子宫内膜相关芯片的通路富集分析及其在猪繁殖机理研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
繁殖性能对于养猪业而言,直接关乎生产成本,进而影响经济效益,意义重大。很多因素都会影响到猪繁殖性能。其中子宫内膜作为雌性生殖器官的一部分,是维持生理特征和生育功能的重要器官。子宫内膜具有高度增殖活性,然而它又极易受流产、感染、内分泌等多种因素的影响,导致子宫内膜的再生能力下降,容受性降低,严重影响繁殖力。基因芯片是后基因组学时代基因功能分析的重要技术之一,已广泛地应用于人类疾病和模式生物复杂性状遗传机制的研究。由于基因芯片的成本高,微阵列的制备、样品的准备与标记比较繁琐,分析系统价格昂贵,信号的假阳性率高等,使得该技术的普及与推广存在一定的难度。而且基因芯片的分析及注释需要较完备的基因组序列信息,使之在猪等家畜中的应用受到极大的限制,许多研究者只能应用低密度微阵列或跨物种基因芯片进行相关研究。在猪等农业动物的研究方面,虽然应用基因芯片已检测出许多与重要经济性状、疾病等相关的基因,但就这些基因在猪的生长发育过程和疾病发生发展中所担任的角色、相互作用机制仍未完全明确。因此对猪的遗传育种,可以从比较基因组学的角度出发,利用人及小鼠等模式生物的全基因组信息,对其进行服务。对子宫内膜相关疾病和异常的全基因组研究,在人及牛等其它物种上,积累了不少数据,而且注释信息完整。因此,我们可以通过对已有的人、牛相关芯片数据进行分析整合,再通过比较基因组学的方法进行同源基因比对,以期得到影响猪子宫内膜的关键通路和候选基因。为进一步研究影响猪繁殖性能的分子遗传机制和分子标记辅助选择育种奠定基础。
     本论文的研究工作主要包括以下内容:
     1.子宫内膜异位症芯片数据的通路富集分析及整合
     首先将从公共数据库中收集到的相关数据,采用统一的预处理方法进行处理,然后应用基因集富集分析方法对子宫内膜异位症相关的微阵列数据进行分析,最后对每套的结果进行整合分析。结果表明,在卵巢型的3套数据集中,发现17个共同上调的通路和23个共同下调的通路。在腹膜型的2套数据中,有26个上调通路是一致的,有1个下调通路是一致的。比较这两种类型的分析结果,发现有13个相同的上调通路和1个相同的下调通路。这些通路主要与免疫疾病和免疫系统相关。对子宫周期的数据分析结果表明,分泌早期有12个显著上调通路和18个显著下调通路,分泌中期没有显著上调通路,只有29个显著下调通路。对3个时期得到的通路进行比较,发现彼此之间交集很少。对以子宫内膜内皮细胞为样本的数据进行基因集富集分析,得到46个显著上调通路和1个显著下调通路。将其与以上结果比较,得到2个共同通路。通过GSEA方法得到的上述结果更容易解释也更可靠,提高了微阵列实验结果的可重复性,为后续实验验证指出了方向,并为在分子水平上研究猪繁殖机理提供了参考通路和基因。
     2.能量负平衡对子宫内膜相关通路及基因的影响
     研究日粮能量水平对母猪子宫内膜的影响,对于合理饲养育成期母猪以及提高繁殖率和经济效益,都具有重要的意义。本研究利用GEO数据库中奶牛能量负平衡的微阵列表达数据,采用基因集富集分析的方法,筛选能量负平衡时,子宫内膜显著差异表达的相关通路和基因,。分析得到23个显著上调通路和26个显著下调通路。上调通路中,大部分是免疫系统和免疫性疾病相关通路。其中,Toll样受体信号通路、T细胞受体信号通路等7个通路是免疫系统相关通路,而原发性免疫缺陷、自身免疫性甲状腺疾病等5个通路与免疫性疾病相关。显著下调的通路中,主要是代谢相关通路、氧化磷酸化通路和细胞周期通路等。免疫性疾病相关通路,神经退行性疾病相关通路和生物合成相关通路最多。分别将这三类通路包括的基因进行比较,得到了相关的三个核心基因列表。与免疫性疾病相关的核心基因是BOLA,BOLA-DMA,BOLA-DMB,BOLA-DQA1,BOLA-DQA2,BOLA-DQA5, BOLA-DQB,BOLA-DRA,BOLA-DRB3,CD80,CD86,FAS,GZMB,LOC512672,LOC525727和PRF1;与神经退行性疾病相关的基因列表为ATP5F1,ATP5G1,ATP5G3,COX7A2,CYC1,NDUFA5,NDUFB2,NDUFB5,NDUFB7,NDUFC1,NDUFS6,NDUFS8,NDUFV1和UQCRB;与生物合成相关通路相关的核心基因列表为ALDOC,CS,DLD,IDH1,MDH2,PDHA1,PFKM,和PKM2。
     3.影响猪子宫内膜的候选通路及基因筛选
     通过分析疾病和能量对子宫内膜的影响,我们发现了很多共同的通路和基因。这些共同的通路可以作为研究猪子宫内膜的候选通路,而共同的基因,可以映射到猪的染色体上,作为影响猪子宫内膜的重要基因。我们将人卵巢型子宫内膜异位症芯片数据和能量负平衡数据的分析结果相比,发现相同的上调通路有12个和下调通路有10个。这22个通路可作为影响猪子宫内膜的候选通路,其中包含的同源基因是我们重点关注的基因。此外,PPAR信号通路仅在一套数据中不显著,也作为候选通路纳入结果中,共得到23个候选通路。对每个通路包括的基因进行提取,合并,去重复,共得到212个人Entrez基因。将这212个人的Entrez基因通过BioMart数据库,在猪染色体上寻找对应的同源基因,并对应到相应的染色体位置上。有比对结果的Entrez基因有168个,其中122个人Entrez基因对应140个猪Unigene同源基因,其它Entrez基因没有找到对应的猪unigene同源基因,但得到了相应同源基因在猪染色体上对应的起始位置。
     4.猪胚胎和子宫内膜发育相关内参基因的筛选
     胚胎发育到胎膜与子宫内膜附着是一个渐进的过程。人们对这一过程进行了很多研究,实时定量PCR因其快速可靠的特点已经成为分析基因转录水平的常用手段,通常使用看家基因进行相对定量。然而很多看家基因随着环境的改变其表达也会发生变化。而微阵列芯片数据包含了整个基因组的信息,可以供我们筛选在特定组织中稳定表达的基因,将其作为内参基因进行相对定量。我们应用元分析方法整合多套关于猪胚胎和子宫内膜发育的芯片数据,初步筛选出表达稳定的前100个候选内参基因,大部分为编码核糖体蛋白的基因。
     综上所述,本文通过对人和牛相关芯片数据的分析,发现在疾病和能量差异情况下,在子宫内膜显著差异表达的相关通路和基因,并采用比较基因组学的方法,将所发现的相同通路和基因,映射到猪染色体上,并对应得到猪的同源基因。这些通路和基因可作为影响猪子宫内膜的候选通路和基因,不仅可以对现有繁殖相关基因有更深入的了解,还有助于发现新的与繁殖性状相关的重要候选基因,为母猪繁殖性状标记辅助选择(MAS)和标记辅助导入(MAI)提供新的依据。最后,利用GEO数据库中与猪胚胎发育和子宫内膜相关的芯片,采用元分析方法,为RT-PCR的的准确使用提供候选内参基因。
Reproductive performance is of great significance for the pig industry which directly relates to production costs and affects economic benefits. Many factors will affect the reproductive performance of pigs. Endometrium as part of female reproductive organ is vital to maintain the physical characteristics and reproductive function. With a high degree of proliferation activity, endometrium affected by miscarriage, infection, endocrine and other factors, led to a reduced ability to endometrial regeneration, suffer decreased and seriously affecting fertility. DNA microarray is one of the most important technologies to analysis gene function in post-genomics era, already widely used in genetic mechanism of human diseases and complex traits of model organism. Being lack of sequence information, DNA microarrays was extremely limited applied in pigs and other livestock, and many researchers could only use low-density microarray or cross-species DNA microarray to conduct related research. With the high cost, platform preparation, sample and markers preparation is relatively more complicated, also the expensive analysis systems and the high rate of false positive rate et al. It is some different to popularize and promote this the technology. In swine and other agricultural animals, although the application of DNA microarrays have been detected in many of the important economic traits, disease-related genes, but the function and interaction mechanism of these genes expressed in the growth development and disease of pigs are not yet completely clear. There is still a lot of work to do to screen specificity of genes, and applied to genetics and breeding.
