水飞蓟素对CYP450代谢酶以及P-糖蛋白转运体影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传药理学研究发现,药物代谢酶和转运体活性的改变是导致临床上药物相互作用的主要机制,药物代谢酶和转运体的遗传多态性是药物相互作用个体差异的重要决定因素。近年来,由于天然中草药的使用越来越广泛,天然植物药与药物的相互作用受到越来越多的重视,对遗传药理学的深入研究将有助于我们根据患者的遗传特性来指导临床上的中西药合用,调整药物的使用方法,以达到减少药物不良反应及确保药物治疗作用的目的。
     细胞色素P450(CYP450)酶系由基因超家族编码的酶蛋白所组成,参与许多内源性和外源性物质的生物转化。药物对细胞色素P450酶活性的影响,是导致药物相互作用的主要原因之一。细胞色素氧化酶CYP3A是一种重要的CYP450酶系,它在肝脏和肠道中含量丰富,占肝脏P450酶总量的25%,成人CYP3A主要有CYP3A4以及CYP3A5,临床常用药物的60%以上都通过CYP3A4和CYP3A5催化来完成氧化反应。CYP3A的活性高低影响许多药物的疗效以及患者对药物毒性的反应,同时还影响环境污染物致病的危险性。CYP3A表达增高可导致肿瘤化疗的失败。药物对CYP3A活性的影响是导致药物相互作用的主要原因之一。CYP3A基因表达存在显著的个体差异,目前认为,CYP3A5的基因突变是产生CYP3A酶活性差异的主要原因。CYP2C9酶是人类肝脏中重要的CYP2C亚家族同工酶,占人肝微粒体所有P450酶含量的20%左右,并代谢约10%的临床常用药物,如苯妥英,华法林,甲苯磺丁脲,格列吡嗪,格列本脲,托拉塞米,氯沙坦及许多非甾体抗炎药。CYP2C9基因具有遗传多态性,导致CYP2C9酶活性存在差异,这是药物代谢种族与个体差异的原因之一。具有功能意义的基因突变导致CYP2C9酶活性降低,可致使CYP2C9酶底物药物疗效下降或产生更多不良反应。较多的体内及体外试验研究表明,CYP2C9*2和CYP2C9*3会改变CYP2C9酶对某些底物如华法令,苯妥英等的催化活性,其代谢能力均明显降低。其中CYP2C9*3更为明显。许多体内体外研究表明,与野生型比较,CYP2C9*3(Ile359Leu)对甲苯磺丁脲、华法林等多种CYP2C9底物氧化活性显著下降,其结果是在体内延长药物的血浆消除半衰期,降低药物的清除率;在体外增高米氏常数(Km)值,降低最大反应速度(Vmax),酶活性显著降低。因此,携带CYP2C9突变等位基因的个体可能会出现代谢不全从而发生中毒或降低药物疗效。
     P-糖蛋白是由MDR1基因编码的一种跨膜蛋白,是一种能量依赖型药物外排泵,转运大量结构不同的化合物,通常是亲脂性和两歧性分子的化合物。P-糖蛋白主要在肝脏和肠道及肾脏中表达,在药物的吸收,组织分布和排泄方面发挥重要的作用。肠道的P-糖蛋白可主动将口服药物泵出细胞外,抑制药物的吸收,使细胞内药物浓度降低,从而降低药物疗效。MDR1蛋白具有广泛的组织分布和底物特异性,尽管P-糖蛋白最首先在肿瘤细胞发现,后来观察到它表达在许多正常组织,如肠,肝脏,肾,胰腺,肾上腺,P-糖蛋白在血脑屏障,脉络丛也高表达,P-糖蛋白底物广泛,包括环孢霉素A,泰素,地塞米松,利多卡因,乙琥红霉素和蛋白酶抑制剂等。
     Silymarin(水飞蓟素,益肝灵)是从菊科药用植物水飞蓟种子的种皮中提取出来的植物提取物,属于黄酮类物质,主要成分包括水飞蓟宾(silybin)、异水飞蓟宾(silydianin)、和silychristine等类黄酮物质,由于silybin是其中的主要成分,所以计算silymarin摩尔浓度的时候,都是以silybin的分子量为基数进行计算。黄酮类是一种广泛存在于水果、蔬菜和植物饮料中的化合物,在很多草药中也含有黄酮类物质。既往在美国人饮食中的研究表明,每天从食品中获得的黄酮类物质估计有1g左右,虽然此数据可能高估了摄攘俊ilymarin一直以来被用于保护肝脏和用于肝脏疾病的辅助治疗药物,同时它还具有其他广泛的作用,比如抗癌和预防胃溃疡的发生,治疗胆囊疾病、肝炎、肝硬化和黄疸它的护肝机理是通过阻碍有害毒素进入和帮助从肝细胞去除这些物质从而保护肝脏细胞。Silymarin一般最常用的用途为中和酒精对肝部的有害作用。组成silymarin的三种异构体(中文名为:水飞蓟宾,异水飞蓟宾、水飞蓟宁)中,水飞蓟宾(silybin)具有最强的活性,并且很大程度上是水飞蓟素所具有的特性的原因。临床常用的silymarin剂量为:用于肝部疾病和肝功能损伤时,研究认为应每天服用420-600mg。对于患有慢性肝部疾病的患者,silymarin往往作为长期治疗药物使用,所以此药物不可避免的与一些临床上往往长期服用的常用药物会发生合用现象。
