采后黄瓜对机械损伤和低温胁迫的响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果蔬从采后运输、贮藏到消费者手中的整个过程中都不可避免地受到不同程度的机械损伤,机械损伤破坏了果实天然的组织结构,引起活性氧的代谢失去平衡,对果蔬组织产生毒害现象。当果蔬体内大量活性氧积累时,抗氧化系统的一系列酶类随即被激活,以清除活性氧为目的,以清除和减少细胞膜的氧化伤害。而活性氧是许多生物过程包括细胞生长,细胞周期、细胞程序化死亡、激素信号转导、细胞应答过程中的重要物质。
     植物受到机械损伤时,植物体内的茉莉酸及其衍生物的含量显著增加,而增加的茉莉酸又诱导PLD及PLA的表达,进而激活JA合成过程中的一系列酶,在这些酶中,PLD, LOX和AOS是三个及其重要的水解或合成酶,因此编码这三种酶的基因在转录水平上的变化对植物体内JA的含量起着重要的调控作用。
     我们的研究表明,机械损伤使黄瓜果实中POD和APX的活性明显上升,而SOD和CAT虽然在机械损伤后有所上升,但上升幅度不明显,而四种酶的变化趋势都是先上升后下降;SA对四种酶的活性都有一定程度的抑制作用;乙烯在损伤后一定时间内对POD和APX的活性有一定的促进作用,损伤后内对CAT的活性几乎没有影响,而对SOD的活性则有较强烈的抑制作用;MeJA对损伤后黄瓜果实中的SOD、POD在损伤后的前几个小时有微弱的抑制作用,而对CAT、APX的活性则几乎没有影响。
     我们用同源克隆技术克隆出黄瓜PLD基因的全长。黄瓜PLD基因cDNA全长为2499 bp,其最大编码框为2427 bp,其DNA全长为3754 bp,其中含2个内含子;可能编码含有808个氨基酸的蛋白质,氨基酸序列具有PLD特有的C2结构域;与其它物种PLD同源基因氨基酸序列的比较和构建的分子进化树发现,黄瓜PLD基因属于PLD基因家族的α亚家族。
     我们的半定量和实时荧光定量PCR结果发现,机械损伤后的黄瓜果实中CsPLDa、LOX, AOS基因的表达量都有一定程度的上调,SA对损伤后的黄瓜果实中CsPLDa基因和LOX基因的表达都有微弱的抑制作用,而对AOS基因的表达有明显的抑制作用;乙烯利前处理的损伤黄瓜中CsPLDa基因和LOX基因的表达有明显的上调作用,而对AOS基因的表达则没有明显的影响;MeJA对损伤后黄瓜果实中CsPLDa基因和AOS基因的表达量都有明显的促进作用,而对LOX基因的表达则有明显的抑制作用。
     包括生物胁迫因子如病原体、昆虫、杂草等,物理胁迫因子如低氧、低温、干旱、物理损伤、机械胁迫等,化学胁迫因子如盐、金属离子、营养元素等各种不良环境因子都能引起植物细胞的程序性死亡。我们的实验结果表明,2℃低温处理9天后,黄瓜果实的乙烯释放量、呼吸速率、电导率明显上升,硬度下降,细胞核变形,染色质开始降解,DNA降解明显,20℃放置2天后乙烯释放量、呼吸速率、电导率上升更加明显,硬度快速下降,DNA降解更加明显,大多数细胞的细胞核降解,形成没有细胞核的空腔,细胞的程序性死亡特征更加明显;而1-MCP和EGTA处理后的黄瓜果实乙烯释放量、呼吸速率、电导率明显比对照低,硬度下降幅度较小,颜色变化较小,细胞核变形数量较少,细胞核降解后形成的没有空腔的细胞数目也相对减少,DNA降解幅度明显小于低温处理黄瓜果实DNA的降解,表明1-MCP和EGTA处理能减缓低温诱导的黄瓜果实发生PCD且1-MCP处理的效果好于EGTA.
Mechanical wounding is an environmental stress which stimulates plants to produce the necessary signals to prepare further defenses. Oxidative burst is a common early response of plants to elicitor treatments, which induces the enhancement of plant antioxidative enzyme activity to scavenge the generated active oxide species. Wound-induced responses activate those genes involved in the production of wound-signals which then switch-on genes involved in systemic defense against stress. JA signaling can be induced by a range of abiotic stresses, including mechanical wounding. Phospholipase D (PLD), lipoxygenase (LOX) and allene oxide synthase (AOS) are key enzymes which involved in the JA synthesis.
     This study was to investigate the effects of salicylic acid, ethephon, or methyl jasmonate on antioxidant system and on the transcription levels of wounded-induced PLDα, LOX, AOS genes in postharvest cucumber (Cucumis sativus L. cv. Biyu-3) fruit.
     We identified the CsPLD gene with homology cloning. Potential orthologous PLD amino acid sequences were collected based on BLAST-P homology searches using the CsPLD gene sequence in the NCBI database. Multiple sequences alignments were performed with the ClustalX programme. A phylogenetic tree was constructed applying the neighbour-joining (NJ) method. We found that the maxisum open reading frame (ORF) of the CsPLD gene cDNA was 2,427 nt-long and encoded a predicted protein of 808 amino acids with a C2 domain related to the C2 superfamily. Phylogenetic analysis result indicated that CsPLD gene belonged to the a sub-family of PLD genes family.
