乙酰葛根素对氧糖剥夺诱导海马神经元凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及研究目的
     中风为全球性常见病和多发病,具有发病率高,致残率高,死亡率高,严重危害人们的健康,给国家,社会,家庭及个人带来了沉重的精神和生活负担。到目前为止,中风的发病原因及发生发展的分子生物学机制尚未明确,缺乏对多数患者安全有效的治疗措施和药物。tPA,是唯一被美国FDA批准的用于治疗中风的药物。但其治疗时间窗仅局限于发病后的4.5h内。超过此时间段应用,则会导致严重的出血及脑水肿等不良反应。现实中,由于诸多因素的影响,绝大多数的病人在发病后的4.5h不能到达医疗机构,因此,也就失去了使用tpA进行溶栓治疗的机会,并且,tpA可能具有神经毒性和或导致神经元的凋亡反应等不良反应。因此,中风的治疗成为全球医务工作者研究的重点之一。在目前已有的中风发病机制中,中风病人脑区内的神经元发生的凋亡反应引起了越来越多学者的重视,并被认为是治疗中风的重要的靶向目标之一。
     葛根素是从中药葛根中提取的异黄酮类化合物,临床上用于治疗心、脑血管等疾病的已有20余年。但是,葛根素不良反应较多,且脂溶性低,不能有效的通过血脑屏障,限制了其在临床的广泛使用。乙酰葛根素是在葛根素的基础上经结构改造引入侧链得到的新型异黄酮类化合物,与葛根素相比,乙酰葛根素的脂溶性显著提高,能够通过血脑屏障。已有体外动物实验表面,乙酰葛根素能显著提高缺氧复氧神经元的细胞活力,降低细胞凋亡率,提高胞内bcl-2和Bax的表达,提示对缺氧缺糖神经元具有保护作用,是一个具有开发前景的药物。
     本实验在课题组前期工作的基础上进一步研究乙酰葛根素对脑缺血再灌注损伤的作用。我们选用大鼠胎鼠的海马神经元作为研究对象,采用体外培养的神经元缺氧缺糖再灌注法模型,旨在观察受缺氧缺糖损伤的海马神经元中神经元活力,神经元凋亡发生率和凋亡相关因子的变化以及乙酰葛根素对上述所述项目的影响。本实验通过动态检测缺氧缺糖再灌注神经元活力,凋亡发生率以及乙酰葛根素的作用,筛选出观测最佳时间点,并以此时间点作为后续实验指标标本收集点,测定凋亡相关印迹的变化以及乙酰葛根素的作用,观察该药物对大鼠胎鼠海马神经元的抗凋亡作用并对涉及到的机制做深入研究,为研究开发乙酰葛根素用于治疗缺血性脑血管疾病提供实验依据。
     本实验分为二个部分:
     第一部分:乙酰葛根素对氧糖剥夺诱导海马神经元损伤的细胞活力及形态学影响
     第二部分:乙酰葛根素对氧糖剥夺诱导海马神经元凋亡相关因子的影响
     第一部分:乙酰葛根素对氧糖剥夺诱导海马神经元损伤的细胞活力及形态学影响
     目的
     采用体外分离培养海马神经元,缺氧缺糖后复氧复糖建立缺血再灌注模型,利用形态学上和细胞活力的变化,观察乙酰葛根素对糖氧剥离诱导海马神经元损伤的影响,并筛选出后续实验的最佳时间点。
     方法
     取孕17.5-18.5天的wistar大鼠的胎鼠,剥离海马神经元进行原代培养。每天于倒置显微镜下观察神经元生长状况,每三天半量换液一次,至生长8d后取活力好的神经元进行后续实验。
     实验分组及OGD/R
     根据药物浓度的不同实验共分5组:
     1.正常对照组Neurobasal medium(NB)+B27培养至8天后,换成无B27的NB的培养液一天,后吸弃原培养液,换成温暖的含糖D-Hank's液,置入C02培养箱,180min后换成NB完全培养液(不加B27)继续孵育至预定时间。
     2.低糖低氧再灌注损伤组无糖D-Hank's液预先放入厌氧培养箱(95%N2/5%C02)中30min,使氧的浓度<1%。神经元以无糖D-Hank's液清洗4次,每次为原培养液体积的2/3,使葡萄糖终浓度小于1mM。换无糖D-Hank's后将神经元放入厌氧罐内,自开始换液计时至180mmin,吸弃无糖D-Hank's,换以NB完全培养液(不加B27),置入C02培养箱继续孵育至预定时间,以此模拟体内缺血再灌注的过程。
     3.低浓度乙酰葛根素组换无糖D-Hank's液及OGD结束改为NB完全培养液(不加B27)均时添加入乙酰葛根素,使终浓度为0.1μM,其余处置同2组。
     4.中浓度乙酰葛根素组换无糖D-Hank's液及OGD结束改为NB完全培养液(不加B27)均时添加入乙酰葛根素,使终浓度为0.4gM,其余处置同2组。
     5.高浓度乙酰葛根素组换无糖D-Hank's液及OGD结束改为NB完全培养液(不加B27)均时添加入乙酰葛根素,使终浓度为1.6gM,其余处置同2组。
     在OGR-12h、24h和36h分别采用倒置显微镜,MTT法和DAPI法动态的观测了不同时间段中神经元形态、活力及神经元发生凋亡的变化,在对上述检测方法重复三次测量并统计分析结果后选择OGD/R-24h作为后续实验的主要时间点;
     OGD/R-24h,采用末端脱氧核苷酸酶转移酶介导的duTP缺口末端标记术(TUMEL)法检测神经元发生凋亡的状况并观察不同浓度的乙酰葛根素对神经元凋亡的影响;
     结果
     1.神经元经OGD处理再灌注12,24h及36h,光学显微镜下观察,神经元胞体的折光性下降,轴突缩短,甚至消失,部分胞体溶解,仅可见散在的细胞核。加入0.1μM,0.4μM和1.6μM的乙酰葛根素则能明显改善OGD/R对神经元的形态学损伤,减少受损神经元数目,表明乙酰葛根素对缺糖缺氧引起的神经元损伤具有保护作用。
     2.在体外OGD/R-12h,24h及36h可直接引起神经元损伤,MTT法检测神经元的活力降低,0.1μM,0.4μM和1.6μM的乙酰葛根素对体外OGD/R引起胎鼠海马神经元的损伤有保护作用,可提高神经细胞的活力,高浓度组的乙酰葛根素效力明显优于中浓度和低浓度组。
     3. DAPI染色法显示,OGD/R-12h,24h及36h后,神经元中染色质固缩,向外周集聚并呈成颗粒状的凋亡细胞数明显增多。高,中和低浓度的乙酰葛根素对OGD/R-12h均无保护作用,OGD/R-24h和36h二个时间点中,0.41μM和1.6μM的乙酰葛根素能降低凋亡的阳性细胞数,但0.1μM的乙酰葛根素未能显示有保护作用,并且,统计结果显示,在OGD/R-24h, DAPI阳性细胞数达到最高峰,超过24h, DAPI染色的阳性细胞数逐渐减小,故本实验选择OGD/R-24h作为后续指标的主要观测时间点。
     4. OGD/R-24h可引起海马神经元发生凋亡,凋亡指数升高。TUNEL法显示0.1μM,0.4μM和1.6μM的乙酰葛根素能显著降低神经元中凋亡阳性细胞数,使得细胞凋亡指数下降,显示了对缺氧缺糖神经元的保护作用。
     结论
     1.不同时间段的OGD/R可使体外培养的海马神经元受损,活力下降,并可致神经元发生凋亡,凋亡发生的高峰时间为OGD/R-24h。
     2.乙酰葛根素可以减轻神经元的损伤,提高神经元的活力,维持神经元结构的完整性
     3.乙酰葛根素在0.1μM,0.4μM和1.6μM的浓度可减少凋亡的阳性细胞数,显示其对缺氧缺糖再灌注损伤的保护作用。
     第二部分:乙酰葛根素对糖氧剥夺诱导海马神经元凋亡相关因子的影响
     目的
     利用第一部分实验筛选出的药物效应时间点,从分子水平检测乙酰葛根素对凋亡相关因子变化的影响,为一线乙酰葛根素临床治疗脑缺血再灌注损伤提供实验依据。
     方法
     神经元的体外培养及模型建立同第一部分。实验时间点为OGD/R-6h,24h。实验分组为低糖低氧再灌注损伤组,低浓度乙酰葛根素组,中浓度乙酰葛根素组,高浓度乙酰葛根素组。
     OGD/R-6h,采用荧光分光光度法观察caspase-8活力的变化及加入乙酰葛根素后蛋白水解酶活力的改变;
     OGD/R-24h采用荧光分光光度法观察caspase-3活力的变化及加入乙酰葛根素后此种蛋白水解酶活力的改变;
     OGD/R-24h,处理后的神经元经离心收集蛋白,运用免疫印迹法检查神经元缺氧缺糖损伤后凋亡相关蛋白Fas-L, FADD, TNF-α及Hsp70的变化及添加乙酰葛根素后对上述蛋白水平的影响;
     OGD/R-24h,利用半定量RT-PCR法检测HIF-1αmRNA, NF-κBmRNA和P53mRNA的表达和乙酰葛根素的影响。
     结果
     1.0.1μM,0.4μM和1.6μM的乙酰葛根素能改善OGD/R引起的胎鼠海马神经元中caspase活力的变化。荧光分光光度法中,OGD/R-6h使得caspase-8蛋白水解酶的活力显著升高,而不同浓度的乙酰葛根素组可使升高的caspase-8活力下降。OGD/R-24h, Caspase-3的活力升高,与对照组相比,低、中和高浓度的乙酰葛根素使得升高的Caspase-3活力不同程度的降低。
     2. OGD/R-24h,海马神经元中Fas-L, FADD和TNF-α表达量增高,免疫印迹法显示Fas-L, FADD和TNF-α条带面积及灰度均升高。加入不同浓度的乙酰葛根素后,结果显示上述蛋白的合成均减少,显示对OGD/R-24h后神经元的保护作用。
     3.乙酰葛根素能增强海马神经元抗损伤的能力。OGD/R-24h, Hsp70合成增加,不同浓度的乙酰葛根素使得的Hsp70升高更加明显。
     4. OGD/R-24h可诱导海马神经细胞表达HIF-1αmRNA, NF-κBmRNA和P53mRNA的表达增加。加入0.1μM,0.4μM和1.6μMM的乙酰葛根素后24小时行半定量RT-PCR,电泳结果显示HIF-1αmRNA, NF-κBmRNA和P53mRNA条带面积及灰度均降低,结果具有统计学意义。表明乙酰葛根素可以使OGD/R-24h诱导海马神经细胞增加HIF-1αmRNA, NF-κB mRNA和P53mRNA的表达减少。
     结论
     不同时间段的OGD/R可使体外培养的海马神经元受损, Caspase-3及Caspase-8的活力升高,Fas-L, FADD和TNF-α的蛋白合成增加,Hsp70的蛋白合成降低,HIF-1αmRNA, NF-κBmRNA和P53mRNA的表达升高,导致细胞凋亡的发生。乙酰葛根素可以减轻神经元的损伤,0.1μM,0.4μM和1.6μM的乙酰葛根素可使升高的Caspase-3及Caspase-8的活力降低,Fas-L, FADD和TNF-α的蛋白合成下降,Hsp70的蛋白合成升高,并减少HIF-1αmRNA, NF-κBmRNA和P53mRNA的表达,表明乙酰葛根素对缺糖缺氧再灌注所致的海马神经元损伤具有明显的保护作用,可抑制损伤所致的神经元凋亡的发生,减少凋亡的阳性细胞数。乙酰葛根素可通过影响凋亡相关因对海马神经元缺血再灌注损伤发挥脑保护作用。