     过去的研究主要集中在该药的药效研究领域,而对该药的药动学和药物相互作用研究较少。药物对细胞色素P450酶和药物转运体活性的影响,是导致药物相互作用的主要原因之一。为了最大限度地减少因药物相互作用而导致的药物不良反应,指导临床合理用药,研究已知药物对细胞色素P450酶和药物转运体活性的影响具有重要的临床意义。
     基于以上研究背景,本课题旨在查明水飞蓟素对几种重要的CYP450酶和药物转运体在体外和人体内产生的影响及其临床意义。通过建立体外的细胞平台,在mRNA表达和蛋白表达水平层面探讨水飞蓟素对上述CYP450酶的影响;并进一步通过严格设计的临床实验,分别以咪达唑仑、洛沙坦和他林洛尔为探药,基于药物代谢酶和转运体的遗传多态性对其功能的影响,在整体药代动力学水平和药物相互作用层面探讨水飞蓟素制剂对相应CYP450酶和药物转运体活性的影响,为临床上药物相互作用及个体反应差异提供分子水平的解释,并为临床实施中西药合理运用和基因导向性个体化用药提供指导。本课题的主要研究结果如下:
     1.在Chang Liver细胞系中观察水飞蓟素对CYP3A4,CYP2C9,CYP2C19,CYP2D6和CYP2E1 mRNA和蛋白表达的影响,发现水飞蓟素对CYP3A4 mRNA表达有明显的抑制作用,水飞蓟素处理Chang Liver细胞48小时能够显著减少CYP3A4 mRNA含量,并且呈浓度依赖性,在水飞蓟素处理24小时候也可以观察到CYP3A4 mRNA表达减少的趋势,并且在40μM处理组此差异具有统计学意义;水飞蓟素对CYP2C9 mRNA表达也呈现显著的抑制作用,水飞蓟素处理ChangLiver细胞24小时和48小时均能够使CYP2C9 mRNA含量显著减少,并且呈浓度依赖性,以48小时抑制作用表现更明显。对于CYP2C19、CYP2D6以及CYP2E1,不同浓度的水飞蓟素分别作用24和48小时则没有表现出明显的抑制或者诱导效应。水飞蓟素对CYP3A4和CYP2C9蛋白表达有明显的抑制作用,水飞蓟素处理Chang Liver细胞24小时和48小时均能够显著减少CYP3A4和CYP2C9蛋白含量,并且呈浓度依赖性,且在48小时抑制作用表现更明显。
     2.以镇静安眠药咪达唑仑作为探药,在不同CYP3A5*3基因型个体中研究了水飞蓟素对人体CYP3A酶代谢活性的影响,表明水飞蓟素能够抑制CYP3A所介导的咪达唑仑羟化代谢。
     3.用洛沙坦作为探药,研究了不同CYP2C9基因型个体中水飞蓟素对洛沙坦及其活性代谢产物E3174药代动力学的影响,发现洛沙坦转化为E3174的代谢率在应用水飞蓟素后显著降低,并且洛沙坦和E3174的AUC_((0-24)),AUC_((0-∞))和C_(max)的变化程度在CYP2C9不同基因型间有显著差异,表明水飞蓟素对人体CYP2C9酶活性有显著的抑制作用;
     4.用他林洛尔作为探药,在不同MDR1基因型个体研究了水飞蓟素对人体P-糖蛋白转运体活性的影响,发现水飞蓟素显著增加了他林洛尔的血药浓度和口服利用度,提示水飞蓟素在人体内显著抑制了P-糖蛋白转运体活性;
     总之,本项目从细胞到临床整体水平为水飞蓟素制剂的临床药物相互作用和反应个体差异提供了遗传分子水平的解释,为临床合理使用水飞蓟素和镇静安眠药咪达唑仑,降血压药物洛沙坦和β-受体阻滞药物他林洛尔以及其它相关药物提供了实验依据和理论指导。
Pharmacogenetics studies indicate that activity change of drug-metabolizing enzymes and transpoters is the major mechanism for clinically drug-drug interactions,and inherited variation in activities of drug-metabolizing enzymes and transporters results in interindividual differences in drug metabolism,disposition and efficacy.Recently,herbal medicines are more and more widely used by people around the world.The deepgoing study of pharmacogenetics will help us to choose right drug and adjust drug dose to avoid drug side effect and attain more drug efficacy.
