降低MC-CDMA系统峰平比技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多载波码分多址(MC-CDMA)技术是正交频分复用(OFDM)技术与码分多址(CDMA)技术相结合方案中的一种技术,该技术将OFDM技术应用到CDMA系统中,降低了CDMA系统的数据速率,增强了处理高速数据业务的能力。它继承了OFDM技术和CDMA技术的优良特性,在高速数据传输方面有独特的优势,具有抗频率选择性衰落,抗符号间干扰,频谱利用率高等特点。并且其多载波调制和解调可以利用离散傅立叶变换(DFT)来实现,能极大地降低系统的复杂度。
     与任何多载波调制技术一样,MC-CDMA信号是许多独立子载波信号的叠加,其包络服从高斯分布。因此,其峰值平均功率比(PAPR)较大,导致对系统前端放大器的线性动态范围要求较高,这一要求严重限制了MC-CDMA的实际应用。因此,本文对如何降低系统的PAPR进行了研究并提出了一些解决方案。
     本文首先,介绍了MC-CDMA通信系统、PAPR抑制技术的研究现状等,为以下的研究奠定理论基础并指出了研究方向。接着,分析了几种常用的扩频码及一些扩频码的PAPR特性,以避免使用具有较高PAPR的扩频序列作为扩频码。
     选择应映射法(SLM)是一种降低MC-CDMA系统PAPR的方法。为了研究在SLM中,相位序列的选取对降低系统PAPR的影响。在对常见的几种序列进行介绍的基础上,利用它们作为系统的相位序列,并且进一步分析了同一相位序列取不同长度和系统取不同相位序列个数集时的情况。仿真结果表明,在实际应用中相比其它序列,可以用Gold伪随机序列作为实际的相位序列;系统的PAPR随着所用相位序列长度的增加而增大;随着所用相位序列的个数集的增大而减小。
     本文提出了一种新的降低MC-CDMA系统PAPR和减少部分传输法(PTS)运算复杂度的方法,即非均匀分割—次优算法。仿真结果表明,该方法与传统的均匀分割—最优算法相比,在一定仿真参数下性能仅下降约0.4 dB,但计算复杂度却由指数级运算降为了线性级运算。
     为了更好地降低MC-CDMA系统的PAPR和PTS运算的复杂度,提出了一种使最优二进制相位序列(OBPS)算法运算量减半的方法,并对双层相位序列(DLPS)算法提出了几种改进算法。仿真结果表明,改进算法既有效地减低了系统的PAPR,又使运算复杂度较原算法大大降低了。
Multi-carrier code division multiple access (MC-CDMA) technology is a kind of combination of OFDM and CDMA technology. The technology uses OFDM into the CDMA system, it reduces the data rate of the CDMA system, and enhances high speed data processing service ability. It is inherited from the OFDM and the CDMA technology. It has the unique superiority at the high speed data transmission, and has the anti-frequency selectivity ability, it also can against inter symbol interrupt. It has high spectrum utilization and, its modulation and demodulation could use discrete Fourier transform (DFT), it also can reduce the system complexity.
     As the same of other multi-carrier technology, one of the major disadvantages of MC-CDMA is its high peak-to-average power ratio (PAPR), because the MC-CDMA signal is summed by many independent sub-signals and the signal envelope distribution is Gaussian distribution. So it requires a long linear range of the high power amplifier (HPA), otherwise a significant power efficiency penalty and the degradation of the bit error rate (BER) will be occured. To overcome this drawback, in this paper, we investigate the PAPR problem and propose some solutions about the problem.
     We first discuss the construction of MC-CDMA system and the development of PAPR reduction methods,which provides the foundation of following discussion. Then analyze some commonly used spreading sequences and PAPR characteristics of some spreading codes, so as to avoid using the spreading code with high PAPR.
     Selected mapping (SLM) is a method to reduce PAPR of MC-CDMA system .In order to study the impact of different phase sequences on the reduction of the PAPR in MC-CDMA system using SLM. Based on the introduction of the usually selected as the phase sequences, we point out that they can be used as the phase sequences of the MC-CDMA system, and then more deeply analyze the PAPR characteristics for a phase sequence when its length is different and the number of the phase sequence set is different. Simulation results show that, compared with other sequences, Gold sequence can be used for the phase sequence in the actual system.for the same phase sequence, the shorter phase sequence we used, the smaller PAPR value we will get; the number of the phase sequence set is bigger, the smaller PAPR value we can get.
