recent advances in liquid and polymer lithium-ion batteries. Journal of Materials Chemistry, 2007. 17(35): p. 3668-3677.
    18. Gentili, V., S. Panero, P. Reale, et al., Role of the polymer matrix in determining the chemical-physical and electrochemical properties of gel polymer electrolytes for lithium batteries. Ionics, 2007. 13(3): p. 111-116.
    19. Panero, S., B. Scrosati, H.H. Sumathipala, et al., Dual-composite polymer electrolytes with enhanced transport properties. Journal of Power Sources, 2007. 167(2): p. 510-514.
    20. Croce, F., L. Settimi, B. Scrosati, et al., Nanocomposite, PEO-LiBOB polymer electrolytes for low temperature, lithium rechargeable batteries. Journal of New Materials for Electrochemical Systems, 2006. 9(1): p. 3-9.
    21. Croce, F., S. SacchettiB. Scrosati, Advanced, lithium batteries based on high-performancecomposite polymer electrolytes. Journal of Power Sources, 2006. 162(1): p. 685-689.
    22. Croce, F., S. SacchettiB. Scrosati, Advanced, high-performance composite polymer electrolytes for lithium batteries. Journal of Power Sources, 2006. 161(1): p. 560-564.
    23. Armstrong, G., A.R. Armstrong, P.G. Bruce, et al., TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Advanced Materials, 2006. 18(19): p. 2597-2603.
    24. Tominaga, Y., S. Asai, M. Sumita, et al., A novel composite polymer electrolyte: Effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)-LiCF3SO3 complex. Journal of Power Sources, 2005. 146(1-2): p. 402-406.
    25. Wachtler, M., D. Ostrovskii, P. Jacobsson, et al., A study on PVdF-based SiO2-containing composite gel-type polymer electrolytes for lithium batteries. Electrochimica Acta, 2004. 50(2-3): p. 357-361.
    26. Panero, S., B. Scrosati, M. Wachtler, et al., Nanotechnology for the progress of lithium batteries R&D. Journal of Power Sources, 2004. 129(1): p. 90-95.
    27. Suetsuna, T., T. Fukasawa, S. Suenaga, et al., Defect control in a selective reduction reaction to synthesize a metal/ceramic nanocomposite. Journal of the American Ceramic Society, 2007. 90(11): p. 3441-3448.
    28. Ulihin, A.S., N.F. Uvarov, Y.G. Mateyshina, et al., Composite solid electrolytes LiClO4-Al2O3. Solid State Ionics, 2006. 177(26-32): p. 2787-2790.
    29. Kesanli, B., K. Hong, K. Meyer, et al., Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials. Applied Physics Letters, 2006. 89(21): Article number 214104 .
    30. Singh, T.J.S.V. Bhat, Increased lithium-ion conductivity in (PEG)(46)LiClO4 solid polymer electrolyte with delta-Al2O3 nanoparticles. Journal of Power Sources, 2004. 129(2): p. 280-287.
    31. Blanchard, F., H. Pages, B. Carre, et al., Ion movements and cyclability of electropolymerized PEDOT in alkyl carbonate based electrolytes. Journal of New Materials for Electrochemical Systems, 2003. 6(4): p. 245-249.
    32. Chaker, J.A., K. Dahmouche, A.F. Craievich, et al., Structure of weakly bonded PPG-silica nanocomposites. Journal of Applied Crystallography, 2000. 33(1): p. 700-703.
    33. Cheng, X.Y.L. Shi, Effect of La2O3 on microstructure and sliding wear properties of TiC4 ceramic coating produced by electrical discharge method. Surface Engineering, 2007. 23(6): p. 439-442.
    34. Yamauchi, M., Y. Itagaki, H. Aono, et al., Reactivity and stability of rare earth oxide-Li2CO3 mixtures. Journal of the European Ceramic Society, 2008. 28(1): p. 27-34.
    35. Aono, H., Y. ItagakiY. Sadaoka, Na3Zr2Si2PO12-based CO2 gas sensor with heat-treated mixture of Li2CO3 and Nd2O3 as an auxiliary electrode. Sensors and Actuators B-Chemical, 2007. 126(2): p. 406-414.
    36. Shaohua, L., T. Zilong, L. Junbiao, et al., Physical and electrochemical properties of La-doped lithium iron phosphate. Rare Metal Materials and Engineering, 2007. 36(8): p. 1366-1368.
    37. Yamauchi, M., Y. Itagaki, H. Aono, et al., Preparation and characterization of lithium-inserted rare-earth dioxycarbonates (R2O2+2y(CO3)(1-y)Li-2y, R = La and Nd). Journal of the Ceramic Society of Japan, 2007. 115(1342): p. 365-369.
    38. Petrelli, M., D. Perugini, G. Poli, et al., Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by laser ablation ICP-MS. Microchimica Acta, 2007. 158(3-4): p. 275-282.
    39. Tu, J., X.B. Zhao, D.G. Zhuang, et al., Studies of cycleability of LiMn2O4 and LiLa0.01Mn1.99O4 as cathode materials for Li-ion battery. Physica B-Condensed Matter, 2006. 382(1-2): p. 129-134.