     Cytochrome P450s(CYP450) superfamily expressed widely in organisms are known to play an important role in the biotransformation of many endogenous and exogenous substances.Inhibition or induction of cytochrome P450 isozymes is one of the major causes for clinical drug-drug interactions. CYP3A enzymes are the most abundantly expressed cytochrome P450 enzymes in liver and intestine and play an essential role in the oxidative biotransformation of endogenous compounds and exogenous chemicals, including more than 60%of medically relevant drugs,such as antitumor drugs. CYP3A4 and CYP3A5 are the predominant functional forms of human CYP3A enzyme in adult.The activity of CYP3A influences curative effect of drugs and the patients' reaction to the toxicity of many medicines.In the meantime,it also has a relationship with the risk that the pollution of the environment leads to disease.The high expression of CYP3A can cause the failure of tumor chemotherapy.Effects of drugs on the activity of CYP3A is one of the main causes of drug-drug interaction.Polymorphic CYP3A5 expression in the adult liver and small intestine is strongly correlated with a single nucleotide polymorphism(6986A>G),which,located in the intron 3 of CYP3A5,could cause alternative splicing and protein truncation resulting in the absence of CYP3A5 protein or seriously decreasing activity of CYP3A.CYP2C9 is a polymorphic enzyme that is responsible for the metabolism of many clinically useful drugs,such as S-warfarin,tolbutamide,phenytoin,glipizide,losartan and numerous non-steroidal anti-inflammatory drugs.Several allelic variants of CYP2C9 have been identified,with the most important mutations being CYP2C9~*2 and CYP2C9~*3.The CYP2C9~*3 variant is well studied and has been reported to show decreased metabolic activity for many drug substrates of the enzyme,so the therapeutic effects of its substrate drugs can be reduced or more adverse reactions should occur.The change of CYP2C9 activity is a significant factor of racial differences and individual differences in clinical medication and drug interactions.
     P-glycoprotein,an ATP-dependent efflux transporter coded by multidrug resistence gene(MDR1;ABCB1) and widely located at human normal tissues such as liver,kidney,small intestine and brain,plays the key role in drug absorption,distribution and elimination.Also,P-glycoprotein inhibitors are very important for reversement of multiple resistences of antitumor drugs.
     Silymarin is a purified extract from the seeds of milk thistle,which has been used for over 2,000 years as one of the most popular herbs worldwide.It is reported that a standardized extract of milk thistle contains at least 70-80% silymarin,that consists predominantly of up to 60%of silibinin,but also contains isosilibinin,silycristin,silydianin,and other closely related avonolignans.Silymarin is used mainly for supportive treatment of alcoholic liver disease,chronic hepatitis and cirrhosis.Milk thistle ranks among the top-selling botanical supplements in the United States and is easily available as an over-the-counter herbal remedy in China.Milk thistle has become one of the most commonly used medical remedies all over the world,and its opportunities applied with other drugs are also increasing.
     Up to date,although a lot of studies on silymarin pharmacological actions have been done.However,there is little report and study on metabolite and metabolic mechanism of silymarin.In addition,the inhibitive and inducing effects of silymarin on other drugs are not very clear.Inhibition or induction of cytochrome P450 isozymes and drug transporters is one of the major causes for clinical drug-drug interactions.To investigate medicines effect on CYP450s activities has important clinical significance,it helps with clinical rational administration and reducing the drug adverse reaction inducing by drug interactions.Research has found that silymarin could obviously inhibit a variety of CYP450 isozymes in mice and human liver microsomes.However, silymarin's effects on cytochrome P450s expression in human cell lines and in vivo have not been clarified.
     Based on above information,our study was aimed to find effects of herbal medicine silymarin on some important CYP450 enzymes and drug transporters in vitro and in vivo.By setting up cell-based platform in vitro,the effects of silymarin on CYP450 enzymes have been explored at mRNA and protein level. Furthermore,in strictly designed clinical experiments,using midazolam, losartan,and talinolol as the substrate drugs,the potential impact of silymarin on corresponding CYP450 enzymes and drug transporters based on their common genetic polymorphisms have been clarified accociated with drug pharmacokinetics and herb-drug interactions.
     The present series of studies have found that:
     1.Silymarin can significantly inhibit the expression of CYP3A4 mRNA after Chang Liver cells were treated for 48 hours,and the inhibition effect is concentration dependent.We can also find a decline of CYP3A4 mRNA level after 24-hour silymarin treatment,which is of statistic significance at concentration of 40μM;Silymarin can also significantly inhibit the expression of CYP2C9 mRNA after Chang Liver cells were treated for both 24 and 48 hours.The inhibition effect is concentration dependent and more significant for 48 hours.Silymarin's effects on CYP2C19,CYP2D6 and CYP2E1 were not observed.Silymarin can significantly inhibit the expression of CYP3A4 and CYP2C9 proteins after Chang Liver cells were treated for both 24 and 48 hours,and the inhibition effect is concentration dependent for 48 hours.
     2.420 mg daily administration of silymarin for 14 days significantly inhibits the metabolism of midazolam to 1-OH midazolam in healthy volunteers,with no interaction differing in individuals with different CYP3A5 genotypes.