     There are some endometrium related micraorray data in human and other species at genome wide level which have complete annotation informations. Here, we integrated there data sets and then blast to pig genome by comparative genomics method. Finally, we get some critical pathways and genes may affect pig endometrium which may lay a foundation for the further research of molecular genetic mechanisms of pig reprocuctive performance and molecular marker assisted selection.
     In this paper, the research works include the following:
     1. Pathway enrichment analysis and integrated in human endometriosis microarray data sets
     First, related microarray data sets were collected form the public database, preprocessed with the standardised method, and then applied gene set enrichment analysis to the data, finally, integrated the results. We find 17 up-regulated and 23 down-regulated pathways common in ovarian endometriosis data sets, 26 up-regulated and one down-regulated pathway common in peritoneal endometriosis data sets. Among them, 13 up-regulated and 1 down-regulated were found consistent between ovarian and peritoneal endometriosis. The main canonical pathways identified are related to immunological and inflammatory disease. Early secretory phase has the most over-represented pathways in the three uterine cycle phases. There are very low overlapping significant pathways between the dataset from human endometrial endothelial cells and the datasets from ovarian endometriosis which used whole tissues. The results got by GSEA are more easily explained and more reliable, we have increased the concordance in identifing many biological mechanisms involved in endometriosis. The identified gene pathways will shed light on the understanding of endometriosis and promote the development of novel therapies. Also, the results could provide the reference pathways and genes for the research of mechanism of porcine reproductive.
     2. Pathways and genes idendified in cow endometrium with negative energy balance
     To study the impaction of dietary energy levels to sow endometrium is very important to improve the reproduction rate and economic benefits for sows breeding. We examined the specific pathways deregulated in different status of NEB. Data were downloaded form the GEO and preprocessed by RMA. GSEA was applied to the datasets. 23 up-regulated pathways and 26 down-regulated pathways were found by GSEA. Among the up-regulation list, the main canonical pathways affected related to immune system and immune disorders. Complement and coagulation cascades, Toll-like receptor signaling pathway, T cell receptor signaling pathway, B cell receptor signaling pathway, Hematopoietic cell lineage, Natural killer cell mediated cytotoxicity and Fc epsilon RI signaling pathway belong to the immune system. Primary immunodeficiency, Autoimmune thyroid disease, Allograft rejection, Graft-versus-host disease and Systemic lupus erythematosus are immune disorders. The most down-regulated pathways are metabolism, biosynthesis, Neurological disease-related pathway, Oxidative phosphorylation pathway and cell cycle.
     The immune disorders related pathways have a common core list of genes BOLA, BOLA-DMA, BOLA-DMB, BOLA-DQA1, BOLA-DQA2, BOLA-DQA5, BOLA-DQB, BOLA-DRA, BoLA-DRB3, CD80, CD86, FAS, GZMB, LOC512672 , LOC525727and PRF1. The Neurodegenerative Diseases related pathways have a common core list of genes ATP5F1, ATP5G1, ATP5G3, COX7A2, CYC1, NDUFA5, NDUFB2, NDUFB5, NDUFB7, NDUFC1, NDUFS6, NDUFS8, NDUFV1 and UQCRB. The common genes of biosynthesis related pathways are ALDOC, CS, DLD, IDH1, MDH2, PDHA1, PFKM, and PKM2.
     3. Critical pathways and genes in pig endometrium
     The first two parts have analysised the affecting of disease and NEB to the endometrium respectively. There are many common pathways and genes. The common pathways could be candidate pathways for pig endometrium research, and the common genes could be important genes regulate pig endotemrium. We integrated the results of the two parts by comparative genomics and supply reference for the further researches.
     In ovarian endometriosis, there are 17 common up-regulated pathways and 23 common down-regulated pathways. In NEB, there are 23 up-regulated pathways and 26 down-regulated pathways. Compare the lists, we found 12 common up-regulated pathways and 10 common down-regulated pathways. PPAR signal pathway only missed in one data set, so included in our list. So, there are total 23 candidate pathways. And we extracted the collective genes in each pathway, got 212 human entrez genes. In BioMart database, we match there enztez genes to pig homologue gene with chromosome loci. Finally, 168 human entrez genes have matching results. 144 human entrez genes corresponding 140 pig unigenes, other entrez genes have no homologus genes but we fing corresponding chromosome positions.
     4. Selection of internal control genes in pig embryo and endometrium development
     It is a gradual process for embryonic development and the fetal membranes attached endometrium. Many researchers have been studied in this physiological period. RT-PCR has been common used to analysis gene transcription level because of the characteristics of fast and reliable. Housekeeping genes are commonly used for relative quantification. Housekeeping genes are a major component of basic physiologic processes in all the cells and not a primary target of changing conditions. But in fact a lot of housekeeping genes changed with the environment has changed. Microarray data contains information of the whole genome. We applied meta-analysis method to combine several microarray data about embryo and endoemtrium development in pig, and selecte top 100 expressed stability genes as candidate internal control genes. The list of the genes is dominated by ribosomal proteins.
     To conclude, we first analysis the pathways and genes affected by endometriosis and NEB in human and bovine sepreratly, then matching the common pathways and genes as critical pathways and genes for pig which could better understand the reproduction related genes and help to find new important genes for reproduction, to provid evidence for pig marker assistant selection and marker-assisted introgression. Finally, we applied meta-analysis method to combine several microarray data about embryo and endoemtrium development in pig, and selecte top 100 expressed stability genes as candidate internal control genes for RT-PCR.
引文
[1] Hu ZL, Dracheva S, Jang W, et al. A Qtl Resource and Comparison Tool for Pigs: Pigqtldb [J], Mammalian Genome, 2005, 16(10): 792-800.
    [2] Rothschild MF, Hu ZL, and Jiang Z. Advances in Qtl Mapping in Pigs [J], Int J Biol Sci, 2007, 3(3): 192-197.
    [3]赵要风,李宁,肖璐,曹更生,陈怡真,张顺,陈永福,吴常信.猪FSHβ亚基基因结构区逆转座子插入突变与其与猪产仔数关系的研究[J],中国科学, 1999, 29(1): 81-86.
    [4] Korwin-Kossakowska A, Kamyczek M, Cie015Blak D, et al. Candidate Gene Markers for Reproductive Traits in Polish 990 Pig Line [J], Journal of Animal Breeding and Genetics, 2003, 120(3): 181-191.
    [5] Gladney CD, Bertani GR, Johnson RK, et al. Evaluation of Gene Expression in Pigs Selected for Enhanced Reproduction Using Differential Display Pcr and Human Microarrays: I. Ovarian Follicles [J], Journal Of Animal Science, 2004, 82(1): 17-31.
    [6] Caetano AR, Johnson RK, Ford JJ, et al. Microarray Profiling for Differential Gene Expression in Ovaries and Ovarian Follicles of Pigs Selected for Increased Ovulation Rate [J], Genetics, 2004, 168(3): 1529-1537.
    [7] Schena M, Heller RA, Theriault TP, et al. Microarrays: Biotechnology's Discovery Platform for Functional Genomics [J], Trends In Biotechnology, 1998, 16(7): 301-306.
    [8] Debouck C, and Goodfellow PN. DNA Microarrays in Drug Discovery and Development [J], Nature Genetics, 1999, 21(1 Suppl): 48-50.