     意义
     乙酰葛根素属新型异黄酮类化合物,我们的结果显示葛根素乙酰对缺糖缺氧模型鼠神经细胞的抗凋亡保护作用,提示乙酰葛根素在防治脑缺血再灌注损伤方面具有广阔的开发前景。
Background and purpose
     Strok is a common disease in the World and is the first leading cause of death in China. It is characteristered by high rate of incidence, high disability and high mortality. Every year, country and family pay many for treatment this disease. However, the biochemical events that occurs after stroke do not well understand up-to-date, as a result, there lack of effective drugs and measures targeted the therapy for stroke. Tissue-type plasminogen activator (t-PA) is the only therapy approved by the Food and Drug Administration (FDA) for the treatment of acute ischemic stroke, but the therapeutic time window is limited within4.5hours of the onset of ischemic stroke, Beyond4.5h after stroke onset, t-PA administration show increased risk of hemorrhagic conversion and cerebral edema in the infarcted area of brain. For various reasons, the overwhelming majority of patients did not arrive medical institutions after stroke onset, so, they do not benefit from this therapeutic strategy. And, it is well known that tPA has neurotoxicity and could lead to neuronal apoptosis. The therapy of stroke has become one of the most important aims for the global medical workers. At present, the apoptosis that occurs in the ischemic had arised more and more attentions and been thought one of the targeted theragy for the stroke.
     Puerarin is an isoflavones that extracted from the traditional Chinese medicine, Pueraria lobata (Willd) Ohwi, It has been pasted more than20years since study Puerarin in laboratory to clinical cardiovascular and cerebrovascular diseases treatment. But puerarin has a poor lipid-soluble and can not permeate through blood-brain barrier (BBB), this shortcoming limits its extensive use in clinical. Acetylpuerarin, a new isoflavone compound, whose structure was modified based on puerarin, has been investigated. Acetylpuerarin has higher solubility in lipid than puerarin and can permeate BBB easily. Several studies have revealed that acetylpuerarin has protective effects against brain ischemia-reperfusion injury by increasing the expression of bcl-2and Bax, inhibiting cell apoptosis. Acetylpuerarin has a broad prospects in the treatmet of ischemic stroke.
     In this study, we furture explore the effect of acetylpuerarin on the ischemia/reperfusion. OGD/R-induced hippocampal neurons injured model were used to study the vibility, apoptosis and apoptic relating factors and the protective effects of acetylpuerarin. We choose a better time point by statistical analysis for the lasted study. We hope, our founding may do some use in the research and development of acetylpuerarin.
     Our study includes the following two parts:
     1. Effect of acetylpuerarin on the cell viability and morphology of hippocampal neurons following oxygen-glucose deprivation/reperfusion in rats.
     2. Acetylpuerarin reduces apoptosis of hippocampal neurons following oxygen-glucose deprivation/reperfusion in rats.
     Part I Effect of acetylpuerarin on the cell viability and morphology of hippocampal neurons following oxygen-glucose deprivation/reperfusion in rats
     Objectiv
     Hippocampal neurons were cultured and OGD/R model was established, the effect of acetylpuearin on the cell viability and morphology following oxygen-glucose deprivation/reperfusion were detected by MTT and inverted microscope. In this part, we choose a best main point for the future research.
     Methods
     Hippocampi were removed from the brains of embryonic day18and Cells were cultured in a medium. Half volume of the medium was changed per3days for each. The following experiments were performed after8days.
     The neurons were divided into five groups according to the concentration of acetylpuearin:
     1.Control group:The primary embryonic hippocampal neurons were incubated in NB with B27for8days, then culture medium was removed and changed into warmLy D-Hank's balanced salt solution with glucose and placed in5%CO2incubator for180min. After that, the neurons were incubated in NB without B27at37℃for scheduled time.
     2. Oxygen-glucose deprivation and reperfusion (O/R) group:The D-Hank's balanced salt solution without glucose was placed in OGD chamber(95%N2/5%CO2)for30min and the oxygen was less than1%. The neuron were then rinsed with OGD buffer4times and transferred to an OGD chamber(95%N2/5%CO2)for3hours. After OGD treatment, the neurons were incubated in NB without B27for scheduled time.