     3.420 mg daily administration of silymarin for 14 days significantly inhibits the metabolism of losartan to E-3174,with the magnitude of the interaction differing in individuals with different CYP2C9 genotypes. indicating that Silymarin can significantly inhibits CYP2C9 activity in humans;
     4.420 mg daily administration of silymarin for 14 days increases the oral bioavailability of talinolol,and the increased plasma concentration of talinolol caused by silymarin co-administration may partially due to inhibition of intestinal talinolol efflux through P-gp.However,the interaction is not differing in individuals with different MDR1 genotypes. The present study has provided molecular mechanism for the herb-drug interactions and interindividual variations involving silymarin both in vitro and in vivo,provides experimental and theoretic guidance for combination use of silymarin formulations with sedative and hypnagogue midazolam, hypotensive drug losartan andβ-receptor antagonist talinolol as well as similar drugs.
引文
[1] Simanek V, Kren V, Ulrichova J, et al. Silymarin: What is in the name? An appeal for a change of editorial policy. Hepatology 2000;32(2):442-4.
    [2] Schulz HU, Schuerer M, Krumbiegel G, et al. Investigation of Dissolution and Bioequivalence of Silymarin Products. ARZNEIMITTEL FORSCHUNG 1995;45:61-65.
    [3] Mayer KE, Myers RP, Lee SS. Silymarin treatment of viral hepatitis, a systematic review. J Viral Hepat 2005; 12:559-67.
    [4] Schandalik R, Gatti G, Perucca E. Pharmacokinetics of silybin in bile following administration of silipide and silymarin in cholecystectomy patients. Arzneimittelforschung 1992;42:964-8.
    [5] Ball KR, Kowdley KV. A review of Silybum marianum (milk thistle) as a treatment for alcoholic liver disease. J Clin Gastroenterol 2005;39.520-8.
    [6] Salmi HA, Sarna S. Effect of silymarin on chemical, functional, and morphological alterations of the liver. A double-blind controlled study. Scand J Gastroenterol 1982;17(4):517-21.
    [7] Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. Journal of hepatology 1989;9(1):105-13.
    [8] Gazak R, Walterova D, Kren V Silybin and Silymarin-New and Emerging Applications in Medicine. Current Medicinal Chemistry 2007;14(3):315-38.
    [9] Schulz HU, Schurer M, Krumbiegel G, et al. The solubility and bioequivalence of silymarin preparations]. Arzneimittelforschung 1995;45:61-4.
    [10] Savio D, Harrasser PC, Basso G. Softgel capsule technology as an enhancer device for the absorption of natural principles in humans. A bioavailability cross-over randomised study on silybin. Arzneimittelforschung 1998;48:1104-6.
    [11] Li FQ, Hu JH. Improvement of the dissolution rate of silymarin by means of solid dispersions. Chem Pharm Bull (Tokyo) 2004;52:972-3.
    [12] Kim YC, Kim EJ, Lee ED, et al. Comparative bioavailability of silibinin in healthy male volunteers. Int J Clin Pharmacol Ther 2003;41:593-6.
    [13] Kvasnicka F, Biba B, Sevvik R, et al. Analysis of the active components of silymarin. Journal ofChromatography A2003;990(1-2):239-45.
    [14] Weyhenmeyer R, Mascher H, Birkmayer J. Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. 1992;30(4): 134-8.
    [15] 周宏灏 遗传药理学 北京:人民军医出版社,2003.61-83.
    [16] Beckmann-Knopp S, Rietbrock S,Weyhenmeyer R, et al. Inhibitory Effects of Silibinin on Cytochrome P-450 Enzymes in Human Liver Microsomes. Pharmacology & Toxicology 2000; 86: 250.
    [17] Zuber R, Modriansky M, Dvorak Z, et al. Effect of Silybin and its Congeners on Human Liver Microsomal Cytochrome P450 Activities. Phytotherapy Research 2002; 16: 632-8.
    [18] Sridar C, Goosen TC, Kent UM, et al. Silybin inactivates cytochromes P450 3A4 and 2C9 and inhibits major hepatic glucuronosyltransferases. Drug Metabolism and Disposition 2004; 32: 587-94.
    [19] Evans WE, McLeod HL. Pharmacogenomics -Drug disposition, drug targets and side effects. N Engl J Med 2003;348: 538.
    [20] Weinshilboum R. Inheritance and drug response. N Engl J Med 2003; 348: 529.
    [21] Zhu B, Liu ZQ, Chen GL, et al. The distribution and gender difference of CYP3 A activity in Chinese subjects. Br J Clin Pharmacol 2003;55:264.
    [22] Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001;27: 383-91.
    [23] Xie HG, Wood AJJ, Kim RB, et al. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004;5: 243-72.
    [24] Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001;11: 773.
    [25] Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64:133-43.
    [26] Thummel KE, O'Shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996; 59:491-502.
    [27] Thummel KE, Shen DD, Podoll TD, et al. Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 1994; 271:549-56.
    [28] Streetman DS, Bertino JS, Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000; 10:187-216.