    40. Hasegawa, I., S. TamuraN. Imanaka, Solid electrolyte type nitrogen monoxide gas sensor operating at intermediate temperature region. Sensors and Actuators B-Chemical, 2005. 108(1-2): p. 314-318.
    41. Feng, H.J., Y. Chen, K.H. Dai, et al., Preparation and characterization of a novel kind of polymer electrolyte composite membrane for lithium-ion on battery. Acta Physico-Chimica Sinica, 2007. 23(12): p. 1922-1926.
    42. Sannier, L., A. Zalewska, W. Wieczorek, et al., Impact of "Super Acid" like filler on the properties of a PEGDME/LiClO4 system. Electrochimica Acta, 2007. 52(18): p. 5685-5689.
    43. Liu, C., F.S. Hong, K. Wu, et al., Effect of Nd3+ ion on carboxylation activity ofribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochemical and Biophysical Research Communications, 2006. 342(1): p. 36-43.
    44. Luo, S.Z., L.H. Zhu, A. Talukdar, et al., Recent advances in rare earth-metal triflate catalyzed organic synthesis in green media. Mini-Reviews in Organic Chemistry, 2005. 2(2): p. 177-202.
    45. Fukuzawa, S.I., K. Metoki, Y. Komuro, et al., Rare earth salt catalyzed asymmetric Diels-Alder reaction with a chiral dienophile in supercritical carbon dioxide: Enhancement effect on stereoselectivity. Synlett, 2002(1): p. 134-136.
    46. Dexpert-Ghys, J., C. PicardA. Taurines, Complexes of rare earths and dipicolinato ions encapsulated in X- and Y-zeolites: Luminescence properties. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001. 39(3-4): p. 261-267.
    47. Yao, C., M. J.Q., X.P. Lin, et al., The Preparation of Nanosized Lanthanum Oxide. Journal of Chemical Engineering of Chinese Universities, 2003. 17(6): p. 685-688.
    48. Wang, W., J.H. Wang, C.L. Chen, et al., n-Pentane isomerization over promoted SZ/MCM-41 catalysts. Catalysis Today, 2004. 97(4): p. 307-313.
    49. El Shafei, G.M.S.A.A. Zahran, Structural and textural properties of perchlorated and persulphated mixed (hydr)oxides of zirconium and titanium. Adsorption Science & Technology, 2002. 20(8): p. 707-722.
    50. Parida, K., V. Quaschning, E. Lieske, et al., Freeze-dried promoted and unpromoted sulfated zirconia and their catalytic potential. Journal of Materials Chemistry, 2001. 11(7): p. 1903-1911.
    51. Zalewski, D.J., S. AlerasoolP.K. Doolin, Characterization of catalytically active sulfated zirconia. Catalysis Today, 1999. 53(3): p. 419-432.
    52. Hong, Z., K.B. FogashJ.A. Dumesic, Reaction kinetic behavior of sulfated-zirconia catalysts for butane isomerization. Catalysis Today, 1999. 51(2): p. 269-288.
    53. Hino, M., S. Takasaki, S. Furuta, et al., meta-Stannic acid as an effective support for the preparation of sulfated and tungstated stannias. Applied Catalysis a-General, 2007. 321(2): p. 147-154.
    54. Yang, H., R. Lu, L.C. Shen, et al., Preparation, characterization and catalytic activity of sulfated zirconia-silica nanocrystalline catalysts. Materials Letters, 2003. 57(16-17): p. 2572-2579.
    1. Stolarska, M., L. Niedzicki, R. Borkowska, et al., Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler. Electrochimica Acta, 2007. 53(4): p. 1512-1517.
    2. Ji, G.L., B.K. Zhu, Z.Y. Cui, et al., PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery. Polymer, 2007. 48(21): p. 6415-6425.
    3. Reale, P., D. Privitera, S. Panero, et al., An investigation on the effect of Li+/Ni2+ cation mixing on electrochemical performances and analysis of the electron conductivity properties of LiCo0.33Mn0.33M0.33O2. Solid State Ionics, 2007. 178(23-24): p. 1390-1397.
    4. Sivakumar, M., R. Subadevi, S. Rajendran, et al., Compositional effect of PVdF-PEMA blend gel polymer electrolytes for lithium polymer batteries. European Polymer Journal, 2007. 43(10): p. 4466-4473.
    5. Zhang, H.P., P. Zhang, M. Sun, et al., A gelled polymer electrolyte with the blend of PMMA and PVDF of novel stick-like morphology. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2007. 221(8): p. 1039-1047.
    6. Zhang, H.P., P. Zhang, Z.H. Li, et al., A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochemistry Communications, 2007. 9(7): p. 1700-1703.
    7. Reddy, C.V.S., M. Chen, W. Jin, et al., Characterization of (PVDF+LiFePO4) solid polymer electrolyte. Journal of Applied Electrochemistry, 2007. 37(5): p. 637-642.
    8. Choi, S.W., J.R. Kim, Y.R. Ahn, et al., Characterization of electrospun PVdF fiber-based polymer electrolytes. Chemistry of Materials, 2007. 19(1): p. 104-115.