    [9] Okamoto T, Suzuki T, and Yamamoto N. Microarray Fabrication with Covalent Attachment of DNA Using Bubble Jet Technology [J], Nature Biotechnology, 2000, 18(4): 438-441.
    [10] Miller LD, Long PM, Wong L, et al. Optimal Gene Expression Analysis by Microarrays [J], Cancer Cell, 2002, 2(5): 353-361.
    [11] Baldi P, and Long AD. A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized T -Test and Statistical Inferences of Gene Changes [J], Bioinformatics, 2001, 17(6): 509-519.
    [12] Hatfield GW, Hung SP, and Baldi P. Differential Analysis of DNA Microarray Gene Expression Data [J], Molecular Microbiology, 2003, 47(4): 871-877.
    [13] Pavlidis P. Using Anova for Gene Selection from Microarray Studies of the Nervous System [J], Methods, 2003, 31(4): 282-289.
    [14] Ahmed AA, Vias M, Iyer NG, et al. Microarray Segmentation Methods Significantly Influence Data Precision [J], Nucleic Acids Research, 2004, 32(5): e50.
    [15] Lee ML, Kuo FC, Whitmore GA, et al. Importance of Replication in Microarray Gene Expression Studies: Statistical Methods and Evidence from Repetitive Cdna Hybridizations [J], Proc Natl Acad Sci U S A, 2000, 97(18): 9834-9839.
    [16] Tilstone C. DNA Microarrays: Vital Statistics [J], Nature, 2003, 424(6949): 610-612.
    [17] Pavlidis P, Li Q, and Noble WS. The Effect of Replication on Gene Expression Microarray Experiments [J], Bioinformatics, 2003, 19(13): 1620-1627.
    [18] Hwang D, Schmitt WA, and Stephanopoulos G. Determination of Minimum Sample Size and Discriminatory Expression Patterns in Microarray Data [J], Bioinformatics, 2002, 18(9): 1184-1193.
    [19] Kendziorski CM, Zhang Y, Lan H, et al. The Efficiency of Pooling Mrna in Microarray Experiments [J], Biostatistics, 2003, 4(3): 465-477.
    [20] Irizarry RA, Warren D, Spencer F, et al. Multiple-Laboratory Comparison of Microarray Platforms [J], Nat Methods, 2005, 2(5): 345-350.
    [21] Tinker AV, Boussioutas A, and Bowtell DD. The Challenges of Gene Expression Microarrays for the Study of Human Cancer [J], Cancer Cell, 2006, 9(5): 333-339.
    [22] Liang M, Briggs AG, Rute E, et al. Quantitative Assessment of the Importance of Dye Switching and Biological Replication in Cdna Microarray Studies [J], Physiological Genomics, 2003, 14(3): 199-207.
    [23] Larkin JE, Frank BC, Gavras H, et al. Independence and Reproducibility across Microarray Platforms [J], Nat Methods, 2005, 2(5): 337-344.
    [24] Yang YH, Dudoit S, Luu P, et al. Normalization for Cdna Microarray Data: A Robust Composite Method Addressing Single and Multiple Slide Systematic Variation [J], Nucleic Acids Research, 2002, 30(4): e15.
    [25] Bilban M, Buehler LK, Head S, et al. Normalizing DNA Microarray Data [J], Curr Issues Mol Biol, 2002, 4(2): 57-64.
    [26] Gerhold D, Lu M, Xu J, et al. Monitoring Expression of Genes Involved in Drug Metabolism and Toxicology Using DNA Microarrays [J], Physiological Genomics, 2001, 5(4): 161-170.
    [27] Black MA, and Doerge RW. Calculation of the Minimum Number of Replicate Spots Required for Detection of Significant Gene Expression Fold Change in Microarray Experiments [J], Bioinformatics, 2002, 18(12): 1609-1616.
    [28] Pan KH, Lih CJ, and Cohen SN. Analysis of DNA Microarrays Using Algorithms That Employ Rule-Based Expert Knowledge [J], Proc Natl Acad Sci U S A, 2002, 99(4): 2118-2123.
    [29] Zhao Y, and Pan W. Modified Nonparametric Approaches to Detecting Differentially Expressed Genes in Replicated Microarray Experiments [J], Bioinformatics, 2003, 19(9): 1046-1054.
    [30] Troyanskaya OG, Garber ME, Brown PO, et al. Nonparametric Methods for Identifying Differentially Expressed Genes in Microarray Data [J], Bioinformatics, 2002, 18(11): 1454-1461.
    [31] Efron B, and Tibshirani R. Empirical Bayes Methods and False Discovery Rates for Microarrays [J], Genetic Epidemiology, 2002, 23(1): 70-86.
    [32] Tusher VG, Tibshirani R, and Chu G. Significance Analysis of Microarrays Applied to the Ionizing Radiation Response [J], Proc Natl Acad Sci U S A, 2001, 98(9): 5116-5121.
    [33] Pan W, Lin J, and Le CT. A Mixture Model Approach to Detecting Differentially Expressed Genes with Microarray Data [J], Funct Integr Genomics, 2003, 3(3): 117-124.
    [34] Theilhaber J, Connolly T, Roman-Roman S, et al. Finding Genes in the C2c12 Osteogenic Pathway by K-Nearest-Neighbor Classification of Expression Data [J], Genome Research, 2002, 12(1): 165-176.
    [35] Yao Z, and Ruzzo WL. A Regression-Based K Nearest Neighbor Algorithm for Gene Function Prediction from Heterogeneous Data [J], BMC Bioinformatics, 2006, 7 Suppl 1: S11.
    [36] Mendez MA, Hodar C, Vulpe C, et al. Discriminant Analysis to Evaluate Clustering of Gene Expression Data [J], Febs Letters, 2002, 522(1-3): 24-28.
    [37] Guo Y, Hastie T, and Tibshirani R. Regularized Linear Discriminant Analysis and Its Application in Microarrays [J], Biostatistics, 2007, 8(1): 86-100.
    [38] Boulesteix AL. Pls Dimension Reduction for Classification with Microarray Data [J], Stat Appl Genet Mol Biol, 2004, 3: Article33.
    [39] Middendorf M, Kundaje A, Wiggins C, et al. Predicting Genetic Regulatory Response Using Classification [J], Bioinformatics, 2004, 20 Suppl 1: i232-240.
    [40] Hardin J, Waddell M, Page CD, et al. Evaluation of Multiple Models to Distinguish Closely Related Forms of Disease Using DNA Microarray Data: An Application to Multiple Myeloma [J], Stat Appl Genet Mol Biol, 2004, 3: Article10.
    [41] Dudoit S, and Fridlyand J. Bagging to Improve the Accuracy of a Clustering Procedure [J], Bioinformatics, 2003, 19(9): 1090-1099.
    [42] Lu C, Devos A, Suykens JA, et al. Bagging Linear Sparse Bayesian Learning Models for Variable Selection in Cancer Diagnosis [J], IEEE Trans Inf Technol Biomed, 2007, 11(3): 338-347.
    [43] Nicodemus KK, and Malley JD. Predictor Correlation Impacts Machine Learning Algorithms: Implications for Genomic Studies [J], Bioinformatics, 2009, 25(15): 1884-1890.
    [44] Furey TS, Cristianini N, Duffy N, et al. Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data [J], Bioinformatics, 2000, 16(10): 906-914.
    [45] Chu F, and Wang L. Applications of Support Vector Machines to Cancer Classification with Microarray Data [J], Int J Neural Syst, 2005, 15(6): 475-484.
    [46] Sohn I, Kim S, Hwang C, et al. Support Vector Machine Quantile Regression for Detecting Differentially Expressed Genes in Microarray Analysis [J], Methods Inf Med, 2008, 47(5): 459-467.