     We found that mechanical wounding stimulated the activities of SOD, POD, APX and CAT, activities of POD and APX distinctly increased, however, activities of SOD and CAT both had slightly increase. The activities of all the four antioxidative enzymes were increased to a maxisim value and then declined. SA pre-treated inhibited activities of SOD, POD, CAT and APX in wounded cucumber. Ethephon pre-treated could slightly enhanced activites of POD and APX in several hours after wounded, but the pre-treated had no effect on activity of CAT and intensively inhibited the activity of SOD in wounded fruits. The activities of SOD and POD were slightly inhibited a couple of hours after wounding, but there were nearly no changes on activities of APX and CAT in wounded cucumber.
     The relative levels of expression of the PLDa gene induced by wounding following SA, ETH, or MeJA pre-treatment were detected by semi-quantitative PCR and quantitative real-time PCR analysis. Wounding increased the levels of expression of the PLDa, LOX and AOS genes. SA pre-treated slightly surpressed the relative levels of expression of PLDa and LOX genes, but strongly surpressed the relative level of expression of AOS gene. Transcript levels of PLDa and LOX genes apparently increased but transcript level of AOS gene had no change in ETh pre-treated cucumber fruits. MeJA treatment activated expression of the PLDa and AOS gene, and the stimulatory effect of ETH was greater than that of MeJA, however, this treatment surpressed the transcript level of LOX gene.
     Programmed cell death (PCD) is an essential physiological process occurring during plant development and in response to biotic and abiotic stresses such as pathogen, insects feeding, low oxygen concentration, chilling, draought, mechanical wounding, osmosis stress, metallic ion and so on. Our results showed that ethylene production rate, respiration rate and electrolyte leakage distinctly increased in cucumber with 9 days at 2℃chilling treatment, the hardness declined and the color tended to become yellow in cucumber after chilling treatment, DNA degraded and nucleus became deformed; when the chilling fruits were put at 20℃for 2 days, ethylene production rate, respiration rate and electrolyte leakage increased more evidently, firmness declined more quickly and the color became yellowish green; the degradation of DNA in the treatment fruits were remarkable; most of the chromatin condensed and the nucleus disappeared; the cells of chilling treatment fruits presented apparent characteristics of PCD. Ethylene production rate, respiration rate and electrolyte leakage in chilling treatment cucumber fruits with 1-MCP and EGTA pre-treated for 24 h increased slower than those in chilling treatment, the firmness declined also slowly and the color almost green in pre-treated fruits; DNA of the pre-treated fruits had a little bit degradation and the number of cell shrinkage and nucleus deformation distinctly reduced than that in chilling fruits; those indicated that 1-MCP and EGTA pre-treated could relieve the occurrence of PCD in chilling treatment cucumber fruits and the effects of 1-MCP pre-treatment was better than EGTA pre-treatment.
引文
蔡昆争,董桃杏,徐涛.2006.茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用.生态环境.15(2):397-404.
    蔡新忠,郑重.1997.水杨酸诱导水稻幼苗抗瘟性的生化机制.植物病理学报.27(3):231-236.
    曹家树,曹寿椿,易清明.1995.白菜及相邻类群基因组DNA的RAPD分析.园艺学报.22:47-52.
    崔克明.植2000.物细胞程序性死亡的机理及其与发育的关系.植物学通报,17(2):97-107.
    陈浩明,颜长辉,蒋晓芳.1999.热激诱导烟草悬浮细胞的凋亡.科学通报,4(2):196-200.陈培琴,郁松林,詹妍妮.2006.茉莉酸和高温锻炼对葡萄幼苗耐热性及其抗氧化酶的影响.10(3):238-243.
    杜朝昆,李忠光,龚明.2005.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系.植物生理学通讯.41:19-22.
    范志金,刘秀峰,刘凤丽等.2004.水杨酸在诱导系统获得抗性中的信号传导作用.农药,43(6):257-300.
    高慧,饶景萍.2007.冷害对贮藏油桃膜脂脂肪酸及相关酶活性的影响.西北植物学报.27(4):710-714.
    郭丽红,王定康,杨晓虹等.外2004.源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响.云南大学学报(自然科学版).26(4):50-52.
    韩晋,田世平.2006.外源茉莉酸甲酯对黄瓜采后冷害及生理生化的影响.园艺学报.33(2):289-293.
    何文锦,代容春,连玲等.2007.低温胁迫诱导灰木相思组培苗细胞凋亡.福建农林大学学报(自然科学版).36:38-42.
    侯建设,席玛芳,李中华等.2005.青椒果实冷害及诱导抗冷与氧化胁迫关系的研究.食品科学.244(26):244-248.
    胡彦江,张茹琴.2007.壳聚糖与水杨酸复配对小白菜霜霉病与盐胁迫复合逆境的诱抗作用.西北植物学报.27(2):262-266.
    寇晓虹,李玲,韩娜等.2006.热处理减轻黄瓜冷害作用机理的研究.食品工业科技.27(11):164-166.
    李昊文,李鹏,印莉萍.2006.离子胁迫诱导洋葱鳞茎内表皮细胞凋亡.生物技术通报.(1):69-72.
    李任强,江凤仪,方玲等.2002.Vc与氨基酸褐变反应的研究.食品工业科技.(11):32-34.
    林久生,王根轩.2001.活性氧与植物细胞编程性死亡.植物生理学报.27(3):221-225.
    刘艳,郝燕燕,刘艳艳等.2005.机械伤害和茉莉酸对豌豆幼苗膜脂过氧化的影响.2:388-393.