    [29] Huwyler J, Wright MB, Gutmann H, et al. Induction of cytochrome P450 3 A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin. Curr Drug Metab 2006; 7:119-26.
    [30] Carrillo JA, Ramos SI, Agundez JA, et al. Analysis of midazolam and metabolites in plasma by high-performance liquid chromatography: probe of CYP3A. Ther Drug Monit 1998; 20:319-24.
    [31] Lin YS, Lockwood GF, Graham MA, et al. In-vivo phenotyping for CYP3 A by a single-point determination of midazolam plasma concentration. Pharmacogenetics 2001; 11:781 -91.
    [32] Polli JW, Wring SA, Humphreys JE, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp.Ther.2001; 299:620-628
    [33] Venkataramanan A, Ramachandran R, Komoroski V, et al. Milk Thistle, a Herbal Supplement, Decreases the Activity of CYP3A4 and Uridine Diphosphoglucuronosyl Transferase in Human Hepatocyte Cultures. 2000; 28: 1270-3.
    [34] Chrungoo, Reen VJ, Singh RK, et al. Effects of silymarin on UDP-glucuronic acid and glucuronidation activity in the rat isolated hepatocytes and liver in relation to D-galactosamine toxicity. Indian journal of experimental biology 1997; 35: 256-63.
    [35] Zhang S, Morris ME. Effects of the Flavonoids Biochanin A, Morin, Phloretin, and Silymarin on P-Glycoprotein-Mediated Transport. Journal of Pharmacology and Experimental Therapeutics 2003; 304: 1258-67.
    [36] Nguyen, H, Zhang S, Morris ME. Effect of flavonoids on MRP 1-mediated transport in Panc-1 cells. JOURNAL OF PHARMACEUTICAL SCIENCES 2003; 92: 250-7.
    [37] Mills E, Wilson K, Clarke M, et al. Milk thistle and indinavir: a randomized controlled pharmacokinetics studyand meta-analysis. Eur J Clin Pharmacol 2005; 61: 1-7.
    [38] Gurley BJ, Gardner SF, Hubbard MA, et al. In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes: Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto. Clinical Pharmacology & Therapeutics 2004; 76: 428-40.
    [39] Fuhr U, Beckmann-Knopp S, Jetter A, et al. The Effect of Silymarin on Oral Nifedipine Pharmacokinetics. PLANTAMEDICA 2007; 73: 1429.
    [40] van Schaik RH, van der Heiden IP, van den Anker JN, et al. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 2002;48: 1668-71.
    [41] MR Shiran, A Gregory, A Rostami-Hodjegan, et al. Determination of midazolam and 1'-hydroxymidazolam by liquid chromatography-mass spectrometry in plasma of patients undergoing methadone maintenance treatment. Journal of Chromatography B 2003;783(1):303-307
    [42] Leber HW, Knauff S. Influence of silymarin on drug metabolizing enzymes in rat and man. Arzneimittelforschung 1976; 26:1603-5.
    [43] Weyhenmeyer R, Mascher H, Birkmayer J. Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. International journal of clinical pharmacology, therapy and toxicology 1992; 30: 134-8.
    [44] Chiu AT, McCall DE, Price WA, et al. In vitro pharmacology of DuP 753. Am J Hypertens 1991; 4: S282-7.
    [45] Wong PC, Tarn ST, Herblin WF, et al. Further studies on the selectivity of DuP 753, a nonpeptide angiotensin II receptor antagonist. Eur J Pharmacol 1991; 196:201-3.
    [46] Stearns RA, Chakravarty PK, Chen R, et al. Biotransformation to of losartan to its active carboxylic acid metabolite in human liver microsomes: role of cytochrome P4502C and 3 A subfamily members. Drug Metab Dispos 1995; 23: 207-15.
    [47] Yasar U, Eliasson E, Forslund-Bergengren C, et al. The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. Eur J Clin Pharmacol 2001;57:729-35.
    [48] McCrea JB, Cribb A, Rushmore T, et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 1999;65:348-52.
    [49] Stearns RA, Chakravarty PK, Chen R, et al. Biotransformation to of losartan to its active carboxylic acid metabolite in human liver microsomes: role of cytochrome P4502C and 3A subfamily members. Drug Metab Dispos 1995; 23: 207-15.
    [50] Meadowcroft AM, Williamson KM, Patterson JH, et al. The effects of fluvastatin, a CYP2C9 inhibitor, on losartan pharmacokinetics in healthy volunteers. 1999; J Clin Pharmacol 39:418-424.
    [51] McCrea JB, Cribb A, Rushmore T, et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 1999;65:348-52.
    [52] Munafo A, Christen Y, Nussberger J, et al. Drug concentration response relationships in normal volunteers after oral administration of losartan, an angiotensin Ⅱ receptor antagonist.Clin Pharmacol Ther 1992;51:513-21.
    [53] Rettie AE, Jones JP. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 2005; 45:477-494.