    [47] Tong W, Xie Q, Hong H, et al. Using Decision Forest to Classify Prostate Cancer Samples on the Basis of Seldi-Tof Ms Data: Assessing Chance Correlation and Prediction Confidence [J], Environ Health Perspect, 2004, 112(16): 1622-1627.
    [48] Tan AC, Naiman DQ, Xu L, et al. Simple Decision Rules for Classifying Human Cancers from Gene Expression Profiles [J], Bioinformatics, 2005, 21(20): 3896-3904.
    [49] Xu Y, Selaru FM, Yin J, et al. Artificial Neural Networks and Gene Filtering Distinguish between Global Gene Expression Profiles of Barrett's Esophagus and Esophageal Cancer [J], Cancer Research, 2002, 62(12): 3493-3497.
    [50] Ringner M, and Peterson C. Microarray-Based Cancer Diagnosis with Artificial Neural Networks [J], Biotechniques, 2003, Suppl: 30-35.
    [51] Williams RD, Hing SN, Greer BT, et al. Prognostic Classification of Relapsing Favorable Histology Wilms Tumor Using Cdna Microarray Expression Profiling and Support Vector Machines [J], Genes Chromosomes Cancer, 2004, 41(1): 65-79.
    [52] Sorlie T, Perou CM, Tibshirani R, et al. Gene Expression Patterns of Breast Carcinomas Distinguish Tumor Subclasses with Clinical Implications [J], Proc Natl Acad Sci U S A, 2001, 98(19): 10869-10874.
    [53] Makretsov NA, Huntsman DG, Nielsen TO, et al. Hierarchical Clustering Analysis of Tissue Microarray Immunostaining Data Identifies Prognostically Significant Groups of Breast Carcinoma [J], Clinical Cancer Research, 2004, 10(18 Pt 1): 6143-6151.
    [54] Kim DW, Lee KH, and Lee D. Detecting Clusters of Different Geometrical Shapes in Microarray Gene Expression Data [J], Bioinformatics, 2005, 21(9): 1927-1934.
    [55] Tavazoie S, Hughes JD, Campbell MJ, et al. Systematic Determination of Genetic Network Architecture [J], Nature Genetics, 1999, 22(3): 281-285.
    [56] Tamayo P, Slonim D, Mesirov J, et al. Interpreting Patterns of Gene Expression with Self-Organizing Maps: Methods and Application to Hematopoietic Differentiation [J], Proc Natl Acad Sci U S A, 1999, 96(6): 2907-2912.
    [57] Tuoya, Sugii Y, Satoh H, et al. Spherical Self-Organizing Map as a Helpful Tool to Identify Category-Specific Cell Surface Markers [J], Biochem Biophys Res Commun, 2008, 376(2): 414-418.
    [58] Gatherer D. Genome Signatures, Self-Organizing Maps and Higher Order Phylogenies: A Parametric Analysis [J], Evol Bioinform Online, 2007, 3: 211-236.
    [59] Garge NR, Page GP, Sprague AP, et al. Reproducible Clusters from Microarray Research:Whither? [J], BMC Bioinformatics, 2005, 6 Suppl 2: S10.
    [60] Yeung KY, Medvedovic M, and Bumgarner RE. From Co-Expression to Co-Regulation: How Many Microarray Experiments Do We Need? [J], Genome Biol, 2004, 5(7): R48.
    [61] Ben-Dor A, Shamir R, and Yakhini Z. Clustering Gene Expression Patterns [J], Journal Of Computational Biology, 1999, 6(3-4): 281-297.
    [62] Whitfield CW, Cziko AM, and Robinson GE. Gene Expression Profiles in the Brain Predict Behavior in Individual Honey Bees [J], Science, 2003, 302(5643): 296-299.
    [63] Nguyen DV, and Rocke DM. Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data [J], Bioinformatics, 2002, 18(1): 39-50.
    [64] van 't Veer LJ, Dai H, van de Vijver MJ, et al. Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer [J], Nature, 2002, 415(6871): 530-536.
    [65] Chu S, DeRisi J, Eisen M, et al. The Transcriptional Program of Sporulation in Budding Yeast [J], Science, 1998, 282(5389): 699-705.
    [66] Raychaudhuri S, Stuart JM, and Altman RB. Principal Components Analysis to Summarize Microarray Experiments: Application to Sporulation Time Series [J], Pac Symp Biocomput, 2000: 455-466.
    [67] Slonim DK. From Patterns to Pathways: Gene Expression Data Analysis Comes of Age [J], Nature Genetics, 2002, 32 Suppl: 502-508.
    [68] Hudson ME, and Quail PH. Identification of Promoter Motifs Involved in the Network of Phytochrome a-Regulated Gene Expression by Combined Analysis of Genomic Sequence and Microarray Data [J], Plant Physiology, 2003, 133(4): 1605-1616.
    [69] Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium [J], Nature Genetics, 2000, 25(1): 25-29.
    [70] Ogata H, Goto S, Sato K, et al. Kegg: Kyoto Encyclopedia of Genes and Genomes [J], Nucleic Acids Research, 1999, 27(1): 29-34.
    [71] Schorderet DF. Using Omim (on-Line Mendelian Inheritance in Man) as an Expert System in Medical Genetics [J], American Journal Of Medical Genetics, 1991, 39(3): 278-284.
    [72] Huang da W, Sherman BT, and Lempicki RA. Systematic and Integrative Analysis of Large Gene Lists Using David Bioinformatics Resources [J], Nat Protoc, 2009, 4(1): 44-57.
    [73] Dahlquist KD, Salomonis N, Vranizan K, et al. Genmapp, a New Tool for Viewing and Analyzing Microarray Data on Biological Pathways [J], Nature Genetics, 2002, 31(1): 19-20.
    [74] Masseroli M, Galati O, and Pinciroli F. Gfinder: Genetic Disease and Phenotype Location Statistical Analysis and Mining of Dynamically Annotated Gene Lists [J], Nucleic Acids Research, 2005, 33(Web Server issue): W717-723.
    [75] Zeeberg BR, Feng W, Wang G, et al. Gominer: A Resource for Biological Interpretation of Genomic and Proteomic Data [J], Genome Biol, 2003, 4(4): R28.
    [76] Man MZ, Wang X, and Wang Y. Power_Sage: Comparing Statistical Tests for Sage Experiments [J], Bioinformatics, 2000, 16(11): 953-959.
    [77] Tian L, Greenberg SA, Kong SW, et al. Discovering Statistically Significant Pathways in Expression Profiling Studies [J], Proc Natl Acad Sci U S A, 2005, 102(38): 13544-13549.
    [78] Sonnhammer EL, Eddy SR, and Durbin R. Pfam: A Comprehensive Database of Protein Domain Families Based on Seed Alignments [J], Proteins-structure Function and Genetics, 1997, 28(3): 405-420.
    [79] Schuler GD, Epstein JA, Ohkawa H, et al. Entrez: Molecular Biology Database and Retrieval System [J], Methods Enzymol, 1996, 266: 141-162.
    [80] Bateman A, Birney E, Durbin R, et al. The Pfam Protein Families Database [J], Nucleic Acids Research, 2000, 28(1): 263-266.
    [81] Bader GD, Donaldson I, Wolting C, et al. Bind--the Biomolecular Interaction Network Database [J], Nucleic Acids Research, 2001, 29(1): 242-245.
    [82] Stark C, Breitkreutz BJ, Reguly T, et al. Biogrid: A General Repository for Interaction Datasets [J], Nucleic Acids Research, 2006, 34(Database issue): D535-539.
    [83] Keseler IM, Bonavides-Martinez C, Collado-Vides J, et al. Ecocyc: A Comprehensive View of Escherichia Coli Biology [J], Nucleic Acids Research, 2009, 37(Database issue): D464-470.
    [84] Keshava Prasad TS, Goel R, Kandasamy K, et al. Human Protein Reference Database--2009 Update [J], Nucleic Acids Research, 2009, 37(Database issue): D767-772.
    [85] Subramanian A, Tamayo P, Mootha VK, et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles [J], PNAS, 2005, 102(43): 15545-15550.