    刘或,赵秀兰,李欢庆.2007.茉莉酸甲酯抑制小麦根生长及体内抗氧化酶活性变化.35(4):988-989,1008
    茅林春,吴涛,方雪花.2007.南瓜果实采后对切割损伤的生理响应.农业工程学报.23(3):248-251.
    宁顺斌,宋运淳,王玲.2000.低温胁迫诱导玉米根尖细胞凋亡的形态和生化证据.植物生理学报.26(3):189-194.
    乔勇进,冯双庆,李丽萍等.2005.多胺处理对黄瓜贮藏冷害及品质的影响.吉林农业大学学报.27(1):55-58.
    彭丽桃,蒋跃明,杨书珍,潘思轶.2005.鲜切加工加速荸荠组织衰老与H2O2累积的关系.植物生理与分子生物学学报.31(5):527-532.
    沈文飙,徐朗莱,叶柄茂.1999.SA对水分胁迫下红小豆叶片过氧化物酶活性的影响.生物化学与生物生理物理进展.26(3):237-240.
    王宝山.植物生理学.2003.北京科学出版社.286-287.
    王国泽,茅林春,潘炘.2005.植物磷脂酶D对环境胁迫的响应和传导信号的功能.西北农林科技大学学报(自然科学版).33(2):147-153.
    王纬,陈辉,周世伟等.1996.水杨酸和氨基酸对烟草黄瓜花叶病毒病防治效果的研究.烟草科技.(1):43-45.
    汪晓峰,张宪政.1998.NO诱导植物抗性及调节氮代谢的信号传导机理.植物学通报.15:48-50.
    王瑜,吴丽芳,余增亮.2000.茉莉酸及其甲酷在植物诱导抗病性中的作用.生物学杂志.17(1):11-12.
    王艳颖,胡文忠,庞坤,朱蓓薇,范圣第.2007.机械损伤对富士苹果生理生化变化的影响.食品与发酵工业.33(07):58-62.
    王艳颖,胡文忠,庞坤.2007.机械损伤对富士苹果抗氧化酶活性的影响.食品与机械.23(5):26-30.
    韦弟,李杨瑞,邸南南等.2009.乙烯利提高香蕉幼苗抗寒性的生理效应.热带作物学报,(10):1447-1451.
    吴劲松,种康.2002.茉莉酸作用的分子生物学研究.植物学通报.19(2):164-170.
    席征,程新胜,扬丽文等.2006.机械损伤和茉莉酸甲酯对烟株蛋白酶抑制剂的诱导作用研究.中国烟草学报.12(6):33-37.
    夏铁骑.2005.自由基、活性氧、SOD及植物衰老机理研究的现状与进展.18(2):23-24.
    徐涛,周强,陈威等.2003.茉莉酸信号转导途径参与了水稻的虫害诱导防御过程.科学通报.48(13):1142-1146.
    余小平,贺军民,张键等.2002.水杨酸对番茄种子萌发及幼苗生长铬胁迫的缓解效应.西北植物学报.22(2):401-405.
    云兴福,李荣禧,马立国等.1997.水杨酸对苦瓜叶片白粉病抗性及抗氧化酶活性的影响.植物保护学报.24(2):159-163.
    张昭其,李雪萍,洪汉君,季作梁.2000.外源腐胺减轻芒果冷害的研究.福建农业学报.15(2):32-36,2000
    郑诚乐,王晓飞,潘东明等.2008.乙烯利处理对毛叶枣果实采后保护酶活性及膜透性的影响.01:36-39.
    周军,朱海珍,姜晓芳.1999.乙烯诱导胡萝卜原生质体凋亡.植物学报.41(7):747-750.
    周娴,郁志芳,杜传来等.2004.几种林果低温贮藏的冷害及其调控研究进展.南京林业大学学报(自然科学版).28(3):105-109.
    朱家红,彭世清.2006.茉莉酸及其信号传导研究进展.西北植物学报.26(10):2166-2172.
    Anderson JP, Badruzsaufari E, Schenk PM, et al.2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell.16: 3460-3479.
    Aneja M, Gianfagna T.2001. Induction and accumulation of caffeine in young, actively growing leaves of cocoa (Theobroma cacao L.) by wounding or infection with Crinipellis perniciosa. Physiological and Molecular Plant Pathology.5913-5916.
    Arimura G, Ozawa R,.Nishioka T, et al.2002. Herbivore-induced volatiles induce theemission of ethylene in neighboring lima bean plants. Plant Journal.29: 87-98.
    Asai T, Stone JM, Heard JE, et al.2000. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12:1823-1835.
    Austin-Brown SL. Chapman KD.2002. Inhibition of phospholipase D by N-acyle-thanolamines. Plant Physiology.129:1892-1898.
    Bargmann BO and Munnik T.2006. The role of phospholipase D in plant stress responses. Current Opinion in Plant Biology.9,515-522.
    Bargmann BO, Laxalt AM, Riet BT, et al.2006. LePLDI activation and relocalization in suspension-cultured tomato cells treated with xylanase. Plant Journal.45:358-368.
    Bargmann BO, Laxalt AM, Riet BT, et al.2008. Multiple PLDs required for high salinity and water-deficit tolerance in plants. Plant Cell Physiology. (ahead of print).
    Bargmann BO, Laxalt AM, Terriet B, et al.2009. Reassessing the role of phospholipa-se D in the Arabidopsis wounding response. Plant Cell and Environment.32: 837-850.