     3. Low concentration of acetylpuearin for OGD/R:as soon as the OGD were taken and replaced in NB without B27, acetylpuerarin was added to medium to0.1μM and incubated for scheduled time. Other treating processes were the same as that of the OGD/R groups.
     4. Middle concentration of acetylpuearin for OGD/R:as soon as the OGD were taken and replaced in NB without B27, acetylpuerarin was added to medium to0.4μM and incubated for scheduled time. Other treating processes were the same as that of the OGD/R groups.
     5. High concentration of acetylpuearin for OGD/R:as soon as the OGD were taken and replaced in NB without B27, acetylpuerarin was added to medium to1.6μM and incubated for scheduled time. Other treating processes were the same as that of the OGD/R groups.
     OGR/R-12h,24h and36h, we use inverted microscope, MTT and DAPI to observed the morphology, viability and apoptosis of neurons. Through statistical analysis, we choose OGD/R-24h as a main point for the future research;
     The effect of acetylpuerarin on hippocampal neuron apoptosis induced by OGD/R-24h were determined with TUNEL (terminal-deoxynucleotidyl transferase mediated nick end labeling) staining.
     Results
     1. With inverted microscope, we observed, that the neurons refraction were decreased, projections were shorten, or even disappear, part of the cell had dissolved, scatterd nucleus.0.1μM,0.4μM and1.6μM acetylpuerarin can significantly improve the morphological injury after the OGD/R, acetylpuerarin show a neuron protection against OGD/R injury.
     2. OGD/R-12h,24h and36h decreased the vibility of neurons. Acetylpuerarin could improve neuronal viability, the value of high concentration of acetylpuerarin treatment increasing neuron survival rates was more obvious than those of middle and low concentrations of acetylpuerarin treatments.
     3. OGD/R treatment resulted in a time-dependent increase in numbers of apoptotic cells with a peak time at24h. Acetylpuerarin could decrease neuron apoptosis in high and middle concentration treatment except for OGD/R-12h, The low concentration of acetylpuerarin has no significant changes for all three scheduled time.
     4. Acetylpuerarin with the concentration of0.1μM,0.4μM and1.6μM μM could inhibit the apoptosis of the injured neurons induced by OGD/R-24h significantly. The influence of acetylpuerarin on hippocampal neuronal cell death with OGD/R was determined with TUNEL staining. Results showed that acetylpuerarin decreased the apoptotic index.
     Conclusion
     1. OGD/R could damage the cultured hippocampal neurons at different points in vitro, decrease the cell viability and cause neurons apoptosis, the peak time of apoptosis is OGD/R-24h.
     2. Acetylpuerarin can alleviate neuronal damage, enhance the vitality of neurons and maintain the structural integrity of neurons.
     3. Acetylpuerarin in the concentration of0.1μM,0.4μM and1.6μM could reduce the number of apoptosis positive cells, show a protective effect on the ischemic-reperfusion injury.
     Part Ⅱ Acetylpuerarin reduces hippocampal neuron apoptosis following oxygen-glucose deprivation/reperfusion in rats
     Objective
     Using the point from the first part, the effect of acetylpuerarin on the apoptosis related factors were detection from the change of molecular level, provide effective theory basis for the clinical treatment of cerebral ischemia/reperfusion injury.
     Method
     Hippocampal neurons cultured and model established as same as the part Ⅰ. The point of experiment were OGD/R-6h,24h. The groups were oxygen-glucose deprivation and reperfusion (O/R) group, Low concentration of acetylpuearin for OGD/R, middle concentration of acetylpuearin for OGD/R, high concentration of acetylpuearin for OGD/R, respectively.
     The activities of caspase-8and caspase-3of hippocampal neurons were detected by fluorescence spectrophotometry; The effect of acetylpuerarin on OGD/R-24-h-induced Fas-L, FADD, TNF-αand Hsp70were determined by western blot on cultured hippocampal neuron in vitro.
     It were used the methods of RT-PCR to investigate the level of HIF-lamRNA, NF-κB mRNA and P53mRNA and the influence of acetylpuerarin on hippocampal neuronal cell death with OGD/R-24h.
     Results
     1.0.1μM,0.4μM and1.6μM acetylpuerarin could inhibit the activities of caspase-8and caspase-3with OGD/R. The examination with fluorescence spectrophotometry method showed that acetylpuerarin treatment led to an decrease in the expression of enzymatic activity of caspase-8and caspase-3.
     2. The expression of Fas-L, FADD and TNF-awere examined through western blotting and the results showed0.1μM,0.4μM and1.6μMacetylpuerarin could decrease the Fas-L, FADD and TNF-α after OGD/R was added to the cultured.
     3. After OGD/R-24h, the level of Hsp70increased, whereas Hsp70significantly increased when neurons cultured with0.1μM,0.4μM and1.6μM acetylpuerarin.
     4.0.1μM,0.4μM and1.6μM acetylpuerarin could inhibited the expression of HIF-1α mRNA and P53mRNA24h after OGD/R was added to the cultured cell. Through the reverse transcriptase polymerase chain reaction, we find the area and the mean gray value of HIF-1α mRNA, NF-κBmRNA and P53mRNA all decrease.
     Conclusion
     OGD/R could injuried hippocampal neurons at different point, increasing the viability of caspase-3and8, the level of Fas-L, FADD and TNF-aprotein were increasing, decreasing the level of Hsp70, increasing the expressing of HIF-la mRNA, NF-κB mRNA and P53mRNA. Acetylpuerarin had protective effects against injury induced by OGD/R in hippocampal neurons via attenuating the level of Fas-L, FADD and TNF-α, and down-regulating the activities of caspase-8and caspase-3, as well as the level of HIF-1α mRNA, NF-κBmRNA and P53mRNA, and enhanced the expression of the Hsp70. These results show that the protection of acetylpuerarin is related its anti-apoptosis and effect some apoptosis related factors.
引文
[1]. WHO Global Infobase, Date for Saving Lives.
    [2]. www.moh.gov.cn/publicfiles/business/htmLfiles/zwgkzt/ptjnj/year2010/index201 0. htmL.
    [3]. WHO.The world health report 2000:Health systems-improving performa-nce.Geneva:WHO,2000.
    [4]. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, etal. Heart disease and stroke statistics-2011 update:a report from the American Heart Association. Circu lation,2011,123(4):e18-209.
    [5]. Zablocka B, Dluzniewska J, Zajac H, Domanska-Janik K. Opposite reaction of ERK and JNK in ischemia vulnerable and resistant regions of hippocampus: involvement of mitochondria. Brain Res Mol Brain Res,2003,110(2):245-252.
    [6]. Lukowiak K, Haque Z, Spencer G, Varshay N, Sanqha S, Syed N.Long-term memory survives nerve injury and the subsequent regeneration process. Learn Mem, 2003,10(1):44-54.
    [7]. Sandercock P, Lindley R, Wardlaw J, Dennis M, Lewis S, Venables G etal. The third international stroke trial (IST-3) of thrombolysis for acute ischaemic stroke. Trials,2008,9:37.
    [8]. Mosley I, Morphet J, Innes K, Braitberg G.. Triage assessments and the activation of rapid care protocols for acute stroke patients. Australas Emerg Nurs J,2013, 16(1):4-9.
    [9]. Adams HP, Del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, etal. Guidelines for the early management of adults with ischemic stroke, circulation,2007, 115(20):e478-534.
    [10]. IST-3 collaborativ group. Effect of thrombolysis with alteplase within 6 h of acute ischaemic stroke on long-term outcomes (the third International Stroke Trial [IST-3]):18-month follow-up of a randomised controlled trial. Lancet Neurol,2013, 12(8):768-776.
    [11]. He J, Kwon Y, Li C, Zhang XQ, Zhao JG. Several considerations in using traditional Chines patient medicine for cerebral infarction. Chin J Integr Med.2012, 18(8):571-574.