    [86] Damian D, and Gorfine M. Statistical Concerns About the Gsea Procedure [J], Nature Genetics, 2004, 36(7): 663; author reply 663.
    [87] Kim SY, and Volsky DJ. Page: Parametric Analysis of Gene Set Enrichment [J], BMC Bioinformatics, 2005, 6: 144.
    [88] Rubin E. Circumventing the Cut-Off for Enrichment Analysis [J], Brief Bioinform, 2006, 7(2): 202-203.
    [89] Moreau Y, Aerts S, Moor BD, et al. Comparison and Meta-Analysis of Microarray Data: From the Bench to the Computer Desk [J], Trends in Genetics, 2003, 19(10): 570-577.
    [90] Irizarry RA, Warren D, Spencer F, et al. Multiple-Laboratory Comparison of Microarray Platforms [J], Nat Meth, 2005, 2(5): 345-350.
    [91] Glass G. Primary, Secondary, and Meta-Analysis of Research [J], Educational Researcher,1976, 5(10): 3-8.
    [92] Rhodes DR, Barrette TR, Rubin MA, et al. Meta-Analysis of Microarrays: Interstudy Validation of Gene Expression Profiles Reveals Pathway Dysregulation in Prostate Cancer [J], Cancer Res, 2002, 62(15): 4427-4433.
    [93] Miles MF, and Williams RW. Meta-Analysis for Microarray Studies of the Genetics of Complex Traits [J], Trends in Biotechnology, 2007, 25(2): 45-47.
    [94] Stevens J, and Doerge RW. Combining Affymetrix Microarray Results [J], BMC Bioinformatics, 2005, 6(1): 57.
    [95] Pingzhao H, Celia MG, and Joseph B. Statistical Methods for Meta-Analysis of Microarray Data: A Comparative Study [J], Information Systems Frontiers, 2006, 8(1): 9-20.
    [96] Cahan P, Rovegno F, Mooney D, et al. Meta-Analysis of Microarray Results: Challenges, Opportunities, and Recommendations for Standardization [J], Gene, 2007, 401(1-2): 12-18.
    [97] Yang X, and Sun X. Meta-Analysis of Several Gene Lists for Distinct Types of Cancer: A Simple Way to Reveal Common Prognostic Markers [J], BMC Bioinformatics, 2007, 8(1): 118.
    [98] Hong F, and Breitling R. A Comparison of Meta-Analysis Methods for Detecting Differentially Expressed Genes in Microarray Experiments [J], Bioinformatics, 2008, 24(3): 374-382.
    [99] Rhodes DR, Yu J, Shanker K, et al. Large-Scale Meta-Analysis of Cancer Microarray Data Identifies Common Transcriptional Profiles of Neoplastic Transformation and Progression [J], Proceedings of the National Academy of Sciences, 2004, 101(25): 9309-9314.
    [100] Grutzmann R, Boriss H, Ammerpohl O, et al. Meta-Analysis of Microarray Data on Pancreatic Cancer Defines a Set of Commonly Dysregulated Genes [J], Oncogene, 2005, 24(32): 5079-5088.
    [101] Segal E, Friedman N, Koller D, et al. A Module Map Showing Conditional Activity of Expression Modules in Cancer [J], Nature Genetics, 2004, 36(10): 1090-1098.
    [102] Choi JK, Yu U, Kim S, et al. Combining Multiple Microarray Studies and Modeling Interstudy Variation [J], Bioinformatics, 2003, 19 Suppl 1: i84-90.
    [103] Benjamini Y. HY. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing [J], Journal of Royal Statistical Society Series B, 1995, 57(1): 289-300.
    [104] Normand SL. Meta-Analysis: Formulating, Evaluating, Combining, and Reporting [J], Statistics in Medicine, 1999, 18(3): 321-359.
    [105] DerSimonian R, and Laird N. Meta-Analysis in Clinical Trials [J], Controlled ClinicalTrials, 1986, 7(3): 177-188.
    [106] Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: Open Software Development for Computational Biology and Bioinformatics [J], Genome Biology, 2004, 5(10): R80.
    [107] Sohal D, Yeatts A, Ye K, et al. Meta-Analysis of Microarray Studies Reveals a Novel Hematopoietic Progenitor Cell Signature and Demonstrates Feasibility of Inter-Platform Data Integration [J], PLoS ONE, 2008, 3(8): e2965.
    [108] Breitling R, Armengaud P, Amtmann A, et al. Rank Products: A Simple, yet Powerful, New Method to Detect Differentially Regulated Genes in Replicated Microarray Experiments [J], FEBS Letters, 2004, 573(1-3): 83-92.
    [109] Hong F, Breitling R, McEntee CW, et al. Rankprod: A Bioconductor Package for Detecting Differentially Expressed Genes in Meta-Analysis [J], Bioinformatics, 2006, 22(22): 2825-2827.
    [110] Dwork C, Kumar R, Naor M, et al. Rank Aggregation Methods for the Web, ACM New York, NY, USA, 2001, pp. 613-622.
    [111] DeConde RP, Hawley S, Falcon S, et al. Combining Results of Microarray Experiments: A Rank Aggregation Approach [J], Statistical Application in Genetics and Molecular Biology, 2006, 5: Article15.
    [112] Pihur V, Datta S, and Datta S. Weighted Rank Aggregation of Cluster Validation Measures: A Monte Carlo Cross-Entropy Approach [J], Bioinformatics, 2007, 23(13): 1607-1615.
    [113] Pihur V, and Datta S. Finding Common Genes in Multiple Cancer Types through Meta-Analysis of Microarray Experiments: A Rank Aggregation Approach [J], Genomics, 2008, 92(6): 400-403.
    [114] Pihur V, and Datta S. Rankaggreg, an R Package for Weighted Rank Aggregation [J], BMC Bioinformatics, 2009, 10: 62.
    [115] Ramasamy A, Mondry A, Holmes CC, et al. Key Issues in Conducting a Meta-Analysis of Gene Expression Microarray Datasets [J], PLoS Med, 2008, 5(9): e184.
    [116] Liu L, Gong G, Liu Y, et al. Multi-Species Comparative Mapping in Silico Using the Compass Strategy [J], Bioinformatics, 2004, 20(2): 148-154.
    [117] Fitch WM. Estimating the Total Number of Nucleotide Substitutions since the Common Ancestor of a Pair of Homologous Genes: Comparison of Several Methods and Three Beta Hemoglobin Messenger Rna's [J], Journal Of Molecular Evolution, 1980, 16(3-4): 153-209.
    [118] Sonnhammer EL, and Koonin EV. Orthology, Paralogy and Proposed Classification for Paralog Subtypes [J], Trends In Genetics, 2002, 18(12): 619-620.
    [119] Balaji J, Crouch JH, Petite PV, et al. A Database of Annotated Tentative Orthologs from Crop Abiotic Stress Transcripts [J], Bioinformation, 2006, 1(6): 225-227.
    [120] Tatusov RL, Galperin MY, Natale DA, et al. The Cog Database: A Tool for Genome-Scale Analysis of Protein Functions and Evolution [J], Nucleic Acids Research, 2000, 28(1): 33-36.
    [121] Dewey CN, and Pachter L. Evolution at the Nucleotide Level: The Problem of Multiple Whole-Genome Alignment [J], Human Molecular Genetics, 2006, 15 Spec No 1: R51-56.
    [122] Krutovsky KV, Troggio M, Brown GR, et al. Comparative Mapping in the Pinaceae [J], Genetics, 2004, 168(1): 447-461.
    [123] Rocha EP, Cornet E, and Michel B. Comparative and Evolutionary Analysis of the Bacterial Homologous Recombination Systems [J], PLoS Genet, 2005, 1(2): e15.
    [124] Apiou F, Vincent-Naulleau S, Spatz A, et al. Comparative Genomic Hybridization Analysis of Hereditary Swine Cutaneous Melanoma Revealed Loss of the Swine 13q36-49 Chromosomal Region in the Nodular Melanoma Subtype [J], International Journal Of Cancer, 2004, 110(2): 232-238.