    [54] Human Cytochrome P450 (CYP) Allele Nomenclature Committee home page. 2004. Available from: http://www.imm.ki.se/CYPalleles. [55] Xie HG, Prasad HC, Kim RB, et al. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev. 2002; 54(10): 1257-70.
    [56] Imai J, Ieiri I, Mamiya K, et al. Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. Pharmacogenetics 2000; 10:85-89.
    [57] Dickmann LJ, Rettie AE, Kneller MB, et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 2001;60:382-387.
    [58] Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001; 11:803-808.
    [59] Blaisdell J, Jorge-Nebert LF, Coulter S, et al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 2004; 14:527-537.
    [60] Si D, Guo Y, Zhang Y, et al. Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics 2004; 14:465-469.
    [61] Zhao F, Loke C, Rankin SC, et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004; 76:210-219.
    [62] Veenstra DL, Blough DK, Higashi MK, et al. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther 2005; 77:353-364.
    [63] Maekawa K, Fukushima-Uesaka H, Tohkin M, et al. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics. 2006;16(7):497-514.
    [64] Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002;12(3):251-63.
    [65] Takanashi K, Tainaka H, Kobayashi K, et al. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics. 2000; 10: 95-104.
    [66] Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther. 2005;77(l): 1-16.
    [67] Sekino K, Kubota T, Okada Y, et al. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur J Clin Pharmacol. 2003;59(8-9):589-92.
    [68] Hong X, Zhang S, Mao G et al. CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population. Eur J Clin Pharmacol 2005;61:627-34
    [69] Ritter MA, Furtek CI, Lo MW. An improved method for the simultaneous determination of losartan and its major metabolite, EXP3174, in human plasma and urine by high-performance liquid chromatography with fluorescence detection. J Pharm Biomed Anal 1997;15:1021-1029
    [70] Gonzalez L, Lopez JA, Alonso RM, et al. Fast screening method for the determination of angiotensin II receptor antagonists in human plasma by high-performance liquid chromatography with fiuorimetric detection. J Chromatogr A 2002;949:49-60
    [71] Yasar U, Tybring G, Hidestrand M, et al. Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 29:1051-1056 metabolizing enzymes in rat and man. Arzneimittelforschung 2001;26:1603-1605
    [72] Yasar U, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002;71:89-98
    [73] Goldberg MR, Lo MW, Deutsch PJ, et al. Phenobarbital minimally alters plasma concentrations of losartan and its active metabolite E-3174. Clin Pharmacol Ther 1996;59:268-274
    [74] Kazierad DJ, Martin DE, Blum RA, et al. Effect of fluconazole on the pharmacokinetics of eprosartan and losartan in healthy male volunteers. Clin Pharmacol Ther 1997;62:417-425
    [75] Williamson KM, Patterson JH, McQueen RH, et al. Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 1998;63:316-323
    [76] McCrea JB, Lo MW, Furtek CI, et al. Ketoconazole does not effect the systemic conversion of losartan to E-3174. Clin Pharmacol Ther 1996; 59:169-169
    [77] Goldberg MR, Lo MW, Bradstreet TE, et al. Effects of cimetidine on pharmacokinetics and pharmacodynamics of losartan, an AT1-selective non-peptide angiotensin II receptor antagonist. Eur J Clin Pharmacol 1995;49:115-119
    [78] Alonen A, Finel M, Kostiainen R. The human UDPglucuronosyltransferase UGT1A3 is highly selective towards N2 in the tetrazole ring of losartan, candesartan, and zolarsartan. Biochem Pharmacol 2008;76:763-772
    [79] Yin T, Maekawa K, Kamide K,et al. Genetic variations of CYP2C9 in 724 Japanese individuals and their impact on the antihypertensive effects of losartan. Hypertens Res 2008;31:1549-1557
    [80] van Helvoort A, Smith AJ, Sprong H, et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996; 87:507-17.
    [81] Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of drug transporters and its impact on the pharmacotherapy. Curr Top Med Chem 2004; 4:1385-98.
    [82] Tanabe M, Ieiri I, Nagata N, et al. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 2001; 297:1137-43.
    [83] Mealey KL. Therapeutic implications of the MDR-1 gene. J Vet Pharmacol Ther 2004; 27:257-64.
    [84] Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70:189-99.
    [85] Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet 2004; 43:553-76.
    [86] Zhang WX, Chen GL, Zhang W, et al. MDR1 genotype do not influence the absorption of a single oral dose of 100 mg talinolol in healthy Chinese males. Clin Chim Acta 2005; 359:46-52.
    [87] Chowbay B, Cumaraswamy S, Cheung YB, et al. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics 2003; 13:89-95.
    [88] Tang K, Ngoi SM, Gwee PC, et al. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics 2002; 12:437-50.
    [89] Ameyaw MM, Regateiro F, Li T, et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001; 11:217-21.
    [90] Balram C, Sharma A, Sivathasan C, et al. Frequency of C3435T single nucleotide MDR1 genetic polymorphism in an Asian population: phenotypic-genotypic correlates. Br J Clin Pharmacol 2003; 56:78-83.