    [12]. Wu B, Liu M, Liu H, Li W, Tan S, Zhang SH, Fang Y. Meta-analysis of traditional chinese patent medicine for ischemic stroke. Stroke,2007,38:1973-1979.
    [13]. 杨嘉珍,潘洪平,莫祥蓝,李吕力,焦伟,黄进,等.葛根素对实验性缺血性脑血管病保护作用的细胞分子机制研究.广西医学,2006,28(1):31-34.
    [14]. 熊建群,殷建瑞,邱少东,李应华.急性缺血性脑血管病患者颈内动脉血流速度直方图及葛根素治疗后的变化.广州医学院学报,2007,35(3)39-41.
    [15]. 高鹏,夏成青,刘禹庚,等.全脑缺血再灌注后脑组织诱导型一氧化氮合酶的动态改变及葛根素干预的实验观察.北京朝阳医院学报,2000,5(2):150-153.
    [16]. 杨黎,何世银.葛根素对大鼠脑缺血再灌注后炎性细胞因子变化的影响[J].中国老年学杂志,2003,23(3):173-174.
    [17]. Lou HY, Wei XB, Zhang B, Sun X, Zhang XM.Hydroxyethylpuerarin attenuates focal cerebral ischemia reperfusion injury in rats by decreasing TNF-a expression and NF-kB activity. Yao Xue Xue Bao,2007,42(7):710-715.
    [18].侯丽,魏欣冰,李雪梅,仲英,左春旭,张岫美。乙酰葛根素对局灶性脑缺血再灌注损伤的抗脂质过氧化作用.中国药学杂志.2007,42(19):1469-1472.
    [1 9]. 侯丽,魏欣冰,李雪梅,张岫梅,仲英,左春旭.乙酰葛根素对大鼠局灶性脑缺血再灌注损伤的清除羟自由基作用.山东省药学第一届学术年会论文集(上).2005-11.
    [20]. Liu R, Wei XB, Zhang XM. Effects of acetylpuerarin on hippocampal neurons and intracellular free calcium subjected to oxygen-glucose deprivation/reperfusion in primary culture. Brain Re,2007,1147:95-104.
    [21]. Rosamond W, Flegal K, Friday K, Go A, Greenlund K, Haase N,et al. Heart disease and stroke statisticse 2007 Update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2007,115(5):e 69-171.
    [22]. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics-2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation,2009,119(3):480-486.
    [23]. Degos V, Peineau S, Nijboer C, Kaindl AM, Sigaut S, Favrais G, etal. G protein-coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammation-induced sensitization to excitotoxic neurodegeneration. Ann Neurol,2013,73(5):667-678.
    [24]. Menini T, Ikeda H, Kimura S, Gugliucci A. Circulating soluble RAGE increase after a cerebrovascular event. Clin Chem Lab Med,2013,13:1-8.
    [25]. Tajiri N, Dailey T, Metcalf C, Mosley YI, Lau T, Staples M etal. In vivoanimal stroke models:a rationale for rodent and non-human primate models. Transl Stroke Res,2013,4(3):308-321.
    [26]. Elijovich L, Chong JY. Current and future use of intravenous thrombolysis for acute ischemic stroke. Curr. Atheroscler Rep,2010,12(5):316-321.
    [27]. Adams RJ, Albers G, Alberts MJ, Benavente O, Furie K, Goldstein LB, et al. American Heart Association, American Stroke Association. Update to the AHA/ASA recommendations for the prevention of stroke in patients with stroke and transient ischemic attack. Stroke,2008,39(5):1647-1652.
    [28]. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP Jr. American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator:a science advisory from the American Heart Association/American Stroke Association. Stroke,2009, 40(8):2945-2948.
    [29]. IST-3 collaborative group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, etal. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]):a randomised controlled trial. Lancet, 2012,379(9834):2352-2363.
    [30]. Albers GW, Amarenco P, Easton JD, Sacco RL, Teal P. Antithrombotic and thrombolytic therapy for ischemic stroke:The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest,2004,126(3Suppl):483S-512S.
    [31]. Carmichael ST. Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke,2008,39(4):1380-1388.
    [32]. Ginsberg MD. Neuroprotection for ischemic stroke:past, present and future. Neuropharmacology,2008,55(3):363-389.
    [33]. Legos JJ, Barone FC. Update on pharmacological strategies for stroke: prevention, acute intervention and regeneration. Curr Opin Investig Drugs,2003,4(7): 847-858.
    [34]. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci,2003,4(5):399-415.
    [35]. Zhang ZG, Chopp M. Neurorestorative therapies for stroke:underlying mechanisms and translation to the clinic. Lancet Neurol,2009,8(5):491-500.
    [36]. Barone FC. Ischemic stroke intervention requires mixed cellular protection of the penumbra. Curr Opin Investig Drugs,2009,10(3):220-223.
    [37]. Chavez JC, Hurko O, Barone FC, Feuerstein GZ. Pharmacologic interventions for stroke:looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatch. Stroke,2009,40(10):558-563.
    [38]. Alonso de Lecinana M, Diez-Tejedor E, Gutierrez M, Guerrero S, Carceller F, Roda JM. New goals in ischemic stroke therapy:the experimental approach-harmonizing science with practice. Cerebrovasc Dis,2005,20 (Suppl 2):159-168.
    [39]. Dirnagl U. Bench to bedside:the quest for quality in experimental stroke research. J Cereb Blood Flow Metab,2006,26(12):1465-1478.
    [40]. Savitz SI, Fisher M. Future of neuroprotection for acute stroke:in the aftermath of the SAINT trials. Ann Neurol,2007,61(5):396-402.
    [41]. Feuerstein GZ, Zaleska MM, Krams M, Wang X, Day M, Rutkowski JL, Finklestein SP, Pangalos MN, Poole M, Stiles GL, Ruffolo RR, Walsh FL. Missing steps in the STAIR case:a translational medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J Cereb Blood Flow Metab,2008, 28(1):217-219.
    [42]. Fisher M, Feuerstein G, Howells DW, Hum PD, Kent TA, Savitz SI, Lo EH, STAIR Group. Update of the stroke therapy academic industry round table preclinical recommendations. Stroke,2009,40(6):2244-2250.
    [43]. Fisher M, Brott TG. Emerging therapies for acute ischemic stroke:new therapies on trial. Stroke,2003,34(2):359-361.
    [44]. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for Stroke:Current Status and Future Perspectives. Int J Mol Sci,2012, 13:11753-11772.
    [45]. Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol,2004,207(Ptl8):3221-3231.
    [46]. Savitz SI, Fisher M. Prophylactic neuroprotection. Curr Drug Targets,2007, 8(7):846-849.
    [47]. Rathbone MP, Saleh TM, Connell BJ, Chang R, Su C, Worley B, Kim M, Jiang S. Systemic administration of guanosine promotes functional and histological improvement following an ischemic stroke in rats. Brain Res,2011,1407:79-89.
    [48]. Wang ZL, Cheng SM, Ma MM, Ma YP,Yang JP, Xu GL etal. Intranasally delivered bFGF enhances neurogeesis in adult rats following cerebtal ischemia. Neurosci Lett,2008,446(1):30-35.
    [49]. Hakim AM. The cerebral ischemic penumbra. Can J Neurol Sci,1987, 14(4):557-559.
    [50]. Symon L, Branston NM, Strong AJ, Hope TD. The concepts of thresholds of Ischaemia in relation to brain structure and function. J Clin Pathol Suppl(Roy Coll Path),1977,11:149-154.
    [51]. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia-The ischemic penumbra. Stroke,1981,12(6):723-725.
    [52]. Hossmann KA. Viability threshold and the penumbra of focal ischemia. Ann Neurol,1994,36(4):557-565.
    [53]. Lipton P. Ischemic cell dath in brain neurons. Physiol Rev 1999, 79(4):1431-1568.
    [54]. Zheng Z, Zhao H, Steinberg GK, Yenari MA. Cellular and molecular events underlying ischemia-induced neuronal apoptosis. Drug News Perspect,2003, 16(8):497-503.