    [125] Hornak M, Hulinska P, Musilova P, et al. Investigation of Chromosome Aneuploidies in Early Porcine Embryos Using Comparative Genomic Hybridization [J], Cytogenet Genome Res, 2009, 126(1-2): 210-216.
    [126] Nadeau JH, and Sankoff D. Counting on Comparative Maps [J], Trends In Genetics, 1998, 14(12): 495-501.
    [127] Watanabe H, Fujiyama A, Hattori M, et al. DNA Sequence and Comparative Analysis of Chimpanzee Chromosome 22 [J], Nature, 2004, 429(6990): 382-388.
    [128] Wetterbom A, Sevov M, Cavelier L, et al. Comparative Genomic Analysis of Human and Chimpanzee Indicates a Key Role for Indels in Primate Evolution [J], Journal Of Molecular Evolution, 2006, 63(5): 682-690.
    [129] Harsha HC, Suresh S, Amanchy R, et al. A Manually Curated Functional Annotation of the Human X Chromosome [J], Nature Genetics, 2005, 37(4): 331-332.
    [130] Miller W, Makova KD, Nekrutenko A, et al. Comparative Genomics [J], Annu Rev Genomics Hum Genet, 2004, 5: 15-56.
    [131] Gibson UE, Heid CA, and Williams PM. A Novel Method for Real Time Quantitative Rt-Pcr [J], Genome Research, 1996, 6(10): 995-1001.
    [132] Lie YS, and Petropoulos CJ. Advances in Quantitative Pcr Technology: 5′Nuclease Assays [J], Current Opinion in Biotechnology, 1998, 9(1): 43-48.
    [133] Bustin SA. Absolute Quantification of Mrna Using Real-Time Reverse Transcription Polymerase Chain Reaction Assays [J], Journal Of Molecular Endocrinology, 2000, 25(2): 169-193.
    [134] Vandesompele J, De Preter K, Pattyn F, et al. Accurate Normalization of Real-Time Quantitative Rt-Pcr Data by Geometric Averaging of Multiple Internal Control Genes [J],Genome Biol, 2002, 3(7): RESEARCH0034.
    [135] Andersen CL, Jensen JL, and Orntoft TF. Normalization of Real-Time Quantitative Reverse Transcription-Pcr Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets [J], Cancer Res, 2004, 64(15): 5245-5250.
    [136] Perez R, Tupac-Yupanqui I, and Dunner S. Evaluation of Suitable Reference Genes for Gene Expression Studies in Bovine Muscular Tissue [J], BMC Mol Biol, 2008, 9: 79.
    [137] Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of Stable Housekeeping Genes, Differentially Regulated Target Genes and Sample Integrity: Bestkeeper--Excel-Based Tool Using Pair-Wise Correlations [J], Biotechnol Lett, 2004, 26(6): 509-515.
    [138] de Kok JB, Roelofs RW, Giesendorf BA, et al. Normalization of Gene Expression Measurements in Tumor Tissues: Comparison of 13 Endogenous Control Genes [J], Laboratory Investigation, 2005, 85(1): 154-159.
    [139] Jin P, Zhao Y, Ngalame Y, et al. Selection and Validation of Endogenous Reference Genes Using a High Throughput Approach [J], BMC Genomics, 2004, 5(1): 55.
    [140] de Jonge HJ, Fehrmann RS, de Bont ES, et al. Evidence Based Selection of Housekeeping Genes [J], PLoS One, 2007, 2(9): e898.
    [141] Frericks M, and Esser C. A Toolbox of Novel Murine House-Keeping Genes Identified by Meta-Analysis of Large Scale Gene Expression Profiles [J], Biochim Biophys Acta, 2008, 1779(12): 830-837.
    [142] Popovici V, Goldstein DR, Antonov J, et al. Selecting Control Genes for Rt-Qpcr Using Public Microarray Data [J], BMC Bioinformatics, 2009, 10: 42.
    [143] Eskenazi B, and Warner ML. Epidemiology of Endometriosis [J], Obstet Gynecol Clin North Am, 1997, 24(2): 235-258.
    [144] Giudice LC, and Kao LC. Endometriosis [J], Lancet, 2004, 364(9447): 1789-1799.
    [145] Bulun SE. Endometriosis [J], N Engl J Med, 2009, 360(3): 268-279.
    [146] Sha G, Wu D, Zhang L, et al. Differentially Expressed Genes in Human Endometrial Endothelial Cells Derived from Eutopic Endometrium of Patients with Endometriosis Compared with Those from Patients without Endometriosis [J], Human Reproduction, 2007, 22(12): 3159-3169.
    [147] Kato N, Sasou S, and Motoyama T. Expression of Hepatocyte Nuclear Factor-1beta (Hnf-1beta) in Clear Cell Tumors and Endometriosis of the Ovary [J], Mod Pathol, 2006, 19(1): 83-89.
    [148] Eyster KM, Boles AL, Brannian JD, et al. DNA Microarray Analysis of Gene Expression Markers of Endometriosis [J], Fertil Steril, 2002, 77(1): 38-42.
    [149] Lebovic DI, Baldocchi RA, Mueller MD, et al. Altered Expression of a Cell-Cycle Suppressor Gene, Tob-1, in Endometriotic Cells by Cdna Array Analyses [J], Fertil Steril,2002, 78(4): 849-854.
    [150] Arimoto T, Katagiri T, Oda K, et al. Genome-Wide Cdna Microarray Analysis of Gene-Expression Profiles Involved in Ovarian Endometriosis [J], Int J Oncol, 2003, 22(3): 551-560.
    [151] Kao LC, Germeyer A, Tulac S, et al. Expression Profiling of Endometrium from Women with Endometriosis Reveals Candidate Genes for Disease-Based Implantation Failure and Infertility [J], Endocrinology, 2003, 144(7): 2870-2881.
    [152] Fan Y, Chen BL, Ma XD, et al. Detection of Expression of Endometriosis-Related Cytokine and Their Receptor Genes by Cdna Microarray Technique [J], Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2005, 21(4): 489-492.
    [153] Matsuzaki S, Canis M, Pouly JL, et al. The Macrophage Stimulating Protein/Ron System: A Potential Novel Target for Prevention and Treatment of Endometriosis [J], Mol Hum Reprod, 2005, 11(5): 345-349.
    [154] Matsuzaki S, Canis M, Vaurs-Barriere C, et al. DNA Microarray Analysis of Gene Expression in Eutopic Endometrium from Patients with Deep Endometriosis Using Laser Capture Microdissection [J], Fertil Steril, 2005, 84 Suppl 2: 1180-1190.
    [155] Wu Y, Kajdacsy-Balla A, Strawn E, et al. Transcriptional Characterizations of Differences between Eutopic and Ectopic Endometrium [J], Endocrinology, 2006, 147(1): 232-246.
    [156] Burney R, Talbi S, Hamilton A, et al. Gene Expression Analysis of Endometrium Reveals Progesterone Resistance and Candidate Susceptibility Genes in Women with Endometriosis [J], Endocrinology, 2007, 148(8): 3814.
    [157] Eyster KM, Klinkova O, Kennedy V, et al. Whole Genome Deoxyribonucleic Acid Microarray Analysis of Gene Expression in Ectopic Versus Eutopic Endometrium [J], Fertil Steril, 2007, 88(6): 1505-1533.
    [158] Hever A, Roth R, Hevezi P, et al. Human Endometriosis Is Associated with Plasma Cells and Overexpression of B Lymphocyte Stimulator [J], Proceedings of the National Academy of Sciences, 2007, 104(30): 12451.
    [159] Hull ML, Escareno CR, Godsland JM, et al. Endometrial-Peritoneal Interactions During Endometriotic Lesion Establishment [J], American Journal Of Pathology, 2008, 173(3): 700-715.