     In order to reduce the PAPR of MC-CDMA system and the computational complexity of partial transmit sequence(PTS) efficiently, a new method, un-uniform partition—suboptimal algorithm, is proposed in this paper. The simulation results show that , as compared with tradition method, uniform partition—optimal algorithm, the PAPR value increases only about 0.4 dB on some certain simulation parameters, while the computational complexity is reduced from exponential order operation to linear order operation.
     In order to reduce the system PAPR and the computational complexity of PTS efficiently, a new method which can reduce half of the OBPS algorithm computational complexity is proposed in this paper, and then propose several improved methods of DLPS algorithm. The simulation results show that, the proposed improved methods not only reduce the system PAPR, but also reduce the computational complexities heavily as compared with the traditional algorithm.
引文
[1]廖明.基于OFDM的蜂窝移动通信系统关键技术研究[D].重庆:重庆大学博士论文.2003,12.
    [2]刘斯斯. MC-CDMA系统中峰平比抑制技术研究[D].西安:电子科技大学硕士论文. 2007, 6.
    [3]黄秋波.多载波CDMA中若干关键技术的研究[D].上海:复旦大学博士论文.2003,12.
    [4]汪裕民著. OFDM关键技术与应用[M].机械工业出版社, 2006, 180.
    [5] Bingham, John A.C. Multicarrier modulation for data transmission: an idea whose time has come. IEEE com mag.1990,28(5): 5-14.
    [6] Yee N., Linnartz J.P. and Fettweis G. Mufti-carrier CDMA in indoor wireless radio networks[C]. Proc. of IEEE PIMRC'93, Yokohama, Japan,1993:109-113.
    [7] Fazel K., Papke L.On the performance of convolutionally-coded CDMA/OFDM for mobile communication system[C]. Proc. of IEEE PIMRC'93, Yokohama, Japan: 468-472.
    [8] Chouly A., Brajal A. and Jourdan S. Orthogonal multicarrier techniques applied to direct sequence spread spectrum CDMA systems[C], IEEE Global Telecommunications Conference,GLOBECOM'93, Houston, 1993,(3):1723-1728.
    [9] Stirling-Gallacher R.A.,Povey GJ.R.Comparison of MC-CDMA with DS-CDMA using frequency domain and time domain RAKE receivers[J]. Wireless personal com, 1995, 2(1-2):105-119.
    [10] Chen Q, Sousa E.S. and Pasupathy S. Performance of a coded Mufti-Carrier DS-CDMA system in mufti-path fading channels[J]. Wireless personal com, 1995, 2(1-2):167-183.
    [11] Fazel K., Kaiser S. and Robertson P. etc. A concept of digital terrestrial television broadcasting[J]. Wireless personal com, 1995, 2(1-2):9-27.
    [12] Fazel K., Kaiser S .and Schnell M. A flexible and high performance cellular mobile communication system based on orthogonal mufti-carrier SSMA[J]. Wireless personal com, 1995, 2(1-2):121-144.
    [13] Sourour E.A., Nakagawa M. Performance of orthogonal multicarrier CDMA in a multipath fading channel [J]. IEEE tans com, 1996, 44(3):356-367
    [14] Kondo S. and Milstein L.B. Performance of multicarrier DS CDMA systems [J]. IEEE tans com, 1996, 44(2):238-246.
    [15] Hara S. and Prasad R. Overview of multicarrier CDMA [J]. IEEE com mag, 1997,35(12):126-133.
    [16] Kun-Wah Yip and Tung-Sang Ng.Tight error bounds for asynchronous multicarrier CDMA and their application [J].lEEE com letters, 1998, 2(11):295-297.
    [17] Hara S, Prasad R. Design and Performance of multicarrier CDMA systems in frequency-selective Rayleigh fading channels [J].IEEE traps.veh.tech, 1999, 48(5):1584-1595.
    [18] Lok T.M. and wong T.F. Transmitter and receiver optimization in multicarrier CDMA systems [J]. IEEE traps com, 2000, 48(7): 1197-1207.
