HCVc蛋白诱导胆管癌细胞上皮—间叶样表型转化及其分子机制的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内外大量流行病学和实验室研究发现,丙型肝炎病毒(hepatitis C virus,HCV)感染与胆管癌发生关系密切。HCV核心区基因编码的核心蛋白(hepatitis C virus core protein,HCVc),在细胞的信号转导、蛋白的相互作用、致癌及脂质代谢中起着重要作用,它可以通过激活NF-κB信号通路参与胆管癌的发生。上皮-间叶样表型转化(epithelial-mesenchymal transition,EMT)是上皮细胞来源的恶性肿瘤的重要生物学现象,其实质是上皮细胞获得了成纤维细胞样表型,特征是细胞标志物改变和细胞内骨架重排,结果是细胞间粘附减弱、细胞运动能力大大增强。鉴于NF-κB信号通路在诱导EMT过程中的重要作用以及EMT可以促进肿瘤细胞的侵袭和转移,我们研究了HCVc蛋白与胆管癌细胞EMT的关联性,旨在证明HCVc蛋白可以诱导胆管癌EMT发生从而促进其侵袭和转移的可能性。赖氨酰氧化酶样2基因(lysyl oxidase-like 2 enzyme gene,LOXL2)是EMT的关键因子之一,由于其在胆管癌组织中存在着较高表达,并与胆管癌组织的分化、侵袭和转移密切相关,我们同时探讨了LOXL2在HCVc蛋白诱导胆管癌细胞EMT中的作用,旨在初步阐明胆管癌EMT的发生机理。为了检验我们的假想,本实验设计如下:首先,在胆管癌组织标本上,采用免疫组织化学的方法检测了HCVc蛋白、上皮性标志物(E-cadherin、α-catenin、β-catenin)、间叶性标志物(N-cadherin、vimentin、fibronectin)在胆管癌癌组织中的表达,并评价其临床意义;然后,转染含有HCVc全长基因序列的重组质粒载体到胆管癌细胞QBC939中,观察转染后细胞形态的变化,并检测细胞上皮性标志物、间叶性标志物及LOXL2的表达情况;最后,通过共转染HCVc基因和LOXL2 shRNA基因到QBC939中,检测转染后细胞上皮性标志物、间叶性标志物的表达变化情况,以评价LOXL2在HCVc蛋白诱导胆管癌细胞EMT中的作用。
     结果:
     1.34例胆管癌组织中HCVc蛋白的阳性表达率是47.1%,上皮性标志物的缺失率分别是E-cadherin 55.9%,α-catenin 70.6%,β-catenin 55.9%,间叶性标志物的阳性表达率分别是N-cadherin 50%,vimentin 44.1%,fibronectin 55.9%,HCVc蛋白的阳性表达与E-cadherin和α-catenin的缺失及N-cadherin、vimentin和fibronectin的阳性表达相关(P值均<0.05),并与胆管癌组织的淋巴结及其它脏器转移具有相关性(P值均<0.05)。这些结果提示,HCVc蛋白可能通过诱导胆管癌组织上皮-间叶样表型转化的发生,促进了胆管癌的侵袭和转移。
     2.经过基因测序鉴定,PGST-HCVc195含有HCVc全长基因序列,质粒转染靶细胞后,RT-PCR及real-time PCR检测到HCVc mRNA的表达,免疫细胞化学和Western blotting检测到HCVc蛋白的表达。结果表明,HCVc基因成功地转染到胆管癌细胞QBC939中,目的基因得到高表达。
     3.重组质粒转染细胞5天后,空载体对照组细胞维持母细胞的上皮样表型,而表达HCVc基因的实验组细胞转化为梭形,变得离散;通过RT-PCR、real-time PCR、免疫细胞化学和Western blotting等方法进一步检测转染HCVc基因后胆管癌细胞标志物的表达变化,发现上皮性标志物E-cadherin在实验组细胞中的表达水平显著低于对照组细胞,同时间叶性标志物Vimentin、Fibronectin在实验组细胞中的表达明显高于对照组,这进一步提示,HCVc蛋白诱导胆管癌细胞发生了上皮-间叶样表型转化。
     4.细胞运动和侵袭实验结果显示,转染HCVc基因的实验组细胞运动和侵袭能力显著强于空载体对照组细胞,这提示,HCVc蛋白诱导胆管癌细胞发生上皮-间叶样表型转化后,提高了细胞的运动和侵袭能力。
     5.转染PGST-HCVc195重组质粒及PGEX-3ks空载体的实验组和对照组QBC939细胞48小时后,通过real-time PCR和Western blotting的方法检测LOXL2基因和蛋白的表达,结果显示:转染HCVc基因的实验组细胞LOXL2基因和蛋白的表达水平明显高于空载体对照组细胞,说明HCVc基因可能上调了LOXL2基因转录,增加了其蛋白的表达。