    [55]. Lou Y, Kuo CC, Shen H, Chou J, Greig NH, Hoffer BJ,Wang Y. Delayed treatment with a p53 inhibitor enhances recovery in stroke brain. Ann Neurol,2009, 65(5):520-530.
    [56]. Iwabuchi S, Watanabe T, Kawahara K. Spatio-temporal spread of neuronal death after focal photolysis of caged glutamate in neuron/astrocyte co-cultures,2013, 62(7)1020-1027.
    [57]. Andersson B, Bjelke B, Sykova E. Temporal profile of ultrastructural changes in cortical neurones after a compression lesion. Physiol Res,2006, 55(3):339-348.
    [58]. Wajima D, Nakamura M, Horiuchi K, Miyake H, Takeshima Y, Tamura K, Motoyama Y, Konishi N, Nakase H. Enhanced cerebral ischemic lesions after two-vein occlusion in diabetic rats. Brain Res,2010,1309:126-135.
    [59]. Barone FC, Feuerstein GZ. Inflammatory mediators and stroke:new opportunities for novel therapeutics. J Cereb Blood Flow Metab,1999,19(8):819-834.
    [60]. Kerr JF, Wyllie AH, Currie AR. Apoptosis:A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26(4):239-257.
    [61]. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science,1995,267(5203):1456-1462.
    [62]. Banasiak KJ, Xia Y, Haddad GG. Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol,2000,62(3):215-249.
    [63]. Searle J, Kerr JF, Bishop CJ. Necrosis and apoptosis:Distinct modes of cell death with fundamentally different significance. Pathol Annu,1982,17 Pt 2:229-259.
    [64]. Fawcett J, Rosser A, Dunnett S:Brain Damage, Brain Repair[M]. Oxford University Press, New York,2001.
    [65]. Luo Y, Cao G, Pei W, oHoro C, Graham SH, Chen J. Induction of caspase-activated deoxyribonuclease activity after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab,2002,22:15-20.
    [66]. Kametsu Y, Osuga S, Hakim AM. Apoptosis occurs in the penumbra zone during short-duration focal ischemia in the rat. J Cerb Blood Flow Metab,2003, 23(4):416-422.
    [67]. Li Y, Chopp M, Jiang N, Zaloga C. Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab,1995,15(3):389-397.
    [68]. Martinou JC, Dubois-Dauphin M, Staple JK,Rodriguez I, Frankowski H, Missotten M, Albertin P, Talabot D, Catsicas S, Pietra C, Huarte J. Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemic. Neuron,1994,13(4):1017-1030.
    [69]. Watanabe N, Zhang M, Liu R, Tanaka Y, Mizuno T, Urabe Cilostazol protects against brain white matter damage and cognitive impairment in a rat model of chronic cerebral hypoperfusion. Stroke,2006,37:1539-1545.
    [70]. Mitome-Mishima Y, Miyamoto N,Tanaka R, Oishi H, Arai H, Hattori N, Urabe T. Differnces in phosphodiesterase 3A and 3B expression after ischemic insuilt. Neurosci Res,2013,75(4):340-348.
    [71]. Linnik MM, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemic in rats. Strok,1993,24:2002-2009.
    [72]. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke:an integrated view. Trends Neurosci,1999,22:391-397.
    [73]. Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest,2000,106:723-731.
    [74]. Martin-Villalba A, Hahne M, Kleber S, Vogel J, Falk W, Schenkel J, Krammer PH. Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death Differ,2001,8:679-686.
    [75]. Borsello T, Clarke PQ Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med,2003,9:1180-1186.
    [76]. Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab,2001,21:99-109.
    [77]. Schmidt-Kastner R, Ophoff BG, Hossmann KA. Pattern of neuronal vulnerability in the cat hippocampus after one hour of global cerebral ischemia. Acta Neuropathol,1990,79(4):444-455.
    [78]. Hochachka PW, Buch LT, Doll CJ, Land SC. Unifying theory of hypoxia tolerance:molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA,1996,93(18):9493-9498.
    [79]. Ginsberg MD, Busto R. Rodent models of cerebral ischemia. Stroke,1989,20: 1627-1642.
    [80]. Rothmann S. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci,1984,4(7):1884-1891.
    [81]. Erecinska M, Nelson D, Silver I A. Metabolic and energetic properties of isolated nerve ending particles (synaptosomes). Biochim Biophys Acta,1996, 1277(1-2):13-34.
    [82]. Huang Q, Zhang R, Zou LY, Cao X, Chu X. Cell death pathways in astrocytes with a modified model of oxygen-glucose deprivation. Plos One,2013, 8(4):e6134.
    [83]. Cho S, Liu D, Fairman D, Li P, Jenkins L, McGonigle P, Wood A. Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochem Int,2004,45(1):117-127.
    [84]. Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neuro,1981,9(2):131-141.
    [85]. Ashwal S, Pearce WJ. Animal models of neonatal stroke. Curr Opin Pediatr, 2001,13(6):506-516.
    [1]Varfolomeev EE, Ashkenazi A. Tumor necrosis factor:an apoptosis junkie? Cell 2004,116:491-497.
    [2]Feldmann M, Maini RN. Lasker clinical medical research award TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med,2003,9:1245-1250.
    [3]Park KM, Bowers WJ. Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal,2010,22:977-983.
    [4]Micheau O,Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complex. Cell,2003,114(2):181-190.
    [5]Javelaud D, Besancon F. NF-kB activation results in rapid inactivation of JNK in TNFa-treated Ewing sarcoma cells:a mechanism for the anti-apoptotic e.ect of NF-Kb. Oncoqene,2001,20(32):4365-4372.
    [6]Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell,2008,133(4):693-703.
    [7]Yeh WC, Pompa JL, McCurrach ME, Shu HB, EliaAJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deirv WS, Lowe SW, goeddel DV, Mak TW. FADD:essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science,1998,279(5358):1954-1958.
    [8]Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apol, and DR3 and is lethal prenatally. Immunity,1998,9(2):267-276.
    [9]Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC. Feuerstein GZ. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke,1994, 25(7):1481-1488.
    [10]He W, Chen W, Zhou Y, Tian Y, Liao F. Xanthotoxol exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia. Cell Mol Neurobiol 2013,33(5);715-722
    [11]Rath PC, Aggarwal BB. TNFinduced signaling in apoptosis. J Clin Immunol, 1999,19(6):350-364.
    [12]Chang HY, Yang X. Proteases for cell suicide:functions and regulation of caspases.Microbiol. Mol Biol Rev,2000,64(4):821-846.
    [13]Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ. Tumor necrosis factor-alpha. Amediator of focal ischemic brain inj ury. Stroke,1997,28(6):1233-1244.
    [14]Sugano M, Hata T, Tsuchida K, Suematsu N, Oyama J, SatohS, MakinoN. Local delivery of soluble TNF-alpha receptor gene reduces infarct size following ischemic/reperfusion injury in rats. Mol Cell Biochem,2004,266:127-132.
    [15]Nawashiro H, Martin D, Hallenbeck JM. Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. J Cereb Blood Flow Metab,1997, 17(2):229-232.
    [16]Askenazi A, Dixit VM. Death receptors:signaling and modulation. Science, 1998,281(5381):1305-1308.
    [17]Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, Mattson MP, Scheff SW. Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci,1999,19(15):6248-6256.
    [18]Mattson MP, Cheng B, Baldwin S, Smith-Swintosky VL, Keller J, Geddes JW, Scheff SW, Christakos S. Brain injury and tumor necrosis factors induce expression of calbindin D-28k in astrocytes:a cytoprotective response. J Neurosci Res,1995, 42(3):357-370.
    [19]Ryan KM, Ernst MK, Rice NR, Vousden KH. Role of NF-κB in p53-mediated programmed cell death. Nature,2000,404(6):892-897.
    [20]Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med,1996, 2(7):788-794.
    [21]Mattson MP. Neuroprotective signal transduction:relevance to stroke. Neurosci Biobehav Rev,1997,21(2):193-206.