    [19] VM.DaSilva and E.S. Sousa. Performance of orthogonal CDMA codes for quasisynchronous communication systems[C].in Proceedings IEEE ICUPC'93, Ottawa, Canada.1993,995-999
    [20] L.Vandendorpe. Multitone direct sequence CDMA system in an indoor wireless environment [C]. Proceedings IEEE First Symposium of Communications and Vehicular Technology, Delft, the Netherlands, Oct. 1993, 411-418
    [21] R.Prasad and Hara S., An overview of Multicarrier CDMA [C], Proc. of the 4th IEEE International Symposium on spread spectrum techniques and Applications, Sept., 1996, 107-114.
    [22] Daffara F., Adami O.. A new frequency detector for orthogonal multi-carrier transmission techniques[C]. in Proc. IEEE Vehicular Technology Conference, Chicago, USA, 1995,804-809
    [23] Fazel K., Kaiser S., Robertson P., Ruf M.J.. A concept of digital terrestrial television broadcasting[J]. Wireless Personal Communications, 1995, 2(1-2):9-27.
    [24] B.S.krongold, K.Ramchandran, D.L.Jones. Computationally efficient optimal Power allocation algorithm for multicarrier communication systems [C]. Proc. ICC' 98, Atlanta, GA, 1998, l018-1022.
    [25] H.Ochiai, H.Imai. On the distribution bf the Peak-to-average power ratio in OFDM signals. IEEE Trans. on Commun., 2001, 49(2):282-289.
    [26] R.van Nee, and A.Wild. Reducing the peak-to-average power ratio of OFDM [C].in Proc. IEEEVTC’98, 1998, 2072-2076.
    [27] N.Dinur, D.Wulich, Peak to Average Power Ratio in Amplitude Clipped High Order OFDM [J]. IEEE commun. Mag., 1998, 684-687.
    [28] L.R.Welch. Lower bounds on the maximum cross correlation of signals [J]. IEEE Trans Inform. Theory, 1974, 20(3):397-399
    [29]高红梅.多载波CDMA系统的改进方案与序列应用研究[D].成都:西南交通大学硕士论文2007,4.
    [30] Ramjee Prasad, Shinsuke Hara. An Overview of Multi-Carrier CDMA [C]. Porc. of IEEE ISSSTA,1996, 107-114
    [31] Kaiser S., T-H. Lee, R.Prasad. OFDM-CDMA versus DS-CDMA: performance evaluation for fading channels[C]. Proc. of IEEE ICC'95, 1995, 1722-1726.
    [32] Shengli Zhou, Georgios B. Giannakis. Comparison of digital multi-carrier with direct sequence spread spectrum in the presence of multipath [C]. Proc.ICASSP2001, 2001, 2225-2228.
    [33] R.Prasad and Hara S.. An overview of Multicarrier CDMA [C].Proc. of the 4th IEEE International Symposium on spread spectrum techniques and Applications, 1996, 107-114.
    [34] Hideki O, Hideki I. On the Distribution of the Peak-to-Average Power Ratio in OFDM Signals [J]. IEEE Trans. On Commun, 2001, 49(2): 282-289.
    [35] Nati Dinur, Dov Wulich. Peak-to-average power ratio in high-order OFDM [J]. IEEE Trans. on Commun., 2001, 48(6):1063-1072.
    [36] Jong J H, Yang K, W.E. S, et al. Power optimization of OFDM systems with do bias controlled Nonlinearamplifiers[C]. IEEE VTC, 1999, (1): 268-272.
    [37] Diner N, Wulich D. Peak to average power ratio in amplitude clipped high order OFDM [J]. IEEE MIL.COM, 1998, (2): 684-687.
    [38] Park Y, Miller S L. Peak-to-Average Power Ratio Suppression Schemes in DFT Based OFDM[C]. IEEE VTC, 2000, 292-297.
    [39]颜彪,杨娟,薛波等. MC-CDMA系统峰平功率比分布的研究[J].扬州大学学报,2004,(5):7-8.
    [40] Ermolova N.Y , Vainikainen P. On the relationship between peak factor of a multicarrier signal and aperiodic autocorrelation of the generating sequence [J]. IEEE com letters, 2003, 7(3): 107-108.
    [41] Freiberg L. Annamalai A. and Bhargava. V. K. Crest factor reduction using orthogonal spreading codes in multi-carrier CDMA systems[C]. IEEE PIMRC' 97,1997, 120-124.
    [42]吴俊,王艺,吴伟陵.一种降低MC-CDMA信号峰值平均值功率比的方法[J].电子学报,1999,27 (11):50-52.
    [43]陈吉忠,方琰葳.利用格雷互补序列降低多载波CDMA信号的峰平比[J].南京航空航天大学学报,2003,34(4):388-391.