     6.经过酶切和基因测序鉴定,证明LOXL2 shRNA基因正确插入到所构建的重组质粒载体中,在其与HCVc基因共转染靶细胞后,荧光显微镜下实验组及对照组均可见绿色荧光蛋白的表达,通过real-time PCR和Western blotting的方法检测,发现两组细胞均有HCVc mRNA和蛋白的表达,同时,通过real-time PCR、免疫细胞化学和Western blotting的方法也检测到LOXL2 mRNA及蛋白的表达实验组明显低于空载体对照组,这说明,HCVc及LOXL2 shRNA基因成功地转染胆管癌细胞QBC939,目的基因得到较好的表达或沉默。
     7.重组质粒共转染细胞48小时后,通过real-time PCR和Western blotting的方法检测转染HCVc和LOXL2 shRNA基因后,胆管癌细胞标志物的表达变化,发现上皮标志物性E-cadherin在实验组细胞中的表达水平显著高于对照组细胞,而间叶性标志物Vimentin、Fibronectin在实验组细胞中的表达明显低于对照组,结果提示,LOXL2在HCVc蛋白诱导胆管癌细胞发生上皮-间叶样表型转化中发挥了重要作用。
     结论:
     1. HCVc蛋白可以诱导胆管癌细胞发生上皮-间叶样表型转化,其特征是胆管癌细胞形态由圆形、椭圆形、多角形,排列紧密,转化为梭形,离散;E-cadherin等上皮性标志物表达下调,Vimentin、Fibronectin等间叶性标志物表达增强,而且发生上皮-间叶样表型转化后,胆管癌细胞的运动和侵袭转移能力显著提高。
     2. LOXL2在HCVc蛋白诱导胆管癌细胞发生上皮-间叶样表型转化中发挥了重要作用。
Purpose: Cholangiocarcinoma (CC) is associated with chronic hepatitis C virus(HCV) infection. Hepatitis C virus core protein(HCVc) is an important protein product encoded by the HCV genome, it’s function involved in interaction of cell protein, cell signal transduction, carcinogenesis and lipids metabolism. It perhaps participates carcinogenesis of cholangiocarcinoma by triggering NF-κB signaling pathways. Epithelial-mesenchymal transition(EMT) was defined by the formation of mesenchymal cells from epithelia in different embryonic territories. Recently, increasing evidences suggested that EMT was involved in cancer invasion and metastasis. In a view of significance of NF-κB signaling pathway in EMT, we studied the correlation between HCVc protein and CC EMT, intended to prove HCVc protein can induce CC EMT. The high positive expression of LOXL2 which is a key regulator of EMT was observed in CC tissues and the positive expression of LOXL2 was associated with CC tissues’invasion and metastasis, so we studied the effect of LOXL2 in the CC EMT induced by HCVc protein to preliminaryly reveal the mechanism of CC EMT.