    [22]Giovanni A, Keramaris E, Morris EJ, Hou ST, O'Hare M, Dyson N, Robertson GS, Slack R, Park DS. E2F-1 mediates death of b-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase-3. J Biol Chem,2000,275(16):11553-11560.
    [23]Keramaris E, Stefanis L, Maclaurin J, Harada N, Takaku K, Ishikawa T, Taketo MM, Robertson GS, Nicholson DW, Slack RS, Park DS. Involvement of caspase-3 in apoptotic death of cortical neurons evoked by DNA damage. Mol Cell Neurosci,2000, 15(4):368-379.
    [24]Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell, 2002,2(2):103-112.
    [25]Hofseth LJ, Hussain SP, Harris CC. p53:25 years after its discovery. Trends Pharmacol Sci,2004,25(4):177-181.
    [26]Joers A, Jaks V, Kase J, Maimeta T. p53-dependent transcription can exhibit both on/off and graded response after genotoxic stress. Oncogene,2004, 23(37):6175-6185.
    [27]Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffinan RM, Lowe SW. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell,2002, 1(3):289-298.
    [28]Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell,1995,80(2):293-299.
    [29]Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol,2002, 4(11):842-849.
    [30]Oda K, Arakawa H, Tanaka T, Matasuda K, Tanikawa C, Mori T, Nishimori H,Tamai K,Tokino K, NakamuraY, Taya Y. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell, 2000,102(6):849-862.
    [31]Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science,2000,288(5468):1053-1058.
    [32]Niizuma K, Endo H, Nito C, Myer DJ, Chan PH.Potential Role of PUMA in Delayed Death of Hippocampal CA1 Neurons After Transient Global Cerebral Ischemia. Stroke,2009,40(2):618-625.
    [33]Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS. Evidence for p53-mediated modulation of neuronal viability. J Neurosci,1996, 16(21):6753-6765.
    [34]Halterman MW, Miller CC, Federoff HJ. Hypoxia-inducible factor-1 alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci,1999, 19(16):6818-6824.
    [35]Morris EJ, Keramaris E, Rideout HJ, Slack RS, Dyson NJ, Stefanis L, Park DS. Cyclin-dependent kinases and p53 pathways are activated independently and mediate Bax activation in neurons after DNA damage. J Neurosci,2001,21 (14):5017-5026.
    [36]Endo H, Kamada H, Nito C, Nishi T, Chan PH. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci,2006,26(30):7974-7983.
    [37]Murase S, Poser SW, Joseph J, MckayR D. p53 controls neuronal death in the CA3 region of the newborn mouse hippocampus. Eur J Neurosci,2011, 34(3):374-381.
    [38]Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem,2001,77(1):220-228.
    [39]Leker RR, Aharonowiz M, Greig NH, Ovadia H. The role of p53-induced apoptosis in cerebral ischemia:effects of the p53 inhibitor pifithrin alpha. Exp Neurol, 2004,187(2):478-486.
    [40]Shimizu S, Eguchi Y, Kamiike W, Matsuda H, Tsujimoto Y. Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene,1996,12(11):2251-2257.
    [41]Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene,2004, 23(16):2797-2808.
    [42]Li Y, Chopp M, Zhang ZG, Zaloga C, Niewenhuis L,Gautam S. p53-immunoreactive protein and p53 mRNA expression after tran-sient middle cerebral artery occlusion in rats. Stroke,1994,25(4):849-856.
    [43]Tounai H,Hayakawa N,Kato H,Araki T. Immunohistochemical study on distribution of NF-kappaB and p53 in gerbil hippocampus after transient cerebral ischemia:effect of pitavastatin. Metab Brain Dis,2007,22(1):89-104.
    [44]Birch JM. Li-Fraumeni syndrome. Eur J Cancer,1994,30 (13):1935-1941.
    [45]Cattoretti G, Rilke F, Andreola S, D,Amato L, Delia D.p53 expression in breast cancer. Int J Cancer,1988,41 (2):178-199.
    [46]Chen LF, Greene WC. Shaping the nuclear action of NF-κappaB. Nat Rev Mol Cell Biol,2004,5:392-401.
    [47]Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol,2002,2(10):725-734.
    [48]Kucharczak J, Simmons MJ, Fan Y, Gelinas C. To be, or not to be:NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene,2003, 22(56):8961-8982.
    [49]Karin M, Lin A. NF-KB at the cross roads of life and death. Nat Immunol,2002, 3:221-227.
    [50]Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science,1996,274(5288):782-784.
    [51]Culmsee C, Siewe J, Junker V et al. Reciprocal inhibition of p53 and nuclear factor-KB transcriptional activities determines cell survival or death in neurons[J]. J Neurosci,2003,23(24):8586-8595.
    [52]Mattson MP. Apoptosis in neurodegenerative disorders. Nat RevMol Cell Biol, 2000,1:120-129.
    [53]Bui TN, KOnig HG, Culmsee C, Bauerbach E, Poppe M, Krieglstein J, Prehn JHM. p75 neurotrophin receptor is required for constitutive and NGF-induced survival signaling in PC 12 cells and rat hippocampal neurones.J Neurochem,2002, 81:594-605.
    [54]Culmsee C, Junker V, Gerling N, Lehmann M, Nikolova-Karakashian M,Prehn JHM, Mattson MP, Krieglstein J. NGF-induced neuroprotection in hippocampal neurons requires the common neurotrophin receptor p75NTR. Neuroscience, 2002,115:1089-1108.
    [55]Ruan W, Lee CT, Desbarats J. A novel juxtamembrane domain in tumor necrosis factor receptor superfamily molecules activates racl and controls neurite growth. Mol Biol Cell,2008,19(8):3192-3202.
    [56]Liu L, Kim JY, Koike MA, Yoon YJ, Tang XN, Ma H, et al. FasL shedding is reduced by hypothermia in experimental stroke. J Neurochem,2008, 106(2):541-550.
    [57]Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem,1998,254:439-459.
    [58]Lambert C, Landau AM, Desbarats J. Fas-beyond death:a regenerative role for Fas in the nervous system. Apoptosis,2003,8:551-562.
    [59]Felderhoff-Mueser U, Taylor DL, Greenwood K, Kozma M, Stibenz D, Joashi UC, et al. Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol,2000,10:17-29.
    [60]Felderhoff-Mueser U, Buhrer C, Groneck P, Obladen M, Bartmann P, Heep A. Soluble Fas (CD95/Apo-1), soluble Fas ligand, and activated caspase 3 in the cerebrospinal fluid of infants with posthemorrhagic and nonhemorrhagic hydrocephalus. Pediatr Res,2003,54:659-664.
    [61]Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA. Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J Cereb Blood Flow Metab,2001,21:1411-1421.
    [62]Boldin MP, Goncharov TM, Goltsv YV, Wallach D. Ivolvememt of MACH,a novel MORT1/FADD-interacting protease,in Fas/APO-1 and TNF receptor-induced cell death. Cell,1996,85(6):803-815.
    [63]Muzio M, Chinnaiyan AM, Kischkel FC, Orourke K, Shevchenko A, Ni J, et al. FLICE,a novel FADD-homologous ICE/CED-3-like protease,is recruited to the CD95(Fas/CED-3-like protease,is rcruited to the CD95(Fas/APO-1)death-inducing signaling complex. Cell,1996,85(6):817-827.
    [64]Qiu J, Whalen MJ, Lowenstein P, Fiskum G, Fahy B, Darwish R, et al.Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J Neurosci,2002,22(9):3504-3511.
    [65]Luo X, Budlhardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell,1998,94:481-490.
    [66]Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, et al. TBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev,2000,14:2060-2071.
    [67]Eugene EV, Ashkenazi A. Tumor necrosis factor:an apoptosis JuNKie? Cell, 2004,116:491-497.
    [68]Alvarez S, Blanco A, Fresno M, Munoz-Fernandez MA. TNF-a contributes to caspase-3 independent apoptosis in neuroblastoma cells:role of NFAT. Plos One, 2011,27(6):e16100.