    Baudouin E, Meskiene I. Hirt H.1999. Unsaturated fatty acids inhibit MP2C, a protein phosphatase 2C involved in the wound-induced MAP kinase pathway regulation. The Plant Journal.20:343-348.
    Baydoun EAH, Fry SC.1985. The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone. Planta.165: 269-276.
    Beckers GJM, Spoel SH.2006. Fine-tuning plant defence signalling:salicylate versus jasmonate. Plant Biology.8:1-10.
    Bell E, Creelman RA, Mullet JE.1995. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proceedings of the National Academy Sciences of the USA.92:8675-8679.
    Bergey DR, Howe GA, Ryan CA. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proceedings of the National Academy Sciences of the USA.93:12053-12058.
    Bergey DR, Orozco-Cardenas M, De Moura DS, Ryan CA.1999. A wound-and systemin-inducible polygalacturonase in tomato leaves. Proceedings of the National Academy Sciences of the USA.96:1756-1760.
    Biesgen C Weiler EW.1999. Structure and regulation of OPR1 and OPR2, two Benhamou N, Chamberland H, Pauze FJ.1990. Implication of pectic components in cell surface interactions between tomato root and Fusarium oxysporum f. sp. radicis-lycopersici. Plant Physiology.92:995-1003.
    BOgre L, Ligterink W, Meskiene I, Barker PJ, et al.1997. Wounding induces the rapid and transient activation of a specifc MAP kinase pathway. Plant Cell.9: 75-83.
    Borsani O, Valpuesta V, Botella MA.2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology.126,1024-1030.
    Bostock RM.2005. Signal crosstalk and induced resistance:straddling the line between cost and benefit. Annual Review of Phytopatholoy.43,545-580.
    Boter M, Ruizfrivero O, Abdeen A, Prat S.2004. Conserved MYC transcription factors play a key role in jasmonae signaling both in tomato and Arabidopsis. Genes.18:1577-1591.
    Bowles DJ.1990. Defense-related proteins in higher plants. Annual Review of Biochemistry.59:873-907.
    Bowler C, Montagu MV, Inze D.1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Molecular Biology.43:83-116.
    Cadenas E.1989. Biochemistry of oxygen toxicity. Annual Review of Biochemistry. 58:79-110.
    Campos-Vargas R, Nonogaki H, Suslow T, et al.2005. Heat shock treatments delay the increase in wound-induced phenylalanine ammoniaammonialyase activity by altering its expression, not its induction in Romaine lettuce (Lacluca saliva) tissue. Physiological of Plant.132:82-91.
    Chen TC, Chou CM, Kao CH.1994. Methyl jasmonate induces the accumulation of putrescine but not proline in detached rice leaves. Journal of Plant Physiology. 143:119-124.
    Cheong YH, Chang HS, Gupta R, et al.2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress,and hormonal responses in Arabidopsis. Plant Physiology.129:661-677.
    Chien YW.1993. A pproaches to reduce Chilling injury of fruits and vegetables. Horticuture Review.15:63-95.
    Constabel CP, Yip L, Ryan CA.1998. Pro-systemin from potato, black nightshade and bell pepper:primary structure and biological activity of predicted systemin polypeptides. Plant Molecular Biology.36:55-62.
    Corpas FJ, Barroso JB, DclRio LA.2001. Peroxisomes as a source of reactive oxygen species and nitric oxide signalmolecules in plant cells. Trend of Plant Science.6: 145-150.
    Cote F. Hahn MG.1994. Oligosaccharins:structures and signal transduction. Plant Molecular Biology.26:1375-1411.
    Creelman RA, Mullet JE.1997. Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology.48:355-381.
    Das S, Hussain A, Bock C, Keller WA, et al.2005. Cloning of Brassica napus phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthasel(BnPtdIns SI)-comparative analysis of the effect of abiotic stresses on the expression of phosphatidylinositol signal transduction-related genes in B. napus. Planta,220,777-784.
    De Vos M, Van Osten VR, Van Poecke RM, et al.2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions,18,923-937.
    Dewald DB, Torabinejad J, Jones CA, Shope JC, et al.2001. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiology,126, 759-769.
    den Hartog M, Musgrave A, Munnik T.2001. Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation:a role for phospholipase C and D in root hair deformation. Plant Journal.25:55-65.
    Delledonne M, Xia Y, Dixon RA, et al.1998. Nitric oxide functions as a signal in plant disease resistance. Nature.394:585-588.
    De Vos M, Van ZaanenW, Koornneef A, et al.2006. Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiology.142:352-363.
    Doares SH, Narvaez-Vasquez J, Conconi A, et al.1995a. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiology.108:1741-1746.
    Doares SH, Syrovets T, Weiler EW, et al.1995b. Oligogalacturonides and chitosan activate plant defensive gene through the octadecanoid pathway. Proceedings of the National Academy of Sciences of the USA.92:4095-4098.
    Doke N, Miura Y, Chai HB, et al.1991. Involvement of active oxygen in induction of plant defense response against infection and injury. In:Pell E. Steffen K. eds. Active oxygen oxidative stress and plant metabolism. American Society of Plant Physiologists.84-96.
    Dombrecht B, Xue GP, Sprague SJ, et al.2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell.19:2225-2245.
    Drew MC, He C, Morgan PW.2000. Programmed cell death and aerenchyma formation in roots. Trends in Plant Science.5(3):123-127.