    9. Santhosh, P., T. Vasudevan, A. Gopalan, et al., Preparation and characterization of polyurethane/poly(vinylidene fluoride) composites and evaluation as polymer electrolytes. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006. 135(1): p. 65-73.
    10. Kritzer, P., Nonwoven support material for improved separators in Li-polymer batteries. Journal of Power Sources, 2006. 161(2): p. 1335-1340.
    11. Xi, J.Y., X.P. Qiu, J. Li, et al., PVDF-PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity. Journal of Power Sources, 2006. 157(1): p. 501-506.
    12. Nicotera, I., L. Coppola, C. Oliviero, et al., Investigation of ionic conduction and mechanical properties of PMMA-PVdF blend-based polymer electrolytes. Solid State Ionics, 2006. 177(5-6): p. 581-588.
    13. Mahendran, O., S.Y. Chen, Y.W. Chen-Yang, et al., Investigations on PMMA-PVdF polymer blend electrolyte with esters of dibenzoic acids as plasticizers. Ionics, 2005. 11(3-4): p. 251-258.
    14. Li, J., J.Y. Xi, Q. Song, et al., Microporous polymer electrolyte based on PVDF-PEO. Chinese Science Bulletin, 2005. 50(4): p. 368-370.
    15. Saunier, J., W. Gorecki, F. Alloin, et al., NMR study of cation, anion, and solvent mobilities in macroporous poly(vinylidene fluoride). Journal of Physical Chemistry B, 2005. 109(7): p. 2487-2492.
    16. Lee, Y.M., J.W. Kim, N.S. Choi, et al., Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. Journal of Power Sources, 2005. 139(1-2): p. 235-241.
    17. Li, W.L., M.J. Yang, M.Y. Yuan, et al., Dual-phase polymer electrolytes based on blending poly(MMA-g-NBR) and PMMA. Journal of Applied Polymer Science, 2007. 106(5): p. 3084-3090.
    18. Zhang, S.P., X.K. FuY.F. Gong, Spectroscopic and electrochemical studies on block-polymer/PMMA blend based composite polymer electrolytes. Journal of Applied Polymer Science, 2007. 106(6): p. 4091-4097.
    19. Othman, L., K.W. ChewZ. Osman, Impedance spectroscopy studies of poly (methyl methacrylate)-lithium salts polymer electrolyte systems. Ionics, 2007. 13(5): p. 337-342.
    20. Tan, C.G., W.O. Siew, W.L. Pang, et al., The effects of ceramic fillers on the PMMA-based polymer electrolyte systems. Ionics, 2007. 13(5): p. 361-364.
    21. Ali, A.M.M., M.Z.A. Yahya, H. Bahron, et al., Impedance studies on plasticized PMMA-LiX [X : CF3SO3-,N(CF3SO2)(2)-] polymer electrolytes. Materials Letters, 2007. 61(10): p. 2026-2029.
    22. Lu, L., X.X. Zuo, W.S. Li, et al., Study on the preparation and performances of PMMA-Vac polymer electrolyte for lithium ion battery use. Acta Chimica Sinica, 2007. 65(6): p. 475-480.
    23. Latif, F., M. Aziz, N. Katun, et al., The role and impact of rubber in poly(methylmethacrylate)/lithium triflate electrolyte. Journal of Power Sources, 2006. 159(2): p. 1401-1404.
    24. Li, W.L., M.Y. YuanM.J. Yang, Dual-phase polymer electrolyte with enhanced phase compatibility based on Poly(MMA-g-PVC)/PMMA. European Polymer Journal, 2006. 42(6): p. 1396-1402.
    25. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal, 2006. 42(1): p. 21-42.
    26. Reiter, J., J. VondrakZ. Micka, The electrochemical redox processes in PMMA gel electrolytes - behaviour of transition metal complexes. Electrochimica Acta, 2005. 50(22): p. 4469-4476.
    27. Meneghetti, P., S. QutubuddinA. Webber, Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite. Electrochimica Acta, 2004. 49(27): p. 4923-4931.
    28. Agnihotry, S.A., S. Ahmad, D. Gupta, et al., Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica. Electrochimica Acta, 2004. 49(14): p. 2343-2349.
    29. Uma, T., T. MahalingamU. Stimming, Mixed phase solid polymer electrolytes based on poly(methylmethacrylate) systems. Materials Chemistry and Physics, 2003. 82(2): p. 478-483.
    30. Kim, H.S., J.H. Shin, S.I. Moon, et al., Preparation of gel polymer electrolytes using PMMA interpenetrating polymeric network and their electrochemical performances. Electrochimica Acta, 2003. 48(11): p. 1573-1578.
    31. Wang, Z.L., Z.Y. Tang, X. Geng, et al., Research on novel PMMA-based gel electrolyte for lithium ion battery. Acta Physico-Chimica Sinica, 2002. 18(3): p. 272-275.
    32. Chen, H.W., T.P. LinF.C. Chang, Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer, 2002. 43(19): p. 5281-5288.
    33. Vondrak, J., M. Sedlarikova, J. Velicka, et al., Gel polymer electrolytes based on PMMA. Electrochimica Acta, 2001. 46(13-14): p. 2047-2048.