    [160] R: A Language and Environment for Statistical Computing, R Development Core Team, (2009) .http://www.R-project.org/.
    [161] Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: Open Software Development for Computational Biology and Bioinformatics [J], Genome Biology, 2004, 5(10): R80.
    [162] Irizarry RA, Hobbs B, Collin F, et al. Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data [J], Biostatistics, 2003, 4(2):249-264.
    [163] Gautier L, Cope L, Bolstad BM, et al. Affy--Analysis of Affymetrix Genechip Data at the Probe Level [J], Bioinformatics, 2004, 20(3): 307-315.
    [164] Sinaii N, Cleary SD, Ballweg ML, et al. High Rates of Autoimmune and Endocrine Disorders, Fibromyalgia, Chronic Fatigue Syndrome and Atopic Diseases among Women with Endometriosis: A Survey Analysis [J], Human Reproduction, 2002, 17(10): 2715-2724.
    [165] Lebovic DI, Mueller MD, and Taylor RN. Immunobiology of Endometriosis [J], Fertility and Sterility, 2001, 75(1): 1-10.
    [166] Ho HN, Wu MY, Chao KH, et al. Decrease in Interferon Gamma Production and Impairment of T-Lymphocyte Proliferation in Peritoneal Fluid of Women with Endometriosis [J], American Journal Of Obstetrics and Gynecology, 1996, 175(5): 1236-1241.
    [167] Ho HN, Wu MY, Chao KH, et al. Peritoneal Interleukin-10 Increases with Decrease in Activated Cd4+ T Lymphocytes in Women with Endometriosis [J], Human Reproduction, 1997, 12(11): 2528-2533.
    [168] de Bakker PIW, McVean G, Sabeti PC, et al. A High-Resolution Hla and Snp Haplotype Map for Disease Association Studies in the Extended Human Mhc [J], Nature Genetics, 2006, 38(10): 1166-1172.
    [169] Wu MY, Ho HN, Chen SU, et al. Increase in the Production of Interleukin-6, Interleukin-10, and Interleukin-12 by Lipopolysaccharide-Stimulated Peritoneal Macrophages from Women with Endometriosis [J], American Journal Of Reproductive Immunology, 1999, 41(1): 106-111.
    [170] Keenan JA, Chen TT, Chadwell NL, et al. Il-1 Beta, Tnf-Alpha, and Il-2 in Peritoneal Fluid and Macrophage-Conditioned Media of Women with Endometriosis [J], American Journal Of Reproductive Immunology, 1995, 34(6): 381-385.
    [171] Harada T, Yoshioka H, Yoshida S, et al. Increased Interleukin-6 Levels in Peritoneal Fluid of Infertile Patients with Active Endometriosis [J], American Journal Of Obstetrics and Gynecology, 1997, 176(3): 593-597.
    [172] Punnonen J, Teisala K, Ranta H, et al. Increased Levels of Interleukin-6 and Interleukin-10 in the Peritoneal Fluid of Patients with Endometriosis [J], American Journal Of Obstetrics and Gynecology, 1996, 174(5): 1522-1526.
    [173] Hornung D, Bentzien F, Wallwiener D, et al. Chemokine Bioactivity of Rantes in Endometriotic and Normal Endometrial Stromal Cells and Peritoneal Fluid [J], Molecular Human Reproduction, 2001, 7(2): 163-168.
    [174] Ponce C, Torres M, Galleguillos C, et al. Nuclear Factor Kappa B (Nf{Kappa}B) Pathway and Interleukin-6 (Il-6) Are Affected in Eutopic Endometrium of Women withEndometriosis [J], Reproduction, 2009: REP-08-0407.
    [175] Starzinski-Powitz A, Handrow-Metzmacher H, and Kotzian S. The Putative Role of Cell Adhesion Molecules in Endometriosis: Can We Learn from Tumour Metastasis? [J], Molecular Medicine Today, 1999, 5(7): 304-309.
    [176] Dogan S, Machicao F, Wallwiener D, et al. Association of Peroxisome Proliferator-Activated Receptor Gamma 2 Pro-12-Ala Polymorphism with Endometriosis [J], Fertility and Sterility, 2004, 81(5): 1411-1413.
    [177] Hudelist G, Keckstein J, Czerwenka K, et al. Estrogen Receptor Beta and Matrix Metalloproteinase 1 Are Coexpressed in Uterine Endometrium and Endometriotic Lesions of Patients with Endometriosis [J], Fertility and Sterility, 2005, 84 Suppl 2: 1249-1256.
    [178] Yamashita Y, Asano M, Morishima S, et al. Mitochondrial Gene Expression in Granulosa Cells of Severe Endometriosis with in Vitro Fertilization and Embryo Transfer [J], Fertility and Sterility, 2007, 88(6): 1703-1705.
    [179] Sherwin JR, Sharkey AM, Mihalyi A, et al. Global Gene Analysis of Late Secretory Phase, Eutopic Endometrium Does Not Provide the Basis for a Minimally Invasive Test of Endometriosis [J], Human Reproduction, 2008, 23(5): 1063-1068.
    [180] Wathes DC, Fenwick M, Cheng Z, et al. Influence of Negative Energy Balance on Cyclicity and Fertility in the High Producing Dairy Cow [J], Theriogenology, 2007, 68 Suppl 1: S232-241.
    [181] Morris DG, Waters SM, McCarthy SD, et al. Pleiotropic Effects of Negative Energy Balance in the Postpartum Dairy Cow on Splenic Gene Expression: Repercussions for Innate and Adaptive Immunity [J], Physiological Genomics, 2009, 39(1): 28-37.
    [182] Wathes DC, Cheng Z, Chowdhury W, et al. Negative Energy Balance Alters Global Gene Expression and Immune Responses in the Uterus of Postpartum Dairy Cows [J], Physiological Genomics, 2009, 39(1): 1-13.
    [183] Smyth GK. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments [J], Statistical Applications in Genetics and Molecular Biology, 2004, 3: Article3.
    [184] Benjamini Y, and Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing [J], Journal of the Royal Statistical Society. Series B (Methodological), 1995: 289-300.
    [185] Manoli T, Gretz N, Grone H-J, et al. Group Testing for Pathway Analysis Improves Comparability of Different Microarray Datasets [J], Bioinformatics, 2006, 22(20): 2500-2506.
    [186] Jeffery IB, Higgins DG, and Culhane AC. Comparison and Evaluation of Methods for Generating Differentially Expressed Gene Lists from Microarray Data [J], BMCBioinformatics, 2006, 7: 359.
    [187] Nettleton D, Recknor J, and Reecy JM. Identification of Differentially Expressed Gene Categories in Microarray Studies Using Nonparametric Multivariate Analysis [J], Bioinformatics, 2008, 24(2): 192-201.
    [188]张辉,窦凤鸣,丛立新,王哲.脂肪细胞因子脂联素与围产期奶牛脂肪动员关系[J],畜牧与兽医, 2009, 5(41): 56-58.
    [189] Jiang L, You J, Yu X, et al. Tyrosine-Dependent and -Independent Actions of Leptin Receptor in Control of Energy Balance and Glucose Homeostasis [J], Proc Natl Acad Sci U S A, 2008, 105(47): 18619-18624.
    [190] Butler WR, and Smith RD. Interrelationships between Energy Balance and Postpartum Reproductive Function in Dairy Cattle [J], Journal Of Dairy Science, 1989, 72(3): 767-783.
    [191] Waller CM, Bilkei G, and Cameron RD. Effect of Periparturient Diseases Accompanied by Excessive Vulval Discharge and Weaning to Mating Interval on Sow Reproductive Performance [J], Australian Veterinary Journal, 2002, 80(9): 545-549.
    [192] Young MG, Tokach MD, Aherne FX, et al. Effect of Sow Parity and Weight at Service on Target Maternal Weight and Energy for Gain in Gestation [J], Journal Of Animal Science, 2005, 83(1): 255-261.