    Durner J, Shah J, Klessig DF.1997. Salicylic acid and disease resistance in plants. Trends in Plant Science.2:266-274.
    Durrant WE and DONG X.2004. Systemic acquired resistance. Annual Review of Phytopathology,42.185-209.
    Ellis C, Turner JG.2001. The Arabidopsis mutant cevl has constitutively active jasmonate and ethylene signal pat hways and enhanced resistance to pathogens. Plant Cell.,13:1025-1033.
    Eulgem T.2006. Dissecting the WRKY web of plant defense regulators. PLoS Pathogens,2,1028-1030.
    Fan L, ZHENG S, WANG X.1997. Antisense suppression of phospholipase D alpha retards abscisic acid-and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell,9,2183-2196.
    Fan L, Zheng S, Cui D, et al.1999. Subcellular distribution and tissue expression of Phospholipase D1 and 2 in Arabidopsis. Plant Physiology.119:1371-1378.
    Farmer EE, Weber H, Vollenweider S.1998. Fatty acid signaling in Arabidopsis. Planta.206:167-174.
    Felton GW, Korth KL, Bi JL. et al.1999. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology. 9:317-320.
    Foyer CH, Noctor G.2005. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell.17: 1866-1875.
    Glazebrook J.2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology.43:205-227.
    Glazebrook J, ChenW, Estes B, et al.2003. Topology of the network integrating salicylatc and jasmonate signal transduction derived from global expression phenotyping. Plant Journal.34:217-228.
    Grimes HD, Koetje DS, Fanceschi VR.1992. Expression activity and cellular accumu -lation of methyl jasmonate-responsive Lipoxygenase in Soybean seedlings. Plant Physiology.100:433-443.
    Gobel C, Feussner I, Schmidt A, et al.2001. Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells. Journal of Biological Chemistry.276:6267-6273.
    Gupta V, Willits MG, Glazebrook J.2000. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses:Evidence for inhibition of jasmonic acid signaling by SA. Molecular and Plant-Microbe Interact.13:503-511.
    Hallouin M, Ghelis T, Brault D, et al.2002. Plasma lemma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cells. Plant Physiology.130:265-272.
    Harms K, Atzorn R, Brash A, et al.1995. Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (Ja) levels in transgenic potato plants but not to a corresponding activation of Ja-responding genes. Plant Cell 7:1645-1654.
    Hause B, Stenzel I, Miersch O, et al.2000. Tissue-specific oxylipin signature of tomato flowers:Allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant Journal.24,113-126.
    Heitz T, Bergey DR, Ryan CA.1997. A gene encoding a chloroplast-targeted lipoxyg-enase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiology.114:1085-1093.
    Heo WD, Lee SH, Kim MC, et al.1999. Involvement of specific calmodulin isoforms in salicylic acid independent activation of plant disease resistance responses. Proceedings of National Academy Sciences of the USA.96:766-771.
    Herde O, Fuss H, Pena-Cotes H, et al.1995. Proteinase inhibitor Ⅱ gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiology.36:737-742.
    Hong Y, Pan X, Welti R, et al.2008. Phospholipase a3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell.20:803-816.
    Hong Y, Devaiah DP, Thamasandra BN, et al.2009. Phospholipase D and phosphatidic acid enhance Arabidopsis growth. Plant Journal, (ahead of print).
    Isayenkov S, Mrosk C, Stenzel l, et al. Suppression of allene oxide cyclase in hairy roots of medicago truncatula reduces jasmonate levels and the degree of mycorrhization with glomus intraradices. Plant Physiology.2005.139: 1401-1410.
    Ishiguro S, Kawai-Oda A, Ueda K, et al.2001. The DEFECTIVE IN ANTHER DEHISCENCEI gene encodes a novel phospholipase Al catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191-2209.
    Jacinto T, McGurl B, Ryan CA.1999. Wound-regulation and tissue specificity of the tomato prosystemin promoter in transgenic tobacco plants. Plant Science.140: 155-159.
    Jacob T, Ritchie S, Assmann SM, et al.1999. Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proceedings of National Academy Sciences of the USA.96:12192-12197.
    Karakurt Y, Donald JH.2007. Characterization of wound-regulated cDNAs and their expression in fresh-cut and intact papaya fruit during low-temperature storage. Postharvest Biology and Technology.44:179-183.
    Katagiri T, Takahashi S, Shinozaki K.2001. Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant Journal,26,595-605.
    Kawasaki T, Henmi K, Ono E, et al.1999. The small CTP binding protein Rac is a regulator of cell death in Plants. Proceedings of National Academy Sciences of the US A.96:10922-10926.
    Kim YJ, Kim JE, Lee JH, et al.2004. The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiuta L.). FEBS Letters,556,127-136.
    Klessing DF, Malamy.1994. The salicylic acid Signal in plants. Plant Molecular Biology.26:1439-1458.
    Knight MR, Read ND, Campbell AK, et al.1993. Imaging calcium dynamics in living plants using semisynthetic recombinant aequorins. Journal of Cell Biology. 121:83-90.
    Koukalova B, Kovarik A, Fajkus J, et al.1997. Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Letters. 414:289-292.
    Krinke O, Flemr M, Vergnolle C, et al.2009. Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiology,150,424-436.
    Kubigsteltig I, Laudert D, Weiler EW.1999. Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta.208:463-471.