    [91] Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther 2002; 72:584-94.
    [92] Campeanu A. The Cardiac Insufficiency Talinolol Study (CITAS) study design. European Journal of Heart Failure 2001;3(3):377-80.
    [93] Assmann I. The actions of talinolol, a β 1 -selective beta blocker, in cardiac arrhythmia and acute myocardial infarction. Current medical research and opinion 1995;13(6):325-42.
    [94] Maurer HH, Tenberken O, Kratzsch C, et al. Screening for library-assisted identification and fully validated quantification of 22 beta-blockers in blood plasma by liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization. Journal of Chromatography A 2004;1058(1-2):169-81
    [95] Beate T, Oertel R, Richter K. Disposition and bioavailability of the β1-adrenoceptor antagonist talinolol in man. Biopharm Drug Dispos 1995;16:403-14.
    [96] Anderle P, Niederer E, Rubas W,et al. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J Pharm Sci 1998;87(6):757-62.
    [97] Siegmund W, Ludwig K, Engel G, et al. Variability of Intestinal Expression of P-Glycoprotein in Healthy Volunteers as Described by Absorption of Talinolol from Four Bioequivalent Tablets. Journal of pharmaceutical sciences 2003;92(3):604-10.
    [98] Schwarz UI, Gramatte T, Krappweis J, et al. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int J Clin Pharmacol Ther 2000;38(4):161-7.
    [99] Spahn-Langguth H, Langguth P. Grapefruit juice enhances intestinal absorption of the P-glycoprotein substrate talinolol. European Journal of Pharmaceutical Sciences 2001;12(4):361-7.
    [100]Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacology and Therapeutics 2006;112(2):457-473.
    [101] Johnson WW. P-glycoprotein-mediated efflux as a major factor in the variance of absorption and distribution of drugs: modulation of chemotherapy resistance. Methods Find Exp Clin Pharmacol 2002; 24.501-14.
    [102] Schwarz UI, Hanso H, Oertel R, et al. Induction of intestinal P-glycoprotein by St John's wort reduces the oral bioavailability of talinolol. Clin Pharmacol Ther. 2007 May;81(5):669-78.
    [103]Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clinical Pharmacology & Therapeutics 2001;69:169-74.
    [104] He J, Terhaag B, Yang LY, et al. Determination of talinolol in human plasma by high performance liquid chromatography-electrospray ionization mass spectrometry: Application to pharmacokinetic study. Journal of Chromatography B 2007;853(1-2):275-80.
    [105]Weitschies W, Bernsdorf A, Giessmann T, et al. The Talinolol Double-Peak Phenomenon Is Likely Caused by Presystemic Processing After Uptake from Gut Lumen. Pharmaceutical Research 2005;22(5):728-35.
    [106]Patel J, Buddha B, Dey S, et al. In Vitro Interaction of the HIV Protease Inhibitor Ritonavir with Herbal Constituents: Changes in P-gp and CYP3A4 Activity.American Journal of Therapeutics 2004;11(4):262.
    [107]Izzo AA.,Ernst E.Interactions between herbal medicines and prescribed drugs:a systematic review.Drugs 2001;61:2163-2175.
    [1] Kaufman DW, Kelly JP, Rosenberg L,et al. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA 2002;287:337-344
    [2] Gardiner P, Graham RE, Legedza AT,et al. Factors associated with dietary supplement use among prescription medication users. Arch Intern Med 2006;166:1968-1974
    [3] Vaes LP, Chyka PA. Interactions of warfarin with garlic, ginger, ginkgo, or ginseng: nature of the evidence. Ann Pharmacother 2000;34:1478-82
    [4] Hu Z, Yang X, Ho PC,et al. Herb-drug interactions: a literature review. Drugs 2005;65:1239-82
    [5] Jiang X, Williams KM, Liauw WS,et al. Effect of St John's wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br J Clin Pharmacol 2004; 57:592-599
    [6] Zhou S, Chan E, Pan SQ,et al. Pharmacokinetic interactions of drugs with St. John's wort. J Psychopharmacol 2004; 18:262-276
    [7] Henderson L, Yue QY, Bergquist C,et al. St John's wort (Hypericum perforatum): drug interactions and clinical outcomes. Br J Clin Pharmacol 2002;54:349-356
    [8] Jiang X, Blair EY, McLachlan AJ. Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J Clin Pharm 2006;46:1370-1378
    [9] Yuan CS, Wei G, Dey L,et al. Brief communication: American ginseng reduces warfarin's effect in healthy patients: a randomized, controlled trial. Ann Intern Med 2004;141:23-27
    [10] Jiang X, Williams KM, Liauw WS,et al. Effect of ginkgo and ginger on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br J Clin Pharmacol 2005;59:425-432
    
    [11] Mohutsky MA, Anderson GD, Miller JW,et al. Ginkgo biloba: evaluation of CYP2C9 drug interactions in vitro and in vivo. Am J Ther 2006; 13:24-31
    
