海南岛西部橡胶人工林生态系统植物亚系统碳汇功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以30a海南岛西部橡胶人工林(PR107和RRIM600)为研究对象,采用生物量法,对海南岛西部橡胶人工林生态系统的乔木层、林下植被和凋落物的碳汇功能进行研究,并对其固碳和释氧的价值进行估算。本研究的主要结果和结论如下。
     (1)橡胶树各器官含碳率波动范围在45.16%-53.73%之间,各器官含碳率大小表现为:树叶>树干>树枝>树皮>树根;橡胶树各器官碳储量分布大小RRIM600依次为:树干(43%)>树枝(28%)>树根>(16%)树皮(11%)>树叶(2%);PR107依次为:树干(55%)>树枝(18%)>树根(17%)>树皮(8%)>树叶(2%)。利用SAS9.0分别建立以橡胶树各器官碳储量与树围(G),树高和胸径(DZH)的回归方程,结果均达到显著相关关系。采用树围作为变量的回归方程对橡胶树碳储量进行估测,得出不同树围橡胶树全树碳储量,并以450株/hm2的密度计算得出每公顷橡胶所固定的碳分别为PR107:153.51·hm-2, RRIM600:131.13·hm-2。。(2)通过周年定位观测得出:橡胶人工林整个生命周期(30a)林下植被碳储量分别为PR107:12.93t·hm-2; RRIM600:11.17t·hm-2。凋落物PR107:110.81t·hm-2; RRIM600:120.26t·hm-2。凋落物和林下植被的含碳率波动范围在44.83%-49.17%之间,大小依次为:果实>枯叶>花>林下植物>枯枝。PR107和RRIM600 (8a-22a)橡胶人工林凋落物和林下植被年碳储量的变化范围分别在2801.59kg·hm-2-5288.01kg·hm-2和2897.26kg·hm2-5770.14kg·hm-2之间,平均4124.70kg·hm-2和4381.07kg·hm-2。其中,枯叶>枯枝>林下植物>果实>花。随着林龄的增加,橡胶人工林凋落物和林下植被的碳储量均逐渐增大。加上林下植被、凋落物和生产的橡胶,每公顷橡胶人工林生态系统在30a生命周期中固定C的总量为PR107:302.4t·hm-2; RRIM600:287.35t·hm-2,平均年固定量为10.07t·hm-2和9.58t·hm-2
     (3)通过瑞典税率和工业制氧价格对橡胶人工林生态系统的固碳释氧价值进行估算,结果显示:
     PR107:固碳总价值为45306美元/公顷,释氧总价值为39934.19美元/公顷,固碳释氧总价值达到85240.19美元/公顷;
     RRIM600:固碳总价值为43102.50美元/公顷,释氧总价值为37991.95美元/公顷,固碳释氧总价值达到81094.45美元/公顷。
     可以认为,橡胶人工林在生产胶乳和木材的同时,吸收了大量的温室气体CO2,并长期固定在生物体中,因此橡胶人工林是巨大的碳汇生态系统,它在减缓全球气候变化中的作用是不可低估的。我们还可以进一步认为,橡胶人工林栽培是一种直接生态服务效益和间接生态服务效益兼得的生态产业活动,值得重视和支持。本研究的结果可为正确评价橡胶人工林在区域和全球气候变化中的作用提供科学依据。
The main focus of this study was to estimate carbon sequestration in two 30a rubber plantations in Hainan (Clone PR107 and clone RRIM600). Biomass method was introduced to study carbon sequestration in tree layer, understory vegetation and litterfall in this ecosystem. The major results and conclusions are summarized below.
     The rate of carbon content in various organs of rubber tree fluctuated within the range of 45.16%-53.73%, with the order as followed:leaf>trunk> branches>bark>roots. Whereas, the order of carbon stock in various organs were as followed,PR107:trunk(55%)>branch (18%)>roots (17%)>bark (8%)>leaf (2%);RRIM600:trunk (43%)>branch (28%)>roots (16%)>bark (11%)>leaves (2%). SAS9.0 was used to establish two types of regression models for rubber tree, namely, the first model between carbon storage in various organs and girth (G), the second model between carbon stock and tree height plus diameter at breast height (D2H), all the first regression model with girth as a variable was used to estimate carbon stock in the rubber tree in each level, so that carbon stock in every girth intervals would be obtained. The average rubber tree density in Hainan is 450/hm2, which lead to PR107:153.51t·hm-2, RRIM600:131.13t·hm-2 carbon sequestration in rubber tree during their 30 years life cycle.