    34. Digar, M., S.L. HungT.C. Wen, Blending poly(methyl methacrylate) and poly(styrene-co-acrylonitrile) as composite polymer electrolyte. Journal of Applied Polymer Science, 2001. 80(8): p. 1319-1328.
    35. Rajendran, S.T. Uma, Effect of ceramic oxide on PMMA based polymer electrolyte systems. Materials Letters, 2000. 45(3-4): p. 191-196.
    36. Rajendran, S.T. Uma, Conductivity studies on PVC/PMMA polymer blend electrolyte. Materials Letters, 2000. 44(3-4): p. 242-247.
    37. Yang, S.T., H.J. Chen, H.Y. Dong, et al., FTIR investigation of new polymer solid electrolytes. Spectroscopy and Spectral Analysis, 2004. 24(4): p. 434-436.
    38. Lee, W., T.G. LeeW.G. Koh, Grafting of poly(acrylic acid) on the poly(ethylene glycol) hydrogel using surface-initiated photopolymerization for covalent immobilization of collagen. Journal of Industrial and Engineering Chemistry, 2007. 13(7): p. 1195-1200.
    39. Kavakli, P.A., C. Kavakli, N. Seko, et al., Radiation-induced grafting of dimethylaminoethylmethacrylate onto PEW nonwoven fabric. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2007. 265(1): p. 204-207.
    40. Xu, Z.W., Y.D. Huang, C.H. Zhang, et al., Effect of gamma-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites. Composites Science and Technology, 2007. 67(15-16): p. 3261-3270.
    41. Kamal, H., E.S.A. Hegazy, A.E.K.B. Mostafa, et al., Radiation-modified copolymer for the extraction of metal ions from water. Journal of Applied Polymer Science, 2007. 106(5): p. 3366-3374.
    42. Kavakli, P.A., N. Seko, M. Tamada, et al., Radiation-induced graft polymerization of glycidyl methacrylate onto PE/PP nonwoven fabric and its modification toward enhanced amidoximation. Journal of Applied Polymer Science, 2007. 105(3): p. 1551-1558.
    43. Zhang, J., S.T. Zhang, K. Yuan, et al., Graft copolymerization of artemisia seed gum with acrylic acid under microwave and its water absorbency. Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 2007. 44(7-9): p. 881-885.
    44. Kim, Y.W., D.K. Lee, K.J. Lee, et al., In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. Journal of Polymer Science Part B-Polymer Physics, 2007. 45(11): p. 1283-1290.
    45. Akiyama, Y., A. Kushida, M. Yamato, et al., Surface characterization of poly(N-isopropylacrylamide) grafted tissue culture polystyrene by electron beam irradiation,using atomic force microscopy, and X-ray photoelectron spectroscopy. Journal of Nanoscience and Nanotechnology, 2007. 7(3): p. 796-802.
    46. Septiani, U., J.H. Chen, M. Asano, et al., Influence of pre-irradiation atmosphere on the properties of polymer electrolyte membranes prepared using radiation grafting method. Journal of Materials Science, 2007. 42(4): p. 1330-1335.
    47. Liu, D.M., Y.W. Chen, N. Zhang, et al., Controlled grafting of polymer brushes on poly(vinylidene fluoride) films by surface-initiated atom transfer radical polymerization. Journal of Applied Polymer Science, 2006. 101(6): p. 3704-3712.
    48. Filho, A.A.M.F.A.S. Gomes, Copolymerization of styrene onto polyethersulfone films induced by gamma ray irradiation. Polymer Bulletin, 2006. 57(4): p. 415-421.
    49. Khan, F.S.R. Ahmad, Graft copolymerization and characterization of 2-hydroxyethyl methacrylate onto jute fiber by photoirradiation. Journal of Applied Polymer Science, 2006. 101(5): p. 2898-2910.
    50. Chen, J., M. Asano, M. Yoshida, et al., Preparation and properties of sulfonated ETFE-g-polyvinyltoluene membranes for application in fuel cells. Journal of Applied Polymer Science, 2006. 101(4): p. 2661-2667.
    51. Haldar, S.K.N.K. Singha, Grafting of butyl acrylate and methyl methacrylate on butyl rubber using electron beam radiation. Journal of Applied Polymer Science, 2006. 101(3): p. 1340-1346.
    52. Tang, E.J., G.X. ChengX.L. Ma, Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technology, 2006. 161(3): p. 209-214.
    53. Adem, E., M. Avalos-Borja, E. Bucio, et al., Surface characterization of binary grafting of AAc/NIPAAm onto poly(tetrafluoroethylene) (PTFE). Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2005. 234(4): p. 471-476.
    54. Clochard, M.C., J. Begue, A. Lafon, et al., Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF. Polymer, 2004. 45(26): p. 8683-8694.
    55. Gao, K., X.G. Hu, T.F. Yi, et al., PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochimica Acta, 2006. 52(2): p. 443-449.