    Lam E, Pontier D, Pozo OD.1999. Die and let live programmed cell death in plants. Current Opinion in Plant Biology.2:502-507.
    Larkindale J, Hall JD, Knight MR, et al.2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology,138,882-897.
    Laudert D, Schaller F, Weiler EW.2000. Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta.211: 163-165.
    Laudert D and Weiler EW.1998. Allene oxide synthase:A major control point in Arabidopsis thaliana octadecanoid signalling. Plant Journal.15:675-684.
    Laxalt A, ter Riet B, Verdonk JC, et al.2001. Characterization of five tomato phospholipase D cDNAs:rapid and specific expression of LePLDβ1 on elicitation with xylanase. Plant Journal.26:237-247.
    Lee S, Hirt H, Lee Y.2001. Phosphatidic acid activates a wound-activated MAPK in Glycinemax. Plant Journal.26:479-486.
    Lee S, Park JB, Kim JH, et al.2001. Actin directly interacts with phospholipase D, inhibiting its activity. Journal of Biological Chemistry.276:28252-28260.
    Leon J, Rojo E, Titarenko E, et al.1998. JA-dependent and-independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana. Molecular and General Genetics.258:412-419.
    Leon J, Rojo E, Sanchez-Serrano JJ.2001. Wound signalling in plants. Journal of Experimental Botany.5:21-29.
    Li J, Brader G, Palva ET.2004. The WRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell.16:319-331.
    Li G, Xue HW.2007. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLD1 in seed germination. Cell Research.17:881-894.
    Li G, Xue HW.2007. Arabidopsis PLD2 regulates vesicle trafficking and is required for auxin response. Plant Cell.19:281-295.
    Li L, Li C, Lee Gl, et al.2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proceedings of National Academy Sciences, USA.99:6416-6421.
    Li M, Qin C, Welti R. et al.2006. Double knockouts of phospholipasesDI and 2 in Arabidopsis affect root elongation during phosphate-limited growth but donot affect root hair patterning. Plant Physiology.140:761-770.
    Li M, Welti R Wang X.2006. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D zelal and D zela2 in phosphatidylcholine hydrolysis and digalactosyldiacylg-lycerol accumulation in phosphorus-starved plants. Plant Physiology,142, 750-761.
    Li W, Li M, Zhang W, el al.2004. The plasma membrane-bound phospholipase D enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnology.22: 427-433.
    Li M. Hong Y Wang X.2009. Phospholipase D-and phosphatidic acid-mediated signaling in plants. Biochimica et Biophysica Acta,1791,927-935.
    Liu HT, Gao F, Cui SJ, et al.2006. Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Reseach,16,394-400.
    Livak KJ and Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods,25,402-408.
    Lorenzo O, Chico JM, Sanchez-Serrano JJ, et al.2004.JASMONATE INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell.16:1938-1950.
    Lyons JM.1973. Chilling injury in plants. Ann Review Plant Physiology.20: 423-446.
    Mane S, Vasquez-Robinet C, Sioson A, et al.2007. Early PLD-mediated events in response to progressive drought stress in Arabidopsis:a transcriptome analysis. Journal of Experimental Botany.58:241-252.
    Mao LC, Pang HQ, Wang GZ, et al.2007. Phospholipase D and lipoxygenase of cucumber fruit in response to chilling stress. Postharvest Biology and Technology.44:42-47b.
    Mao LC, Wang GZ, Zhu CG, et al.2007. Involvement of phospholipase D and lipoxygenase in response to chilling stress in postharvest cucumber fruits. Plant Science.172:400-405.a
    Malone M, Alarcon JJ.1995. Only xylem-borne factors can account for systemic wound signalling in the tomato plant. Planta.196:740-746.
    Mateo A, Funck D, Muhlenbock P, Kular B, et al.2006. Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Journal of Experimental Botany,57,1795-1807.
    Mcconn M, Creelman RA, Bell E, et al.1997. Jasmonate is essential for insect defense in Arabidopsis. Proceedings of the National Academy of Sciences of the USA,94,5473-5477.
    Meijer HJ and Munnik T.2003. Phospholipid-based signaling in plants. Annual Review of Plant Biology,54,265-306.
    Mcindl T, Boller T, Felix G.1998. The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. The Plant Cell.10:1561-1570.
    Metraux JP. Signer H, Ryals J, et al.1990. Increase in sal icyl ic acid at the onset of systemic acquired resistance in cucumber. Science.250:1004-1006.
    Mishra G, Zhang W, Deng F, et al.2006. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science.312:264-266.
    Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sciences.7:405-410.
    Morgan PW, Malcolm C.1997. Ethylene and plant responses to stress. Physiologia Plantarum.100:620-630.
    Moyer C, Johannes E.1996. Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusiccocin-induced extracellar acidification of mesophyll tissus. Plant Cell and Environment.19:464-470.
    Mur LAJ, Kenton P, Atzorn R, et al.2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antago-nism, and oxidative stress leading to cell death. Plant Physiology.140:249-262.
    Mussig C. Biesgen C, Lisso J, et al.2000. A novel stress-inducible 12-oxophytodi-enoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis. Journal of Plant Physiology. 157:143-152.
    Neill S, Desikan R, Hancock J.2002. Hydrogen peroxide signalling. Current Opinion in Plant Biology 5:388-395.
    O'Donnell PJ, Schmelz E, Block A, et al.2003. Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiology,133, 1181-1189.
    Ohashi Y, Oka A. Rodrigues-Pousada R, el al.2003. Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science.300:1427-1430.