     Experimental Design: In the first part of the experiment, we examined the expression of HCVc protein, epithelial markers:E-cadherin、β-catenin andα-catenin, mesenchymal markers:N-cadherin、vimentin and fibronectin by immunohistochemistry, and assessed their correlation and clinic pathological significance. In the second part of the experiment, we transfected a recombinant plasmid vector containing HCVc gene into QBC939 cell to observe the morphological change under microscope 5 days after transfection.The expression and localization of HCVc and LOXL2 proteins, epithelial and mesenchymal markers were determined by RT-PCR、Realtime PCR、immunocytochemistry and western blotting. In the third part, we co-transfected recombinant plasmid vector containing HCVc gene and LOXL2 shRNA to assesse the effect of LOXL2 in QBC939 EMT induced by HCVc protein.
     Results:
     1. In CC tissues, the positive expression rate was observed in 47.1% for HCVc protein, 50% for N-cadherin, 44.1% for Vimentin, 55.9% for Fibronectin and the decreased expression rate was E-cadherin for 55.9%,α-catenin for 70.6%,β-catenin for 55.9%, The positive expression of HCVc protein were associated with the decreased expression of E-cadherin、α-catenin and the positive expression of N-cadherin、Vimentin、Fibronectin(P<0.05), a positive-correlation between the expression of HCVc protein and metastasis of ganglia lymphatica and other organs were found(P<0.05). HCVc protein perhaps promote cholangiocarcinoma tissues’infiltration and metabasis by inducing it’s EMT.
     2. The HCVc gene was obtained from PGST-HCVc195 plasmid. After it transfected into QBC939 cell, the high expression of HCVc mRNA and protein were observed by RT-PCR and Realtime PCR, immunocytochemistry and western blotting. 3. The QBC939 cell transfected with HCVc gene underwent a morphological change from a classic epithelial morphology to a spindle-like shape 5 days after transfection. In addition to this, the HCVc protein significantly decreased E-cadherin expression, but increased vimentin and fibronectin expression in QBC939 cell.
     4. The cell migration and invasion assays indicated that transfection of HCVc gene drastically enhanced the migratory and invasive potentials of QBC939 cell.
     5. After the QBC939 cell transfected with HCVc gene 48 hours, the expression of LOXL2 was significantly increased by HCVc protein.
     6. The HCVc gene was obtained from PGST-HCVc195 plasmid and LOXL2 shRNA gene was obtained from pGenesil-shLOXL2, after they co-transfected into QBC939 cell, the high expression of HCVc and the decreased expression of LOXL2 mRNA and protein were observed by RT-PCR、Realtime PCR、immunocytochemistry and western blotting.
     7. After co-transfection 48 hours, the decreased expression of E-cadherin and increased expression of vimentin and fibronectin induced by HCVc protein were inhibited by LOXL2 gene interference in QBC939 cell.
     Conclusions: The clinic pathological data indicated that loss of E-cadherin and gain of vimentin, fibronectin may lead to a more aggressive tumor behavior in CC tissues, it may has relation with HCVc protein. HCVc gene transfection data suggested that it can induce QBC939 cell EMT. The result of HCVc gene and LOXL2 shRNA co-transfection indicated that LOXL2 can inhibit EMT induced by HCVc protein in QBC939 cell, so we presumed that QBC939 undergoing EMT maybe triggered by the key EMT-inducing factor LOXL2. Furthermore, HCVc protein enhances migratory and invasive potentials of QBC939 cell.
引文
1.邹声泉,刘小方,郭仁宣,等.乙型肝炎和丙型肝炎病毒感染与胆管癌相关因素的调查分析.中华外科杂志. 2003,41:417-419.
    2. Kang YB, Massague J. Epithelial-mesenchymal transitions:twist in development and metastasis. Cell. 2004,118:277-279.
    3. Y Sato, J Kato, R Takimoto, et al. Hepatitis C virus core protein promotes proliferation of human hepatoma cells through enhancement of transforming growth factor a expression via activation of nuclear factor-kB. Gut. 2006,55:1801-1808.
    4. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006,441:431-436.
    5. Margit A Huber, Norbert Kraut, Hartmut Beug. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Journal of Cell Biology. 2005,17:548-558.
    6. Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D. A molecular role for lysyl Oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J. 2005,24:3446-58.