    [12] Macan H, Uykimpang R, Alconcel M,et al. Aged garlic extract may be safe for patients on warfarin therapy. J Nutr 2006; 136(3 suppl):793-795
    [13] Garrard J, Harms S, Eberly LE,et al. Variations in product choices of frequently purchased herbs: caveat emptor. Arch Intern Med 2003; 163:2290-2295
    [14] Sugi(?)oto K, Ohmori M, Tsuruoka S,et al. Different effects of St John's wort on the pharmacokinetics of simvastatin and pravastatin. Clin Pharmacol Ther 2001;70:518-524
    [15] Portoles A, Terleira A, Calvo A,et al. Effects of Hypericum perforatum on ivabradine pharmacokinetics in healthy volunteers: an open-label, pharmacokinetic interaction clinical trial. J Clin Pharmacol 2006;46:1188-1194
    [16] Tannergren C, Engman H, Knutson L,et al. St John's wort decreases the bioavailability of R- and S-verapamil through induction of the first-pass metabolism. Clin Pharmacol Ther 2004;75:298-309
    [17] Brockmoller J, Bauer S, Maurer A,et al. Pharmacokinetic interaction of digoxin with an herbal extract from St John's wort (Hypericum perforatum). Clin Pharmacol Ther 1999;66:338-345
    [18] Tian R, Koyabu N, Morimoto S,et al. Functional induction and de-induction of P-glycoprotein by St. John's wort and its ingredients in a human colon adenocarcinoma cell line. Drug Metab Dispos 2005;33:547-554
    [19] Soldner A, Christians U, Susanto M,et al. Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res 1999;16:478-485
    [20] McRae S. Elevated serum digoxin levels in a patient taking digoxin and Siberian ginseng. CMAJ 1996;155:293-295
    [21] Harkey MR, Henderson GL, Gershwin ME,et al. Variability in commercial ginseng products: An analysis of 25 preparations. Am J Clin Nutr 2001;73:1101-1106
    [22] Smith M, Lin KM, Zheng YP. An open trial of nifedipine-herb interactions: Nifedipine with St. John's wort, ginseng or Ginkgo biloba. Clin Pharmacol Ther 2001;69:86
    [23] Hammerness P, Basch E, Ulbricht C, et al. for the Natural Standard Research Collaboration. St John's wort: a systematic review of adverse effects and drug interactions for the consultation psychiatrist. Psychosomatics 2003;44:271-282
    [24] Izzo AA. Drug interactions with St. John's wort (Hypericum perforatum): a review of the clinical evidence. Int J Clin Pharmacol Ther 2004;42:139-148
    [25] Markowitz JS, De Vane CL. The emerging recognition of herb-drug interactions with a focus on St. John's wort (Hypericum perforatum).Psychopharmacol Bull 2001;35:53-64
    [26] Roots I. Interaction of a herbal extract from St. John's wort with amitriptyline and its metabolites. Clin Pharmacol Ther 2000;67:69
    [27] Gorski JG, Huang SM, Pinto A, et al. The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo. Clin Pharmacol Ther 2004;75:89-100
    [28] Galluzzi S, Zanetti O, Binetti G, et al. Coma in a patient with Alzheimer's disease taking low dose trazodone and gingko biloba. J Neurol Neurosurg Psychiatry 2000;68:679-680
    [29] Yeh GY, Eisenberg DM, Kaptchuk TJ, et al. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 2003;26:1277-1294
    [30] Mathijssen RH, Verweij J, de Bruijn P, et al. Effects of St. John's wort on irinotecan metabolism. J Natl Cancer Inst 2002;94:1247-1249
    [31] Harkey MR, Henderson GL, Gershwin ME, et al. Variability in commercial ginseng products: An analysis of 25 preparations. Am J Clin Nutr 2001 ;73:1101 -1106
    [32] Weiger W, Smith MR, Boon H, et al. Advising patients who seek complementary and alternative medical therapies for cancer. Ann Intern Med 2002;137:889-903
    [33] Piscitelli SC, Formentini E, Burstein AH, et al.Effect of milk thistle on the pharmacokinetics of indinavir in healthy volunteers. Pharmacotherapy 2002;22 (5): 551-556.
    [34] Durr D, Stieger B, Kullak-Ublick G A, et al. St. John's wort induces intestinal P-glycoprotein/MDRl and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000;68:598-604.
    [35] Gallicano K, Foster B, Choudhri S. Effect of short-term administration of garlic supplements on single-dose ritonavir pharmacokinetics in healthy volunteers. Br J Clin Pharmacol 2003;55 (2): 199-202
    [36] Piscitelli SC, Burstein AH, Welden N, et al. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin Infect Dis 2002;34 (2): 234-238
    [37] Hsu A, Granneman GR, Bertz RJ. Ritonavir clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 1998; 35:275-291.
    [38] Lee LS, Andrade AS, Flexner C. Interactions between natural health products and antiretroviral drugs: pharmacokinetic and pharmacodynamic effects. Clin Infect Dis 2006:43:1052-1059