     Annual located monitoring suggested that carbon stock in litterfall was PR107:110.81 t·hm-2; RRIM600:120.26 t·hm-2, throughout the life cycle 30 years, and carbon stock in understory vegetation was PR107:12.93t·hm-2; RRIM600:11.17t·hm-2. Carbon content in litterfall and understory vegetation ranges from 44.83%-49.17%, with the sequence fruit>leaves>flowers>understory vegetation>deadwood. Each year, PR107&RRIM600 carbon stock in litterfall under 8a-22a rubber tree varies from 2801.59 kg·hm-2-5288.01kg·hm-2、2897.26 kg·hm-2-5770.14 kg·hm-2, with the average value of 4124.70 kg·hm-2、4381.07kg·hm-2. The order for carbon stock in litterfall appeared to be:dead leaves>deadwood>understory vegetation>fruit>flower. In other words, along with increasing in tree age, carbon stock in litter and understory vegetation of rubber plantation is gradually increasing. For that, the total value of carbon sequestration during 30year's life cycle for rubber plantation ecosystem are:PR107:302.4t·hm-2; RRIM600:287.35t·hm-2, which means the average annual fixed amount are 10.07t·hm-2 and 9.58t·hm-2.
     According to these, the total value of C sequestration and O2 release for plant subsystem in rubber plantation (PR107&RRIM600) ecosystem could be calculated. The results show that: PR107:45,306 U.S. dollars for C sequestration per hectare; 39,934.19 U.S. dollars for O2 release per hectare, that is to say,85,240.19 U.S. dollars for the total value of C sequestration and O2 release per hectare.
     It is therefore concluded that rubber plantation forest can sequester large amount of green house gas CO2 and store in its biomass during its economic life span and product's life span while producing latex and timber. It is on this context that rubber plantation forest is considered a large canban sink that helps the slow down of global climate change. Rubber plantation forest development can offer direct and indirect eocological services. The present result is of certain significance so as to proper valuation of rubber plantation forest in regional and global climate change studies.
引文
[1]IPCC.2007. An Assessment of the Intergovernmental Panel on Climate Change-Synthesis Report. Valencia, Spain, IPCC.52 p.
    [2]Appsa M J, Kurz W A, Beukema S J, et al.1999. Carbon budget of the Canadian forest product sector. Environmental Science & Policy.2:25-41.
    [3]Houghton J T, Ding Y, Griggs D J.2001. Climate change 2001:the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. UK: Cambridge University Press.94p。
    [4]Rodhe H.1990. A comparison of the contribution of various gases to the greenhouse effect. Science, 248:1217-1219
    [5]Fankhauser S.1995. Valuing Climate Change. London:Earthscan Publications Ltd.
    [6]Mitchell J F B.1989,The Greenhouse effect and climate change[J]. Reviews of Geophysics,27(1):115139.
    [7]Houghton J T, Jerkins G J, Ephraums J J.1990,Climate change:the IPCC scientific assessment[M].New York:Cambridge Univ Press 283-310.
    [8]Bate A.K. Climate in Crisis:The greenhouse effect and what we can do(气候危机:温室效应与我们的对策)[M].苗润牛,成志勤译.北京:中国环境科学出版社,1992.
    [9]程堂仁,甘肃小陇山森林生物量及碳储量研究,[D],北京,北京林业大学2007
    [10]Schlesinger W H,1997.Biogeochemistry:An analysis of global change.San Diego:Academic Press
    [11]Holmen K,1992.The global carbon cycle.In:Butcher et al.(eds),Global Biogeochemical Cycle.San Diego:Academic Press,239-262
    [12]King A,Emanuel W,William R and Post W M,1992.Project in future concentrations of atmospheric CO2 with global carbon cycle models:The importance of simulating historical changes.Environmental Management.,16:91-108
    [13]Bolin B,1977.Changes of land biota and their importance for the carbon cycle.Science,196:613-615
    [14]Watson R T,Verardo D J. Land-use change and forestry.2000:Cambridge University Press
    [15]IPCC.Land use,land-use change,and forestry-A special report of the IPCC.2000,New York:Cambriage University press.
    [16]Dixon R K,Solomon A M,Brown S,et al.1994,Carbon pools and flux of global forest ecosystems.Science,263:185-190
    [17]Kramer P.J.1981. Carbon dioxide concentration, photosynthe-sis, and dry matter production. Bioscience,31:29-33.
    [18]White A., Cannell M. G. R.& Friend A. D.,2000. CO2 stabilization, climate change and the terrestrial carbon sink. Global Change Biology.6 (7):817-833.
    [19]徐德应、刘世荣,温室效应、全球变暖与林业.世界林业研究,(1):25-321992.