    7.黄志强.肝门部胆管癌外科治疗的现状与展望.中国普外基础与临床杂志. 2005,12:317-320.
    8. Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma: recent progress. Part 1: Epidemiology and etiology. J Gast roenterol Hepatol. 2002,17:1049.
    9. Kobayashi M , Ikeda K, Saitoh S, et al. Incidence of primary cholangiocelluar carcinoma of the liver in Japanese patients with HCV-related cirrhosis. Cancer. 2000,88:2471-2477.
    10.刘小方,邹声泉. HCV核心基因转染胆管癌细胞中NF-κB的表达.中华肿瘤杂志. 2002,24:20-23.
    11. Jason J Christiansen, Ayyappan K Rajasekaran. Reassessing Epithelial to Mesenchymal Transition as a Prerequisite for Carcinoma Invasion and Metastasis. Cancer Research. 2006, 66:8319-8326.
    12. Richmond PJ, Karayiannakis AJ, Nagafuchi A, et al. Aberrant E-cadherin andα-catenin expression in prostate cancer:correlation with patient survival. Cancer Res. 1997,57:3189-3193.
    13. Nakajima S,Doi R,Toyoda E,et al. N-cadherin expression and epithelial–mesenchym-al transition in pancreatic carcinoma. Clin Cancer Res. 2004,10:4125-4133.
    14.陈汝福,李志花,陈积圣,等.丙肝病毒核心蛋白对肝门部胆管癌细胞增殖和细胞凋亡的调控作用.中华实验外科杂志. 2002,19:510-511.
    15. Troyanovsky S. Cadherin dimers in cell-cell adhesion. Eur J Cell Biol. 2005,84: 225-233.
    16. Frixen UH, Behrens J, Sachs M, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991,113:173-185.
    17. Bukholm IK, Nesland JM, Karesen R, et al. E-cadherin and alfa, beta, and gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol. 1998,185:262-266.
    18. Hazan RB, Kang L, Whooley BP, et al. N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun. 1997,4:399-411.
    19. Islam S, Carey TE, Wolf GT, et al. Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J Cell Biol. 1996,135:1643-1654.
    20. Domagala W, Striker G, Szadowska A, et al. p53 protein and vimentin in invasive ductal NOS breast carcinoma--relationship with survival and sites of metastases. Eur J Cancer. 1994,30:1527-34.
    21. Lang SH, Hyde C, Reid IH, et al. Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate. 2002,52: 253-63.
    22. Ardenne AJ. Fibronectin in disease. J Pathol. 1984,142:235-242.
    23.王曙光,韩本立,段恒春,等.肝外胆管癌细胞系的建立.中华实验外科志. 1997, 14:67-70
    24. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr-Opin-Cell-Biol. 2003; 15(6):740-746.
    25. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer. 2004,4:448-456.
    26. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat-Rev-Cancer. 2002.2: 442-454.
    27. Yang J, Mani SA, Dongaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004,117:927-939.
    28. Janda E, Lehmann K, Killisch I, et al. Ras and TGFβcooperatively regulate epithelialcell plasticity and metastasis:dissection of Ras signaling pathways. J-Cell-Biol.2002,156:299-313.
    29. Lan M, Kojima T, Osanai M, et al. Oncogenic Raf-1 regulates epithelial to mesenchymal transition via distinct signal transduction pathways in an immortalized mouse hepatic cell line. Carcinogenesis. 2004,25:2385-2395.
    30. Gotzmann, Josef; Huber, Heidemarie; Thallinger, Christiane; Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: steps towards invasiveness. J. Cell Sci. 2002, 115:1189–1202.
    31. Grimstad I A . Direct evidence that cancer cell locomotion contributes importantly to invasion . Exp Cell Res. 1987,173:515-523.
    32. Peinado H, Iglesias-de la Cruz MC, Olmeda D, et al. A molecular role for lysyl oxidase-like 2 enzyme in Snail regulation and tumor progression. EMBO J. 2005,24:3446-3458.