    Olszak B, Malinovsky FG, Brodersen P, el al.2006. A putative flavin-containing mono-oxygenase as a marker for certain defense and cell death pathways. Plant Science.170:614-623.
    Op den Camp RG, Przybyla D, Ochsenbein C, et al.2003. Rapid induction of distinct stress responses after the release of sing let oxygen in Arabidopsis. Plant Cell. 15:2320-2332.
    Orozco-Cardenas ML, Ryan CA.1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences.253:6553-6557.
    Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA.2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179-191.
    Pearce G, Strydom D, Johnson S, et al.1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science.253:895-898.
    Pedroso MC, Magalhaes JR, Durzan D.2000. Nitric oxide induces cell death in Taxus cells. Plant Science.157:173-180.
    Pedroso MC, Magalhaes JR, Durzan D.2000. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. Journal of Experimental Botany.51:11027-11036.
    Pennel RI, Lamb C.1997. Programmed cell death in plants. Plant Cell.9:1157-1168.
    Petersen M, Brodersen P, Naested H, et al.2000. Arabidopsis map kinase 4 negativel regulates systemic acquired resistance. Cell.103:1111-1120.
    Pieterse CMJ, Ton J, Van Loon LC.2001. Cross-talk between plant defence signallin-g pathways:boost or burden? Ag Biotech Net 3:ABN 068.
    Profotova B, Burketova L, Novotna Z, et al.2006. Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiolgy and Biochemitry,44,143-151.
    Qin C and Wang X.2002. The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLD zeta 1 with distinct regulatory domains. Plant Physiology,128,1057-1068.
    Qin C, Li M, Qin W, et al.2006. Expression and characterization of Arabidopsis phospholipaseD2, Biochimistry and Biophysiology Acta.1761:1450-1458.
    Qin C, Wang X.2002. The Arabidopsis phospholipase D family:Characterization of a calcium-independent and phosphatidylcholine-selective PLD1 with distinct regulatory domains. Plant Physiology.128:1057-1068.
    Rakwal R, Agrawal GK.2003. Wound signaling-coordination of the octadecanoid and MAPK. pathway. Plant Physiological Biochemistry.41:855-861.
    Raskin I.1992. Role of salicylic acid in Plant. Annual Review of Physiology and Molecular Biology.43:439-463.
    Rate DN, Cuenca JV, Bowman GR, et al.1999. Again of function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses and cell growth. Plant Cell.11: 191-206.
    Ray SD, Kamendulis LM, Gurule MW, et al.1993. Ca2+ Antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophem. FASEB Jouynal. 7 (5):453-463.
    Reymond P, Farmer EE.1998. Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology.1:404-411.
    Reymond P. Kunz B, Paul-Pletzer K, et al.1996. Cloning of a cDNA encoding a plama membrane associated, uronide binding phosphoprolein with physical properties similar to viral movement proteins. The Plant Cell.2265-2276.
    Reymond P. Weber H, Damond M, et al.2000. Differential gene expressionin response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 12:707-720.
    Rojo E, Solano R. Sanchez-Serrano JJ.2003. Interactions between signaling compounds involved in plant defense. Journal of Plant Growth Regulation.22: 82-98.
    Rojo E, Titarenko E, leon J, et al.1998. Reversible protein phosphorylation regulates JA-dependent and-independent wound signal transduction pathways in Arabidopsis thaliana. The Plant Journal.13:153-165.
    Romanov GA, Kieber JJ, Schmulling T.2002. A rapid cytokine in response as say in Arabidopsis indicates a role for phospholipase D in cytokinin signaling. FEBS letters.515:39-43.
    Ryan, CA.1990. Protease inhibitors in plants:genes for improving defenses against insects and pathogens. Annual Review of Phytopathology.28:425-449.
    Ryan CA.2000. The systemin siganlling pathway:differential activation of plant defensive genes. Biochimica et Biophysica Acta.1477:112-121.
    Ryan CA and Pearce G.1998. Systemin:A polypeptide signal for plant defensive genes. Annual Review of Cell Developmental Biology.14:1-17.
    Ryan CA, Pearce G, Scheer J, et al.2002. Polypeptide hormones. Plant Cell.14: S251-264.
    Ryu SB and Wang X.1996. Activation of phospholipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in castor bean leaves. Biochimica et Biophysica Acta.1303,243-250.
    Sanders PM, Lee PY, Biesgen C, et al.2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell.12:1041-1061.
    Sang Y, Cui D, Wang X.2001. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physilogy,126,1449-1458.
    Sasaki Y.2001. Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray:Self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Research.8:153-161.
    Schaller A, Oecking C.1999. Modulation of the plama membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. The Plant Cell.11:263-272.
    Schaller F.2001. Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. Journal of Experimental Botany.52:11-23.
    Schaller F, Biesgen C, Mussig C, el al.2000.12-oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta.210: 979-984.
    Scheer JM, Ryan CA.1999. A 160 KD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. The Plant Cell.11: 1525-1536.
    Schenk PM, Kazan K, Wilson l, et al.2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of National Academy Sciences of the USA.97:11655-11660.
    Schilmiller AL and Howe GA.2005. Systemic signaling in the wound response. Current Opinion in Plant Biology.8,369-377.
    Scott IM, Clarke SM, Wood JE, et al.2004. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology.135,1040-1049.