    56. Xiao, W.J., Z.H. Li, Z.B. Huang, et al., Preparation of the TiO2/P(VdF-HFP) hybrid fiber microporous film and its electrochemical performance. Acta Chimica Sinica, 2007. 65(19): p.2097-2102.
    57. Kim, C., K.S. Yang, M. Kojima, et al., Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Advanced Functional Materials, 2006. 16(18): p. 2393-2397.
    58. Gao, K., X.G. Hu, C.S. Dai, et al., Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006. 131(1-3): p. 100-105.
    59. Gu, Y.X., D.R. ChenM.L. Jiao, Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. Journal of Physical Chemistry B, 2005. 109(38): p. 17901-17906.
    60. Kim, C.W., M.W. Frey, M. Marquez, et al., Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. Journal of Polymer Science Part B-Polymer Physics, 2005. 43(13): p. 1673-1683.
    61. Kim, J.R., S.W. Choi, S.M. Jo, et al., Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochimica Acta, 2004. 50(1): p. 69-75.
    1. Wu, G., H.Y. Yang, H.Z. Chen, et al., Novel porous polymer electrolyte based on polyacrylonitrile. Materials Chemistry and Physics, 2007. 104(2-3): p. 284-287.
    2. Jeon, J.D.S.Y. Kwak, Pore-filling solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes for rechargeable lithium batteries. Journal of Membrane Science, 2006. 286(1-2): p. 15-21.
    3. Pu, W.H., X.M. He, L. Wang, et al., Preparation of P(AN-MMA) microporous membrane for Li-ion batteries by phase inversion. Journal of Membrane Science, 2006. 280(1-2): p. 6-9.
    4. Yeow, M.L., Y.T. LiuK. Li, Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive. Journal of Membrane Science, 2005. 258(1-2): p. 16-22.
    5. Lee, Y.M., J.W. Kim, N.S. Choi, et al., Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. Journal of Power Sources, 2005. 139(1-2): p. 235-241.
    6. Boudin, F., X. Andrieu, C. Jehoulet, et al., Microporous PVdF gel for lithium-ion batteries. Journal of Power Sources, 1999. 82: p. 804-807.
    7. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
    8. Stephan, A.M.K.S. Nahm, Review on composite polymer electrolytes for lithium batteries. Polymer, 2006. 47(16): p. 5952-5964.
    9. Deluca, N.W.Y.A. Elabd, Polymer electrolyte membranes for the direct methanol fuel cell: A review. Journal of Polymer Science Part B-Polymer Physics, 2006. 44(16): p. 2201-2225.
    10. Jacob, M.M.E., E. HackettE.P. Giannelis, From nanocomposite to nanogel polymer electrolytes. Journal of Materials Chemistry, 2003. 13(1): p. 1-5.
    11. Giridhar, P., K.A. Prasad, N. Kalaiselvi, et al., A review on lithium - Ion polymer electrolyte batteries. Bulletin of Electrochemistry, 1999. 15(9-10): p. 414-418.
    12. Pitawala, H.M.J.C., M.A.K.L. DissanayakeV.A. Seneviratne, Combined effect of Al2O3nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)(9)LiTf. Solid State Ionics, 2007. 178(13-14): p. 885-888.
    13. Qi, L.S.J. Dong, Organic/inorganic nanocomposite polymer electrolyte. Chinese Chemical Letters, 2007. 18(2): p. 185-188.
    14. Song, J., Q.H. Wu, Q.F. Dong, et al., Solid-state thin film li-ion batteries. Progress in Chemistry, 2007. 19(1): p. 66-73.
    15. Wu, C.G., M.I. Lu, C.C. Tsai, et al., PVdF-HFP/metal oxide nanocomposites: The matrices for high-conducting, low-leakage porous polymer electrolytes. Journal of Power Sources, 2006. 159(1): p. 295-300.
    16. Sauguet, L., B. AmeduriB. Boutevin, Fluorinated, crosslinkable terpolymers based on vinylidene fluoride and bearing sulfonic acid side groups for fuel-cell membranes. Journal of Polymer Science Part a-Polymer Chemistry, 2006. 44(15): p. 4566-4578.
    17. Piekarska, J., M. Ptasinska, G. Zukowska, et al., Novel composite polymer-in-salt electrolytes based on a PVdF matrix obtained with a solvent-free technique. Materials Science-Poland, 2006. 24(1): p. 205-211.
    18. Li, Z.H., J. Jiang, H.P. Zhang, et al., Study of nanocomposite polymer electrolyte plasticized by room temperature ionic liquid. Acta Chimica Sinica, 2007. 65(14): p. 1333-1337.
    19. Li, Y.X.P.S. Fedkiw, Effect of gel electrolytes containing silica nanoparticles on aluminum corrosion. Electrochimica Acta, 2007. 52(7): p. 2471-2477.
    20. Yerian, J.A., S.A. KhanP.S. Fedkiw, Crosslinkable fumed silica-based nanocomposite electrolytes: role of methacrylate monomer in formation of crosslinked silica network. Journal of Power Sources, 2004. 135(1-2): p. 232-239.