    33. Jourdan-Le Saux C, Le Saux O, Donlon T, et al. The human lysyl oxidase-related gene (LOXL2) maps between markers D8S280 and D8S278 on chromosome 8p21.2-p21.3. Genomics. 1998,51:305-307.
    34. Jourdan-Le Saux C, Tronecker H, Bogic L, et al. The LOXL2 Gene encodes a new lysyl oxidase-like protein and is expressed at high levels in reproductive tissues. J. Biol. Chem. 1999:12939–12944.
    35. Kirschmann DA, Seftor EA, Fong SF, et al. A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res . 2002; 62:4478-4483.
    36. Fong SF, Dietzsch E, Fong KS, et al. Lysyl oxidase-like 2 expression is increased in colon and esophageal tumors and associated with less differentiated colon tumors. Genes Chromosomes Cancer. 2007,46:644-655.
    37. Rost T, Pyritz V, Rathcke IO, et al. Reduction of LOX- and LOXL2-mRNA expression in head and neck squamous cell carcinomas. Anticancer Res. 2003,23:1565-1573.
    38. Peinado H, Portillo F, Cano A . Switching on-off Snail: LOXL2 versus GSK3β. Cell Cycle . 2005,4:1749-1752.
    1. Thiery JP. Ep ithelial-mesenchymal transitions in development and pathologies. Curr-Opin-Cell-Biol. 2003,15:740-746.
    2. Kalluri R, Neilson EG. Epithelial-mesenchymal transitions and its implication for fibrosis. J-Clin-Invest. 2003,112:1776-1784
    3. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer. 2004,4:448-456.
    4. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004,117:927-939.
    5. Jechlinger M, Grunert S, Tamir IH, et al. Expression profiling of epithelial plasticity in tumor progression. Oncogene. 2003,22:7155-7169.
    6. Janda E, Lehmann K, Killisch I, et al. Ras and TGF-beta cooperatively regulate epithelial cell plasticity and metastasis:dissection of Ras signaling pathways. J-Cell-Biol. 2002,156:299-313.
    7. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002,2:442-454.
    8. Nelson WJ, Nusse R.Convergence of Wnt, b-catenin, and cadherin pathways. Science 2004,303:1483-1487.
    9. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004,4:118-132.
    10. Peinado H, Portillo F, Cano A.Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004,48:365-375.
    11. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002,3:155-166.
    12. Perez-Moreno MA, Locascio A, Rodrigo I, et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem. 2001,276:27424-27431.
    13. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004,118:277-279.
    14. Schulze A, Nicke B, Warne PH, et al. The transcriptional response to Raf activation isalmost completely dependent on mitogen-activated protein kinase kinase activity and shows a major autocrine component. Mol Biol Cell. 2004,15:3450-3463.
    15. Pollak MN, Schernhammer ES, Hankinson SE.Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004,4:505-518.
    16. Gru¨nert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003, 4:657-665.
    17. Eger A, Stockinger A, Park J,et al. beta-Catenin and TGF-beta signaling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene. 2004,23:2672-2680.
    18. Liebner S, Cattelino A, Gallini R,et al. beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol. 2004,166:359-367.
    19. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003,3:756-767.
    20. Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004,18:99-115.
    21. Zavadil J, Cermak L, Soto-Nieves N, et al. Integration of TGF-b/Smad and Jagged1/Notch signalling in epithelial-tomesenchymal transition. EMBO J. 2004, 23:1155-1165.
    22. Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003,3:903-911.
    23. Karhadkar SS, Bova GS, Abdallah N,et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004,431:707-712.
    24. Louro ID, Bailey EC, Li X, et al. Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res. 2002,62:5867-5873.
    25. Mullor JL, Dahmane N, Sun T,et al. Wnt signals are targets and mediators of Gli function. Curr Biol. 2001,11:769-773.
    26. Genda T,Sakamoto M,Ichida T,et al. Loss of cell-cell contact is induced byintegrin-mediated cell-substratum adhesion in highly-motile and highly-metastatic hepatocellular carcinoma cells. Lab-Invest. 2000,80:387-394.