    [69]Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 protease nomenclature. Cell,1996,87:171.
    [70]Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases:structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem,1999, 68:383-424.
    [71]Strasser A, O'Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem, 2000,69:217-245.
    [72]Kaufmann SH, Hengartner MO. Programmed cell death:alive and well in the new millennium. Trends Cell Biol,2001,11:526-534.
    [73]Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, et al.Yama/Cpp32B, a mammalia homolog of CED-3,is a crmA-inhibitable protease that cleaves the death substrate poly(ADP-Ribose)polymrase. Cell,1995,81:801-809.
    [74]Ashkenazi A, Dixit, VM. Apoptosis control by death and decoy receptors. Curr. Opin Cell Biol,1999,11:255-260.
    [75]Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev Biol,1999,15:269-290.
    [76]StrasserA, O'Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem, 2000,69:217-245.
    [77]Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem,1998,273:2926-2930.
    [78]Salvesen GS, Dixit VM. Caspase activation:the induced-proximity model. Proc Natl Acad Sci USA,1999,96:10964-10967.
    [79]Antonsson B. Bax and other pro-apoptotic Bcl-2 family "killerproteins" and their victim the mitochondrion. Cell Tissue Res,2001,306-361.
    [80]Garrido C, Gurbuxani S, Ravagnan L., Kroemer G.. Heat shock proteins: endogenous modulators of apoptotic cell death, Biochem Biophys Res Commun,2001, 286:433-442.
    [81]Chen J, NagayamaT, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci,1998,18:4914-4928.
    [82]Newcomb-Fernandz JK, Zhao X, Pike BR, Wang KK, Kampfl A, Beer R, Deford SM, HayesRL. Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septo-hippocampal cultures. J Cereb Blood Flow Metab,2001,21(11):1281-1294.
    [83]Badiola N, Malagelada C, Llecha N, Hidalgo J, Comella X J.,Sabria J, Rodriguez-Alvarez J. Activation of caspase-8 by tumour necrosis factor receptor 1 is necessary for caspase-3 activation and apoptosis in oxygen-glucose deprived cultured cortical cells. Neurobiol Dis,2009,35:438-447.
    [84]Huang LE, BunnHF. Hypoxia-inducible factor and its biomedical relevance. J Biol Chem,2003,278:19575-19578.
    [85]Wenger RH. Cellular adaptation to hypoxia:O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J, 2002,16:1151-1162.
    [86]Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer,2003,3: 721-732.
    [87]Halterman MW, Federoff HJ. HIF-la and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp Neurol,1999,159(1):65-72.
    [88]Suzuki H, Tomida A, Tsuruo T. Dephosphorylated hypoxia-inducible factor la as a mediator of p53-dependent apoptosis during hypoxia. Oncogene,2001, 20:5779-5788.
    [89]Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A,2000,97(16):9082-9087.
    [90]Sowter HM, Ratcliffe PJ,Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res,2001,61:6669-6673.
    [91]Li Y, Zhou C, Calvert JW, Colohan AR, Zhang JH. Multiple effects of hyperbaric oxygen on the expression of HIF-1 alpha and apoptotic genes in a global ischemia-hypotension rat model. Exp Neurol,2005,191:198-210
    [92]Paschen W. Shutdown of translation:lethal or protective? Unfolded protein response versus apoptosis. J Cereb Blood Flow Metab,2003,23:773-779.
    [93]GOrlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH, Gassmann M. Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. Biochim Biophys Acta,2000,1493:125-134.
    [94]Lang KJ, Kappel A, Goodall GJ. Hypoxia-inducible factor-1 alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell,2002,13:1792-1801.
    [95]Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischemia in rat brain. Eur J Neurosci,1999,11:4159-4170.
    [96]Chavez JC, LaManna JC. Activation of hypoxia-induced factor-1 in the rat cerebral cortex after transient global ischemia:potential role of insulin-like growth factor-1. J Neurosci,2002,22:8922-8931.
    [97]Matrone C, Pignataro G, Molinaro P, Irace C, Scorziello A, Di Renzo G F, Annunziato L. HIF-1a reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion,J Neuroche,2004,90(2):368-378.
    [98]Tortiglione A,Minale M,Pignataro G,Amoroso S,Di Renzo G, Annunziato L. The 2-oxopyrrolidinacetamide piracetam reduces infarct brain volume induced by permanent middle cerebral artery occlusion in male rats. Neuropharmacology,2002, 43:427-433.
    [99]Chen C, Hu Q, Yan J, Yang X, Shi X, Lei J,et al.Early inhibition of HIF-la with small interfering RNA reduces ischemic-reperfused brain injury in rats. Neurobiol Dis,2009,33(3):509-517.
    [100]Chen C, Hu Q, Yan J, Lei J, Qin L, Shi X, et al. Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1 alpha and apoptotic genes in a middle cerebral artery occlusion-induced focal ischemia rat model. J Neurochem,2007, 102:1831-1841.
    [101]Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci,2007, 27:6320-6332.
    [102]Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol,2000,156:965-976.
    [103]Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M,et al. Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature,1998,394(6692):485-490.
    [104]Liu S, Liu W, Ding W, Miyake M, Rosenberg GA, Liu K. Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia. J Cereb Blood Flow Metab,2006,26:1274-1284.
    [105]Kaya D, Gursoy-Ozdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T. VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab,2005, 25:1111-1118.
    [106]Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain,2002,125:2549-2557.
    [107]Ritossa F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia,1962,18:571-573.
    [108]Turturici G, Sconzo G, Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem Res Int.2011:618127.)Drosophila. Experientia,1962,17:571-573.
    [109]Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia,2005,21(5):379-392.
    [110]Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JAM, Jong WW. The human genome encodes 10 a-crystallin-related heat shock proteins:HspB1-10. Cell Stress Chaperones,2003,8:53-61.
    [I11]Choi SR, Lee SA, Kim YJ, Ok CY, Lee HJ, Hahm KB.Role of heat shock proteins in gastric inflammation and ulcer healing.J Physiol Pharmacol,2009,60 (Suppl7):5-17.
    [112]Racay P. Ischaemia-induced protein ubiquitinylation is differentially accompanied with heat-shock protein 70 expression after naive and preconditioned ischaemia. Cell Mol Neurobiol,2012,32(1):107-119.
    [113]Xu XH, Zhang HL, Han R, Gu ZL, Qin ZH. Enhancement of neuroprotection and heat shock protein induction by combined prostaglandin Al and lithium in rodent models of focal ischemia. Brain Res,2006,1102(1):154-162.
    [114]Hayes K, Sprague S, Guo M, Davis W, Friedman A, Kumar A, Jimenez DF, Ding Y.Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathol,2008,115(3):289-296.
    [115]Yasuda H, Shichinohe H, Kuroda S, Ishikawa T, Iwasaki Y.Neuroprotective effect of a heat shock protein inducer,geranylgeranylacetone in permanent focal cerebral ischemia. Brain Res,2005,1032(1-2)176-182.
    [116]Uchida S, Fujiki M, Nagai Y, Abe T, Kobayashi H.Geranylgeranylacetone, a noninvasive heat shock protein inducer, induces protein kinase C and leads to neuroprotection against cerebral infarction in rats. Neurosci Lett,2006, 396(3):220-224.
    [117]Chen J, Graham SH, Zhu RL, Simon RP. Stress proteins and tolerance to focal cerebral ischemia, J Cereb Blood Flow Metab,1996,16(4):566-577.
    [118]卢娜,李晓娟,李成长,李东亮,崔鹏飞,侯宇宁,王寅琳.低氧预实验对大鼠缺血再灌注性脑损伤中HAP-70、Survivin蛋白和学习记忆能力的影响.南方医科大学学报,2007,27(12):1856-1859.
    [119]Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol,2000,47:782-791.
    [120]Hoehn B, Ringer TM, Xu L, Giffard RG, Sapolsky RM, Steinberg GK, Yenari MA. Overexpression of Hsp72 after induction of experimental stroke protects neurons from ischemic damage. J Cereb Blood Flow Metab,2001,21(11):1303-1309.