    21. Suarez, S., S. Abbrent, S.G. Greenbaum, et al., Effect of nanosized SiO2 on the transport properties of solventless P(EO)(20)LIBETI polymer electrolytes: a solid-state NMR study. Solid State Ionics, 2004. 166(3-4): p. 407-415.
    22. Cheung, I.W., K.B. Chin, E.R. Greene, et al., Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes. Electrochimica Acta, 2003. 48(14-16): p. 2149-2156.
    23. Appetecchi, G.B., F. Croce, J. Hassoun, et al., Hot-pressed, dry, composite, PEO-basedelectrolyte membranes I. Ionic conductivity characterization. Journal of Power Sources, 2003. 114(1): p. 105-112.
    24. Aihara, Y., G.B. AppetecchiB. Scrosati, A new concept for the formation of homogeneous, poly(ethylene oxide) based, gel-type polymer electrolyte. Journal of the Electrochemical Society, 2002. 149(7): p. A849-a854.
    25. Xiong, H.M., X. ZhaoJ.S. Chen, New polymer-inorganic nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 films. Journal of Physical Chemistry B, 2001. 105(42): p. 10169-10174.
    26. Ghosh, A., P.P. De, S.K. De, et al., Studies on flammability, thermal stability and hot oil resistance of silicone rubber, fluororubber and their blends. Kautschuk Gummi Kunststoffe, 2003. 56(3): p. 96-100.
    27. Peng, W.Q., S.Y. Yang, X.D. Deng, et al., Studies on high temperature resistance of room temperature vulcanized fluorosilicone rubbers. Acta Polymerica Sinica, 1999(6): p. 715-719.
    28. Aliev, R., Effect of dose rate and oxygen on radiation crosslinking of silica filled fluorosilicone rubber. Radiation Physics and Chemistry, 1999. 56(3): p. 347-352.
    29. Fay, J.C.C., A. Lee, L.C. Liang, et al., Material characterization of fluorosilicone gels for automotive application. Ieee Transactions on Electronics Packaging Manufacturing, 2003. 26(3): p. 200-204.
    30. Boutevin, B., F. GuidaPietrasanta, A. Ratsimihety, et al., Synthesis, characterization and thermal properties of a new fluorinated silalkylene-polysiloxane. Main Group Metal Chemistry, 1997. 20(2): p. 133-136.
    31. Kim, K.M., N.G. Park, K.S. Ryu, et al., Physical and electrochemical characterizations of poly(vinylidene fluoride-co-hexafluoropropylene)/SiO2-based polymer electrolytes prepared by the phase-inversion technique. Journal of Applied Polymer Science, 2006. 102(1): p. 140-148.
    32. Tang, D.G., L. QiY.X. Ci, Preparation and electrochemical characteristics of polymer electrolyte membranes based on SAN/PVDF-HFP blends. Chinese Journal of Polymer Science, 2006. 24(2): p. 213-220.
    33. Lee, Y.G., K.M. Kim, Y.J. Park, et al., Electrochemical characteristics of multi-functionalpolymer electrolyte based on dual-layer membrane for lithium metal polymer battery. Synthetic Metals, 2005. 152(1-3): p. 89-92.
    34. Huang, H.T.S.L. Wunder, Ionic conductivity of microporous PVDF-HFP/PS polymer blends. Journal of the Electrochemical Society, 2001. 148(3): p. A279-a283.
    35. Magistris, A., P. Mustarelli, E. Quartarone, et al., Transport and thermal properties of (PEO)(n)-LiPF6 electrolytes for super-ambient applications. Solid State Ionics, 2000. 136: p. 1241-1247.
    36. Stallworth, P.E., J.J. Fontanella, M.C. Wintersgill, et al., NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. Journal of Power Sources, 1999. 82: p. 739-747.
    37. Cheng, Y., G. Wang, M.M. Yan, et al., In situ analysis of interfacial reactions between negative MCMB, lithium electrodes, and gel polymer electrolyte. Journal of Solid State Electrochemistry, 2007. 11(2): p. 310-316.
    38. Liang, Y.H., C.C. WangC.Y. Chen, The conductivity and characterization of the plasticized polymer electrolyte based on the P(AN-co-GMA-IDA) copolymer with chelating group. Journal of Power Sources, 2005. 148: p. 55-65.
    39. Shin, J.H., S.S. Jeong, K.W. Kim, et al., FT-Raman spectroscopy study on the effect of ceramic fillers in P(EO)(20)LiBETI. Solid State Ionics, 2005. 176(5-6): p. 571-577.
    40. Yoon, H.K., W.S. ChungN.J. Jo, Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochimica Acta, 2004. 50(2-3): p. 289-293.
    41. Jo, S.I., S. Lee, Y.B. Jeong, et al., Spectroscopic investigation of the gel polymer electrolytes based on methyl methacrylate-styrene copolymers. Electrochimica Acta, 2004. 50(2-3): p. 327-330.
    42. Kumar, G.G.S. Sampath, Spectroscopic characterization of a gel polymer electrolyte of zinc triflate and polyacrylonitrile. Polymer, 2004. 45(9): p. 2889-2895.