    Seo HS, Okamoto M. Seto H, et al.1995. Tobacco MAP kinase:A possible mediator in wound signal transduction pathways. Science.270:1988-1992.
    Seo HS, Sano H, Ohashi Y.1999. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. The Plant Cell.11:289-298.
    Seo HS, Song JT, Cheong JJ, et al.2001. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy Sciences of the USA.98:4788-4793.
    Stankovic B, Davies E.1996. Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Letters.3()0:275-279.
    Stenzel I, Hause B, Miersch O, et al.2003. Jasmonate biosynthesis and the allene oxide cyclase family ofArabidopsis thaliana.Plant Molecular Biology.51: 895-911.
    Stelmach BA. Muller A. Hennig P. et al.2001. A novel class of oxylipins, snl-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. Journal of Biological Chemistry.276:12832-12838.
    Stintzi A and Browse J.2000. The Arabidopsis male-sterile mutant. opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy Sciences of the USA.97:10625-10630.
    Stintzi A, Weber H, Reymond P, et al.2001. Plant defense in the absence of jasmonie acid:The role of cyclopentenones. Proc Natl Acad Sci USA.98:12837-12842.
    Stout MJ, Thaler JS, Thomma BPHJ.2006. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annual Review of Entomol 51:663-689.
    Taiz L, Zeiger E.2002. Plant Physiology (3rd Edition). Sinauer Associates Inc Publishers.532-538.
    Testerink C, Larsen PB, Van Der Does D, et al.2007. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTRL Journal of Experimental Botany,58, 3905-3914.
    Thain JF, Gubb IR, Wildon DC.1995. Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant, Cell and Environment.18:211-214.
    Thibaud-Nissen F, Wu H, Richmond T, et al.2006. Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant Journal, 47,152-162.
    Thompson GA, Goggin FL.2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany.57: 755-66.
    Van Wees SCM, De Swart EAM, Van Pelt JA, et al.2000. Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy Sciences of the USA.97:8711-8716.
    Wakabayashi T, Karbowski M.2001. Structural changes of mitochondria related to apoptosis. Biological Signals and Receptors.10:26-56.
    Wang C, Zien CA, Afitlhile M, et al.2000. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in arabidopsis. Plant Cell,12, 2237-2246.
    Wang X.2001. Plant phospholipases. Annual Review of Plant Physiology and Plant Molecular Biology.52:211-231.
    Wang X.2004. Lipid signaling. Current Opinion in Plant Biology,7,329-336.
    Watanabe T, Salai S.1998. Effects of active oxygen species and methyl jasmonate on expression of the gene for a wound-indueible 1-aminocyclopropane-1-carboxy-late-synthase in winter squash. Planta.206:570-576.
    Welti R, Li W, Li M, et al.2002. Profiling membrane lipids in plant stress responses, closely related genes encoding 12-oxo-phytodienoic acid-10,11-reductases from Arabidopsis thaliana. Planta.208:155-165.
    Welti R, Li W, Li M, et al.2002. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. Journal of Biological Chemistry,277,31994-32002.
    Wildon DC, Thain JF, Minchin PEH, et al.1992. Electrical signal and systemic proteinase inhibitor induction in the wounded plant. Nature.360:62-65.
    Yamaryo Y, Dubots E, Albrieux C, et al.2008. Phosphate availability affects the tonoplast localization of PLDzeta2, an Arabidopsis thaliana phospholipase D. FEBS Letters.582:685-690.
    Young SA, Wang X, Leach JE.1996.Changes in the plasma membrane distribution of rice phospholipase D during resistant interaction with Xanthomonas oryzae pv. oryzae. Plant Cell.8:1079-1090.
    Zemel GD. Low PH.1990. Inactivation of polyphendixidase in apple juice. Journal of Food Sciences.55(2):502-505.
    Ziegler J, Stenzel I. Hause B, et al.2000. Molecular cloning of allene oxide cyclase: The enzyme establishing the stereochemistry of octadecanoids and jasmonates. Journal of Biological Chemistry.275:19132-19138.
    Zhao J, Wang X.2004. Arabidopsis phospholipase D1 interacts with the hetero-trimeric G-protein alpha-subunil through a motif analogous to the DRY motif in G-protein-coupled receptors. Journal of Biological Chemistry.279:1794-1800.
    Zhao YY, Qian CL, Chen JC, et al.2010. Responses of phospholipase D and lipoxygenase to mechanical wounding in postharvest cucumber fruits. Journal of Zhejiang University Science B (Biomedecine & Biotechnology) 11:443-450
    Zhang Y, Zheng GH. Liu P, et al.2010. Morphological and physiological responses of root tip cells to Fe2+ toxicity in rice. Acta Physiologiae Plantarum. 11:1178-1180.
    Zhang W, Qin C, Zhao J, et al.2004. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABIl phosphatase 2C and regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the USA,101,9508-9513.
    Zhang W, Wang C, Qin C, et al.2003. The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell,15,2285-2295.
    Zhang W, Qin C, Zhao J, et al.2004. Phospholipase D1-derived phosphatidic acid interacts with ABI1 phosphatase2C and regulates abscisic acid signaling, Proceedings of the National Academy of Sciences of the USA.101:9508-9513.
    Zhang W, Yu L, Zhang Y, et al.2005. Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochimica et Biophysica Acta,1736,1-9.
    Zuppini A, Bugno V, Baldan B.2006. Monitoring programmed cell death triggered by mild heat shock in soybean-cultured cells. Functional Plant Biology.33: 617-627.