    [44] Popovic B M. Spreading Sequences for Multi-Carrier CDMA System [A]. CDMA Techniques and Applications for Third Generation Mobile Systems [C]. London:1997. 8/128/6.
    [45]邵源渊,杨维,贾怀义. MC-CDMA系统中信号的峰均功率比[J].北京交通大学学报,2005,29(5):44-46
    [46] Myeong-Hwan Cho, Seong-Jae Lee, JiYu Jin, et al. A study on the PAPR using variable code sets (VCS) in mufti-user MC-CDMA system [C]. IEEE Vehicular Technology Conf., 2004,5: 3448-3451.
    [47] Amirali H. Talasaz and Masumeh Nasiri, Peak-to-Average reduction in MC-CDMA Based on using different spreading and Despreading codes[C]. 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609).2002, (2):665-668.
    [48] Yang L., Chen R. S., Siu Y. M. etal. PAPR Reduction of an OFDM Signal by Use of PTS with Low Computational Complexity [J]. IEEE Transactions on Broadcasting.2006, 52:83-86.
    [49] Han S H, Lee J H. Reduction of PAPR of an OFDM signal by partial transmit sequence technique with reduced complexity[C]. IEEE GLOBECOM'2003, 2003, 3:1326-1329.
    [50] Wang C L, Hsu M Y, Ouyang Y. A low-complexity peak-to-average power ratio reduction technique for OFDM systems[C]. IEEE GLOBECOM'2003, 2003, 4:2375-2379.
    [51] Chen H, Pottie G J, An orthogonal projection-based approach for PAR reduction in OFDM [J]. IEEE Commun. Lett., 2002, 6 (5):169-171.
    [52] Naoto Ohkubo and Tomoaki Ohtsuki. A Peak to Average PowerRatio Reduction of Multicarrier CDMA Using Selected Mapping" IEEE 56th Vehicular Technology Conference Proceedings [C]. 2002, (4):2086-2090.
    [53] Hwang C S. Peak power reduction method for multicarrier transmission [J]. Electronics Lett., 2001, 37(17): 1075-1077.
    [54] Ahn H J, Shin Y, Im S. A block coding scheme for peak-to-average power ratio reduction in an orthogonal frequency division multiplexing system [C]. IEEE VTC'2000,2000, 56-60.
    [55] Vadde V. PAPR reduction by envelope stabilization using partial response signaling in OFDM systems[C]. IEEE RAWCON'2001,2001,197-201.
    [56] Slitnane S B. Peak-to-Average Power Ratio Reduction of OFDM Signals using Pulse Shaping[C]. IEEE Globecom'2000, 2000, 1412-1416.
    [57] M.J.E. Golay Complementary series [J].IEEE Trans. Inform. Theory, 1961, 7:82-87.
    [58] Naoto ohkubo, tomoaki ohtsuki. Design criteria for phase sequences in selected mapping [C]. IEICE Trans. Commun, 2003, (86):9.
    [59] H.Donelan, T.O'Farrell. Method for generating sets of orthogonal sequences [J]. Electronics Letters 1999, 35:1537-1538.
    [60] R.Sivaswamy. Multiphase Complementary codes [J]. IEEE Trans. Inform. Theory, 1978, 24:546-552.
    [61]黄成才,王慕坤. Gold系列码性能分析[J].哈尔滨理工大学学报,2007,12(4):30-32
    [62]吴明捷,马景兰,土伟.直接系列扩频通信中的伪随机码[J].工矿自动化,2002(3):11-14.
    [63] Leonard J, Cimini Jr, Nelson R. Sollenberger. Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences [J]. IEEE Commun. Lett., 2000, 4(3):86-88.
    [64] Jayalath A D S, Tellainbura C. Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal [J]. IEEEE lec. Lett., 2000, 36(14):1226-1228.
    [65] KANG S. G., KIM J. G., JOO E. K, A novel subblock partition scheme for partial transmit sequence OFDM [J]. IEEE Transactions on Broadcasting, 1999, 45(3):333-338
    [66] HO W S, MADHUKUMAR A S, CHIN F. Peak- to-Average Power Ratio Reduction Using Partial Transmit Sequences: A Suboptimal Approach Based on Dual Layered Phase Sequencing [J]. IEEE Trans. Broadcast. 2003, 49(2):225 -231.