    43. Grondin, J., L. Ducasse, J.L. Bruneel, et al., Vibrational and theoretical study of the complexation of LiPF6 and LiClO4 by di(ethylene glycol) dimethyl ether. Solid State Ionics, 2004. 166(3-4): p. 441-452.
    44. Cheng, H., C.B. ZhuY. Yang, FTIR characterization of ion association and phasecomposition in PEO-based polymer electrolytes. Acta Chimica Sinica, 2007. 65(24): p. 2832-2838.
    45. Cheng, H., C.B. Zhu, M. Lu, et al., Spectroscopic and electrochemical characterization of the passive layer formed on lithium in gel polymer electrolytes containing propylene carbonate. Journal of Power Sources, 2007. 173(1): p. 531-537.
    46. Ramesh, S.M.F. Chai, Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007. 139(2-3): p. 240-245.
    47. Ali, A.M.M., M.Z.A. Yahya, H. Bahron, et al., Impedance studies on plasticized PMMA-LiX [X : CF3SO3-,N(CF3SO2)(2)-] polymer electrolytes. Materials Letters, 2007. 61(10): p. 2026-2029.
    48. Rajendran, S., P. SivakumarR.S. Babu, Investigation on poly (vinylidene fluoride) based gel polymer electrolytes. Bulletin of Materials Science, 2006. 29(7): p. 673-678.
    1. Guy, D., B. Lestriez, R. Bouchet, et al., Improvement of lithium battery performance through composite electrode microstructure optimization. Ionics, 2004. 10(5-6): p. 443-449.
    2. Arora, P., M. Doyle, A.S. Gozdz, et al., Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries. Journal of Power Sources, 2000. 88(2): p. 219-231.
    3. Richard, M.N., I. KoetschauJ.R. Dahn, A cell for in situ x-ray diffraction based on coin cell hardware and Bellcore plastic electrode technology. Journal of the Electrochemical Society, 1997. 144(2): p. 554-557.
    4. Yoneda, H., H. HachiyaM. Adachi, Preparation of micro-porous polyethylene membrane by 3-component melt-process. Kobunshi Ronbunshu, 2007. 64(6): p. 361-367.
    5. Yoneda, H.T. Kondo, Preparation of micro-porous polyethylene membrane by
    2-component melt-process. Kobunshi Ronbunshu, 2007. 64(6): p. 368-372.
    6. Kim, L.U.C.K. Kim, A novel method for the pore size control of the battery separator using the phase instability of the ternary mixtures. Journal of Polymer Science Part B-Polymer Physics, 2006. 44(15): p. 2025-2034.
    7. Lee, Y.M., N.S. Choi, J.A. Lee, et al., Electrochemical effect of coating layer on the separator based on PVdF and PE non-woven matrix. Journal of Power Sources, 2005. 146(1-2): p. 431-435.
    8. Lee, Y.M., J.W. Kim, N.S. Choi, et al., Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. Journal of Power Sources, 2005.
    139(1-2): p. 235-241.
    9. Jeong, Y.B.D.W. Kim, The role of an adhesive gel-forming polymer coated on separator for rechargeable lithium metal polymer cells. Solid State Ionics, 2005. 176(1-2): p. 47-51.
    10. Ko, J.M., B.G. Min, D.W. Kim, et al., Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate. Electrochimica Acta, 2004. 50(2-3): p.
    367-370.
    11. Kim, D.W., J.M. Ko, J.H. Chun, et al., Electrochemical performances of lithium-ion cellsprepared with polyethylene oxide-coated separators. Electrochemistry Communications, 2001. 3(10): p. 535-538.
    12. Masoodi, R., K.M. PillaiP.P. Varanasi, Darcy's law-based models for liquid absorption in polymer wicks. Aiche Journal, 2007. 53(11): p. 2769-2782.
    13. Van der Meeren, P., J. Cocquyt, S. Flores, et al., Quantifying wetting and wicking phenomena in cotton terry as affected by fabric conditioner treatment. Textile Research Journal, 2002. 72(5): p. 423-428.
    14. Shi, S.Q.D.J. Gardner, A new model to determine contact angles on swelling polymer particles by the column wicking method. Journal of Adhesion Science and Technology, 2000. 14(2): p. 301-314.
    15. Sato, T., K. Banno, T. Maruo, et al., New design for a safe lithium-ion gel polymer battery. Journal of Power Sources, 2005. 152(1): p. 264-271.
    16. Kobayashi, Y., Y. Mita, S. Seki, et al., Comparative study of lithium secondary batteries using nonvolatile safety electrolytes. Journal of the Electrochemical Society, 2007. 154(7): p. A677-a681.
    17. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
    18. Satoh, M., N. Ohyama, M. Shirakata, et al., Polymer battery packed with laminated film. Nec Research & Development, 2000. 41(1): p. 18-23.
    19. Murata, K., S. IzuchiY. Yoshihisa, An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta, 2000. 45(8-9): p. 1501-1508.
    20. Maleki, H., G.P. Deng, A. Anani, et al., Thermal stability studies of Li-ion cells and components. Journal of the Electrochemical Society, 1999. 146(9): p. 3224-3229.