    [121]Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, Sapolsky R, Steinberg G, Hu B, Yenari MA. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol,2004,207:3213-3220.
    [122]Ohtsuka K, Suzuki T. Roles of molecular chaperones in the nervous system. Brain Res Bull,2000,53:141-146.
    [123]Gass P, Prior P, Kiessling M. Correlation between seizure intensity and stress protein expression after limbic epilepsy in the rat brain. Neuroscience,1995, 65:27-36.
    [124]Sharp FR, Lu A, Tang Y, Millhorn DE. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab,2000,20(7):1011-1032.
    [125]Vass K, Welch WJ, Nowak TS Jr. Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol.1998,77(2):128-135.
    [126]Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res,2000,863(1-2):169-181.
    [127]Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. J BiolChem,1993,268(3):1517-1520.
    [128]Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell,2001,107:827-830.
    [129]Fujiki M, Kobayashi H, Abe T, Ishii K. Astroglial activation accompanies heat shock protein upregulation in rat brain following single oral dose of geranylgeranylacetone, Brain Res,2003,991(1-2):254-257.
    [130]Matsumori Y, Northington FJ, Hong SM, Kayama T, Sheldon RA, Vexler ZS, et al. Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70. Stroke,2006,37(2):507-512.
    [131]Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol,2000,2(8):476-483.
    [132]Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol,2000,2(8):469-475.
    [133]Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab,2005,25(7):899-910.
    [134]Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG. Sapolsky RM, et al. Gene transfer of Hsp72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia:influence of Bcl-2. Ann. Neurol,2002,52:160-167.
    [135]Jaa ttela M, Wissing D, Kokholm K, Kallunki T, Egeblad M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J,1998, 17(21):6124-6134.
    [136]Meriin AB, Yaglom JA, Gabai VL, Zon L, Ganiatsas S, Mosser DD, et al. Proteindamaging stresses activate c-Jun N-terminal kinase via inhibi tion of its dephosphorylation:A novel pathway controlled by Hsp72. Mol Cell Biol,1999, 19:2547-2555.
    [137]Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, etal. Sharp FRHsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev,2004,8(12):1466-1481.
    [138]Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA. Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab,2008, 28(1):53-63.
    [139]Lee JE, Kim YJ, Kim JY, Lee WT, Yenari MA, Giffard RG. The 70 kDa heat shock protein suppresses matrix metalloproteinases in astrocytes. Neuroreport,2004, 15(3):499-502.
    [140]Ethridge RT, Hellmich MR, DuBois RN, Evers BM. Inhibition of heat-shock protein 70 induction in intestinal cells overexpressing cyclooxygenase 2. Gastroenterology,1998,115(6):1454-1463.
    [141]Guo S, Wharton W, Moseley P, Shi H. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress & Chaperones,2007,12(3):245-254.
    [142]侯丽,张岫美,魏欣冰.化合物N-2211对大鼠局灶性脑缺血再灌注损伤的保护作用.齐鲁药事,2004,3:52-54.
    [1]. Truelsen T, Begg S and Mathers C:The global burden of cerebrovascular disease. Global Burden of Disease. World Health Organization (WHO),2000.
    [2]. Zhao DX, Feng J, Cong SY and Zhang W:Association of E-selectin gene polymorphisms with ischemic stroke in a Chinese Han population. J Neurosci Res 90: 1782-1787,2012.
    [3]. Wise-Faberowski L, Raizada MK and Summers C:Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg 93:1281-1287,2001.
    [4]. Lu Y, Zhang J, Ma B et al:Glycine attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis in mice. Neurochem Int 61:649-658,2012.
    [5]. Liu R, Wei XB and Zhang XM:Effects of acetylpuerarin on hippocampal neurons and intracellular free calcium subjected to oxygen-glucose deprivation/reperfusion in primary culture. Brain Res 1147:95-104,2007.
    [6]. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group:Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333: 1581-1587,1995.
    [7]. Elijovich L and Chong JY:Current and future use of intravenous thrombolysis for acute ischemic stroke. Curr Atheroscler Rep 12:316-321,2010.
    [8]. Wardlaw JM, Warlow CP and Counsell C:Systematic review of evidence on thrombolytic therapy for acute ischaemic stroke. Lancet 350:607-614,1997.
    [9]. Hou L, Wei XB, Li XM, Zhong Y, Zou CX and Zhang XM:Protective effects of acetylpurarin on focal brain ischemia-reperfusion injury in rats. Chin Pham J 42: 1469-1472,2007.
    [10]. Tan Y, Liu M and Wu B:Puerarin for Acute Ischemic Stroke. Stroke 39:2188, 2008.
    [11]. Wu B, Liu M, Liu H etal:Meta-Analysis of Traditional Chinese Patent Medicine for Ischemic Stroke. Stroke 38:1973-1979,2007.
    [12]. Xu X, Zhang S, Zhang L, Yan W and Zheng X:The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats. Planta Med 71:585-591,2005.
    [13]. Hou L, Zhang XM and Wei XB:Protective effects of Compounds N-2211 on focal brain ischemia-reperfusion injury in rats. Qilu Pharm Affairs 3:52-54,2004.
    [14]. Li XM, Wei XB, Zhang XM, Hou L, Zhong Y and Zuo CX:Effect of acetylpuerarin on NO level and NOS activity in brain tissue and serum of focal cerebral ischemia reperfusion injury rats. Chin Pharm 11:829-832,2005.
    [15]. Lou HY, Wei XB, Zhang B, Sun X and Zhang XM:Hydroxyethylpuerarin attenuates focal cerebral ischemia-reperfusion injury in rats by decreasing TNF-a expression and NF-KB activity. Acta Pharmaceutica Sinica 42:710-715,2007.
    [16]. Yao YY, Liu DM, Xu DF and Li WP:Memory and learning impairment induced by dexamethasone in senescent but not young mice. Eur J Pharmacol 574: 20-28,2007.
    [17]. Ziu M, Fletcher L, Rana S, Jimenez DF and Digicaylioglu M:Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLOS One 6:e14724,2011.
    [18]. Sreelatha A, Jeyachitra A, Padma PR:Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food chem Toxicol 49:1270-1275,2011.
    [19]. Badiola N, Malagelada C, Llecha N etal:Activation of caspase-8 by tumour necrosis factor receptor 1 is necessary for caspase-3 activation and apoptosis in oxygen-glucose deprived cultured cortical cells. Neurobiol Dis 35:438-447,2009.
    [20]. Yao H, Takasawa R, Fukuda K etal:DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats. Brain Res Mol Brain Res 91:112-118, 2001.
    [21]. Barone FC and Feuerstein GZ:Inflammatory mediators and stroke:new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819-834,1999.
    [22]. Jiang Y, Wu J, Keep RF, Hua Y, Hoff JT and Xi G:Hypoxia-inducible factor-1 alpha accumulation in the brain after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 22:689-696,2002.
    [23]. Chen GQ and Goeddel DV:TNF-R1 signaling:A beautiful pathway. Science 296:1634-1635,2002.
    [24]. Liu L, Kim JY, Koike MA etal:FasL shedding is reduced by hypothermia in experimental stroke. J Neurochem 106:541-550,2008.
    [25]. Ruan W, Lee CT and Desbarats J:A novel juxtamembrane domain in tumor necrosis factor receptor superfamily molecules activates Racl and controls neurite growth. Mol Biol Cell 19:3192-3202,2008.
    [26]. Ashkenazi A and Dixit VM:Death receptors:signaling and modulation. Science 281:1305-1308,1998.
    [27]. Luo X, Budihardjo I, Zou H, Slaughter C and Wang X:Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481-490,1998.
    [28]. Varfolomeev EE and Ashkenazi A:Tumor Necrosis Factor:An Apoptosis JuNKie? Cell 116:491-497,2004.
    [29]. Garrido C, Gurbuxani S, Ravagnan L and Kroemer G:Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433-442,2001.