    27. Frame MC.Src in cancer:deregulation and consequences for cell behaviour. Biochim-Biophys-Acta. 2002,1602:114-130.
    28. Irdy RB, Yeatman TJ. Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer-Res. 2002,62:2669-2674.
    29. Edme N, Downward J, Thiery JP. Ras induces NBT-Ⅱepithelial cell scattering through the coordinate activities of Rac and MAPK pathways. J-Cell-Sci. 2002,115:2591-2601.
    30. Bhowmick NA, Zent R, Ghiassi M, et al. Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J-Biol-Chem. 2001,276:46707-46713.
    31. Lan M, Kojima T, Osanai M, et al. Oncogenic Raf-1 regulates epithelial to mesenchymal transition via distinct signal transduction pathways in an immortalized mouse hepatic cell line. Carcinogenesis. 2004,25:2385-2395.
    32. Fukata M, Nakagawa M, Kaibuchi K, et al. Role of Rho-family GTPases in cell polarization and directional migration. Curr-Opin-Cell-Biol. 2003,15:590-597.
    33. Grille SJ, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial-mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer-Res. 2003,63:2172-2178.
    34. Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factors slug represses E-cadherin expression and induces epithelial-mesenchymal transitions:a comparison with snail and E47 repressors. J-Cell-Sci. 2003,116:499-511.
    35. Hajra KM, Chen DY, Fearon ER, et al. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer-Res. 2002,62:1613-1618.
    36. Yokoyama K, Kamata N, Fujimoto R, et al. Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinoma. Int-J-Oncol. 2003,22:891-898.
    37. Kim K, Lu Z, Hay ED, et al. Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell-Biol-Int .2002,26:463-476.
    38. Espada J, Perez-Moreno M, Braga VM, et al. H-Ras activation promotes cytoplasmicaccumulation and phosphoinositide 3-OH kinase association of beta-catenin in epidermal keratinocytes. J-Cell-Biol. 1999,146:967-980.
    39. Zhou BP, Deng J, Xia W,et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004,6:931-940.
    40. Bachelder RE, Yoon SO, Franci C, et al. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol.2005,168:29-33.
    41. Yu H, Jove R. The STATS of cancer-new molecular targets come of age. Nat Rev Cance. 2004,4:97-105.
    42. Yeatman TJ. A renaissance for SRC. Nat Rev Cancer. 2004,4:470-480.
    43. Yamashita S, Miyagi C, Fukada T,et al. Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature. 2004,429:298-302.
    44. Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc trans-porters.Biochim Biophys Acta. 2003,1611:16-30.
    45. Valcourt U, Kowanetz M, Niimi H, et al. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Mol Biol Cell. 2005,16:1987-2002.
    46. Fujita N, Jaye DL, Kajita M, et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003,113:207-219.
    47. Huber MA, Azoitei N, Baumann B, et al. NF-kB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest.2004,114:569-581.
    48. Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D. A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J. 2005,24:3446-3458.
    49. Hsu YM, Chen YF, Chou CY, et al. KCl cotransporter-3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res. 2007,67:11064-11073.
    50. Cao J, Chiarelli C, Richman O, et al. Membrane type 1-matrix metalloproteinase(MT1-MMP) induces epithelial-to-mesenchymal transition (EMT) in prostate cancer. J. Biol Chem. 2008,283:6232-6240.
    51. Christo D.Venkov, Andrew J.Link, Jennifer L.Jennings,et al. A proximal activator of transcription in epithelial-mesenchymal transition. The Journal of Clinical investigation. 2007,117:482-491.
    52. Humbert P, Russell S, Richardson H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays. 2003,25:542-553.
    53. Bilder D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 2004,18:1909-1925.
    54. Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 2003, 302:1227-1231.
    55. Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGF-beta receptors controls epithelial cell plasticity. Science. 2005,307:1603-1609.
    56. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov. 2004,3:1011-1022.
    57. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer. 2004,4:36.