    21. Amaral, F.A., C. Dalmolin, S.C. Canobre, et al., Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries. Journal of Power Sources, 2007. 164(1): p. 379-385.
    22. Trinidad, F., F. SaezJ. Valenciano, High power valve regulated lead-acid batteries for new vehicle requirements. Journal of Power Sources, 2001. 95(1-2): p. 24-37.
    23. Karpinski, A.P., B. Makovetski, S.J. Russell, et al., Silver-zinc: status of technology and applications. Journal of Power Sources, 1999. 80(1-2): p. 53-60.
    24. Xi, J.Y.X.Z. Tang, Enhanced lithium ion transference number and ionic conductivity of composite polymer electrolyte doped with organic-inorganic hybrid P123@SBA-15. Chemical Physics Letters, 2004. 400(1-3): p. 68-73.
    25. Xi, J.Y., S.J. MiaoX.Z. Tang, Selective transporting of lithium ion by shape selective molecular sieves ZSM-5 in PEO-based composite polymer electrolyte. Macromolecules, 2004. 37(23): p. 8592-8598.
    26. Yerian, J.A., S.A. KhanP.S. Fedkiw, Crosslinkable fumed silica-based nanocomposite electrolytes: role of methacrylate monomer in formation of crosslinked silica network. Journal of Power Sources, 2004. 135(1-2): p. 232-239.
    27. Choi, N.S., Y.M. Lee, B.H. Lee, et al., Nanocomposite single ion conductor based on organic-inorganic hybrid. Solid State Ionics, 2004. 167(3-4): p. 293-299.
    28. Liu, Y., J.Y. LeeL. Hong, In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes. Journal of Power Sources, 2004. 129(2): p. 303-311.
    29. Zhou, H.P.S. Fedkiw, Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas. Electrochimica Acta, 2003. 48(18): p. 2571-2582.
    30. Lee, B.H., N.S. ChoiJ.K. Park, Effect of silica on the interfacial stability of the PEO-based polymer electrolytes. Polymer Bulletin, 2002. 49(1): p. 63-68.
    31. Chen, Z.F., Y.X. Jiang, Q.C. Zhuang, et al., Preparation and characterization of a novel composite microporous polymer electrolyte for Li-ion batteries. Chinese Science Bulletin, 2005. 50(14): p. 1435-1440.
    32. Jiang, Y.X., Z.F. Chen, Q.C. Zhuang, et al., A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries. Journal of Power Sources, 2006. 160(2): p. 1320-1328.
    33. Jiang, Y.X., J.M. Xu, Q.C. Zhuang, et al., A novel PEO-based composite solid-state polymer electrolyte with methyl group-functionalized SBA-15 filler for rechargeable lithium batteries. Journal of Solid State Electrochemistry, 2008. 12(4): p. 353-361.
    34. Ahmad, S., M. DeepaS.A. Agnihotry, Effect of salts on the fumed silica-based composite polymer electrolytes. Solar Energy Materials and Solar Cells, 2008. 92(2): p. 184-189.
    35. Kao, H.M., Y.Y. TsaiS.W. Chao, Functionalized mesoporous silica MCM-41 in poly(ethylene oxide)-based polymer electrolytes: NMR and conductivity studies. SolidState Ionics, 2005. 176(13-14): p. 1261-1270.
    36. Saikia, D.A. Kumar, Ionic conduction studies in P(VDF-HFP)-LiAsF6-(PC + DEC)-fumed SiO2 composite gel polymer electrolyte system. Physica Status Solidi a-Applied Research, 2005. 202(2): p. 309-315.
    37. Lee, K.H., Y.G. Lee, J.K. Park, et al., Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA) copolymer. Solid State Ionics, 2000. 133(3-4): p. 257-263.
    38. Raghavan, S.R., M.W. Riley, P.S. Fedkiw, et al., Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: Dynamic rheology and microstructure. Chemistry of Materials, 1998. 10(1): p. 244-251.
    39. Paulsdorf, J., M. Burjanadze, K. Hagelschur, et al., Ionic conductivity in polyphosphazene polymer electrolytes prepared by the living cationic polymerization. Solid State Ionics, 2004. 169(1-4): p. 25-33.
    40. Rajendran, S., M. SivakumarR. Subadevi, Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ionics, 2004. 167(3-4): p. 335-339.
    41. Hou, W.H., C.Y. ChenC.C. Wang, The environment of lithium ions and conductivity of comb-like polymer electrolyte with a chelating functional group. Polymer, 2003. 44(10): p. 2983-2991.
    42. Leo, C.J., G.V.S. RaoB.V.R. Chowdari, Studies on plasticized PEO-lithium triflate-ceramic filler composite electrolyte system. Solid State Ionics, 2002. 148(1-2): p. 159-171.
    43. Qian, X.M., N.Y. Gu, Z.L. Cheng, et al., Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Materials Chemistry and Physics, 2002. 74(1): p. 98-103.
    44. Kim, H.J., E.Y. KimS.B. Rhee, Ion conduction in solid polymer electrolytes composed of graft copolymer-lithium salt. Korea Polymer Journal, 1996. 4(2): p. 83-88.