    [193] Oliviero C, Kokkonen T, Heinonen M, et al. Feeding Sows with High Fibre Diet around Farrowing and Early Lactation: Impact on Intestinal Activity, Energy Balance Related Parameters and Litter Performance [J], Research In Veterinary Science, 2009, 86(2): 314-319.
    [194] Koketsu Y, Dial GD, Pettigrew JE, et al. Characterization of Feed Intake Patterns During Lactation in Commercial Swine Herds [J], Journal Of Animal Science, 1996, 74(6): 1202-1210.
    [195]曹国请,李步高,刘建华等.猪催乳素受体(PRLR)基因Alul多态性与产仔数关系的研究[J],山西农业大学学报, 2004, 24(3): 253-255.
    [196] Drogemuller C, Hamann H, and Distl O. Candidate Gene Markers for Litter Size in Different German Pig Lines [J], Journal Of Animal Science, 2001, 79(10): 2565-2570.
    [197] Putnova L, Knoll A, Dvorak J, et al. A New Hpaii Pcr-Rflp within the Porcine Prolactin Receptor (Prlr) Gene and Study of Its Effect on Litter Size and Number of Teats [J], Journal of Animal Breeding and Genetics, 2002, 119(1): 57-63.
    [198] Vincent AL, Wang L, Tuggle CK, et al. Prolactin Receptor Maps to Pig Chromosome 16 [J], Mammalian Genome, 1997, 8(10): 793-794.
    [199]孙延晓,曾勇庆,唐辉等.猪PRLR和RBP4基因多态性与产仔性能的关系[J],遗传, 2009, 31(1): 63-68.
    [200] Mueller MD, Lebovic DI, Garrett E, et al. Neutrophils Infiltrating the EndometriumExpress Vascular Endothelial Growth Factor: Potential Role in Endometrial Angiogenesis [J], Fertility and Sterility, 2000, 74(1): 107-112.
    [201] Clauss M, Gerlach M, Gerlach H, et al. Vascular Permeability Factor: A Tumor-Derived Polypeptide That Induces Endothelial Cell and Monocyte Procoagulant Activity, and Promotes Monocyte Migration [J], Journal Of Experimental Medicine, 1990, 172(6): 1535-1545.
    [202] Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous Embryonic Lethality Induced by Targeted Inactivation of the Vegf Gene [J], Nature, 1996, 380(6573): 439-442.
    [203] Carmeliet P, Ferreira V, Breier G, et al. Abnormal Blood Vessel Development and Lethality in Embryos Lacking a Single Vegf Allele [J], Nature, 1996, 380(6573): 435-439.
    [204] Risau W. Mechanisms of Angiogenesis [J], Nature, 1997, 386(6626): 671-674.
    [205] Shweiki D, Itin A, Neufeld G, et al. Patterns of Expression of Vascular Endothelial Growth Factor (Vegf) and Vegf Receptors in Mice Suggest a Role in Hormonally Regulated Angiogenesis [J], Journal Of Clinical Investigation, 1993, 91(5): 2235-2243.
    [206] Ferrara N, Chen H, Davis-Smyth T, et al. Vascular Endothelial Growth Factor Is Essential for Corpus Luteum Angiogenesis [J], Nature Medicine, 1998, 4(3): 336-340.
    [207] Mordenti J, Thomsen K, Licko V, et al. Efficacy and Concentration-Response of Murine Anti-Vegf Monoclonal Antibody in Tumor-Bearing Mice and Extrapolation to Humans [J], Toxicologic Pathology, 1999, 27(1): 14-21.
    [208] Fraser HM, Dickson SE, Lunn SF, et al. Suppression of Luteal Angiogenesis in the Primate after Neutralization of Vascular Endothelial Growth Factor [J], Endocrinology, 2000, 141(3): 995-1000.
    [209] Yang J, Chatterjee-Kishore M, Staugaitis SM, et al. Novel Roles of Unphosphorylated Stat3 in Oncogenesis and Transcriptional Regulation [J], Cancer Research, 2005, 65(3): 939-947.
    [210] Kato H, Inoue T, Asanoma K, et al. Activation of Stat3/5 Signal Pathways in Complete Mole and Repression in Choriocarcinoma Cell Lines [J], Journal Of Reproductive Medicine, 2006, 51(1): 41-48.
    [211] Corvinus FM, Fitzgerald JS, Friedrich K, et al. Evidence for a Correlation between Trophoblast Invasiveness and Stat3 Activity [J], American Journal Of Reproductive Immunology, 2003, 50(4): 316-321.
    [212] Wen L, Craig J, Dyce PW, et al. Cloning of Porcine Signal Transducer and Activator of Transcription 3 Cdna and Its Expression in Reproductive Tissues [J], Reproduction, 2006, 132(3): 511-518.
    [213] Thellin O, Zorzi W, Lakaye B, et al. Housekeeping Genes as Internal Standards: Use and Limits [J], Journal Of Biotechnology, 1999, 75(2-3): 291-295.
    [214] Lee PD, Sladek R, Greenwood CM, et al. Control Genes and Variability: Absence of Ubiquitous Reference Transcripts in Diverse Mammalian Expression Studies [J], Genome Research, 2002, 12(2): 292-297.
    [215] Czechowski T, Stitt M, Altmann T, et al. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis [J], Plant Physiology, 2005, 139(1): 5-17.
    [216] Goidin D, Mamessier A, Staquet MJ, et al. Ribosomal 18s Rna Prevails over Glyceraldehyde-3-Phosphate Dehydrogenase and Beta-Actin Genes as Internal Standard for Quantitative Comparison of Mrna Levels in Invasive and Noninvasive Human Melanoma Cell Subpopulations [J], Analytical Biochemistry, 2001, 295(1): 17-21.
    [217] Brunner AM, Yakovlev IA, and Strauss SH. Validating Internal Controls for Quantitative Plant Gene Expression Studies [J], BMC Plant Biol, 2004, 4: 14.
    [218] Dheda K, Huggett JF, Bustin SA, et al. Validation of Housekeeping Genes for Normalizing Rna Expression in Real-Time Pcr [J], Biotechniques, 2004, 37(1): 112-114, 116, 118-119.
    [219] Radonic A, Thulke S, Mackay IM, et al. Guideline to Reference Gene Selection for Quantitative Real-Time Pcr [J], Biochem Biophys Res Commun, 2004, 313(4): 856-862.
    [220] Mamo S, Gal AB, Bodo S, et al. Quantitative Evaluation and Selection of Reference Genes in Mouse Oocytes and Embryos Cultured in Vivo and in Vitro [J], BMC Dev Biol, 2007, 7: 14.
    [221] Liu G, Loraine AE, Shigeta R, et al. Netaffx: Affymetrix Probesets and Annotations [J], Nucleic Acids Research, 2003, 31(1): 82-86.
    [222] Bionaz M, and Loor JJ. Identification of Reference Genes for Quantitative Real-Time Pcr in the Bovine Mammary Gland During the Lactation Cycle [J], Physiological Genomics, 2007, 29(3): 312-319.
    [223] Lossos IS, Czerwinski DK, Wechser MA, et al. Optimization of Quantitative Real-Time Rt-Pcr Parameters for the Study of Lymphoid Malignancies [J], Leukemia, 2003, 17(4): 789-795.
    [224] Kim S, and Kim T. Selection of Optimal Internal Controls for Gene Expression Profiling of Liver Disease [J], Biotechniques, 2003, 35(3): 456-458, 460.
    [225] Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of Candidate Control Genes for Diagnosis and Residual Disease Detection in Leukemic Patients Using 'Real-Time' Quantitative Reverse-Transcriptase Polymerase Chain Reaction (Rq-Pcr) - a Europe against Cancer Program [J], Leukemia, 2003, 17(12): 2474-2486.
    [226] Schmid H, Cohen CD, Henger A, et al. Validation of Endogenous Controls for Gene Expression Analysis in Microdissected Human Renal Biopsies [J], Kidney International, 2003, 64(1): 356-360.