    [20]Clark D. A.,2004. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions of the Royal Society of London Series B Biological Sciences,359 (1443), pp.477-491.
    [21]IPCC,2007; An Assessment of the Intergovernmental Panel on Climate Change-Synthesis Report.Valencia, Spain, IPCC.52 p.
    [22]Denman K. L., Brasseur G., Chidthaisong A., Ciais P.& Cox P., M.,2007. Chapter 7 Couplings Between Changes in the Climate System and Biogeochemistry.
    [23]S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, J. Henry LeRoy Miller and Z. Chen (Eds.), Climate Change 2007-The Physical Science Basis-Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, p.996.
    [24]耿元波,董云社,孟维奇.陆地碳循环研究进展.地理科学进展.2000.4:11-20
    [25]袁嘉祖;范晓明;中国森林碳汇功能的成本效益分析,[J],河北林果研究,1997
    [26]Martin P. H., Nabuurs G. J., Aubinet M., Karjalainen T., Vine E. L., Kinsman J.& Heath L. S.,2001. Carbon sinks in temperate forests. Annual Review of Energy and the Environment,26, pp.435-465.
    [27]Kirschbaum M. U. F.,2003. To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass and Bioenergy,24 (4-5), pp.297-310.
    [28]Lal R., Kimble J.& Follett R.,1998. Land use and soil C pools in terrestrial ecosystems. In:R. Lal, J. M. Kimble, R. F. Follett and B. A. Stewart (Eds.), Management of Carbon Sequestration in Soil. Boca Raton, CRC Press Inc, pp.1-10. Advances in Soil Science-Boca Raton.
    [29]吴建国;张小全;徐德应;土地利用变化对土壤有机碳贮量的影响,[J],应用生态学报,2004
    [30]李怒云,中国林业碳汇,[M],中国林业出版社,2007
    [31]方精云,刘国华,徐嵩龄。中国陆地生态系统碳循环.[M]北京:中国环境科学出版社1996b.
    [32]Whittaker R H, Likens G E.1973. Carbon in the biota. In:Woodwell G M, Pecan E V(eds).Carbon and the biosphere CONF 720510. Springfield/Virginia:U.S. National Technical Information Service.281-302
    [33]WRI.World Resources 2000-2001:People and ecosystems:The fraying web of life. United Nations Development Programme, United Nations Environment Programme, World Bank, World Resources Institute September,2000.p276
    [34]Olson J S.1983. Carbon in live vegetation of major world ecosystems. Report ORNT-5862(Oak Ridge, Tenn)Oak Ridge National Laboratory
    [35]Phillips O. L., Malhi Y., Higuchi N., Laurance W. F., Nunez P. V., Vasquez R. M., Laurance S. G., Ferreira L. V, Stern M., Brown S.& Grace J.,1998. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science,282 (5388), pp.439-442.
    [36]Houghton R. A.,1995. Balancing the global carbon cycle with terrestrial ecosystems. In:R. G. Zepp and C. Sonntag (Eds.), Role of Non Living Organic Matter in the Earth's Carbon Cycle. John Wiley & Sons Ltd, pp.133-152.
    [37]Wigley T. M. L.& Schimel D. S.,2000. Introduction. In:T. M. L. Wigley and D. S. Schimel (Eds.), The Carbon Cycle. Cambridge, Cambridge University Press, pp.3-6.
    [38]Malhi Y., Meir P.& Brown S.,2002. Forests, carbon and global climate. Philosophical Transactions of the Royal Society of London Series a Mathematical Physical and Engineering Sciences,360 (1797), pp.1567-1591.
    [39]Matthews H. D., Weaver A. J., Meissner K. J., Gillett N. P.& Eby M.,2004. Natural and anthropogenic climate change:incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dynamics,22 (5), pp.461-479.
    [40]Grace J.& Malhi Y.,1999. The role of rain forests in the global carbon cycle. Progress in Environmental Science,1 (2), pp.177-193.
    [41]Luyssaert S., Inglima I., Jung M., et al.,2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology,13 (12), pp.2509-2537.
    [42]Schulze E D,Wirth C, Heimann M.2000. Managing forests after Kyoto. Science,289:2058-2059
    [43]周玉荣,于振良,赵士洞.2000.我国主要森林生态系统碳储量和碳平衡.植物生态学报,24(5):518-522
    [44]方精云,陈安平.中国森林植被碳库动态变化及其意义[J].植物学报,2001,43(9):967-973
    [45]张国斌.岷江上游森林碳储量特征及动态分析.中国林业科学院博士论文.2008.北京.P97
    [46]丁扬.苏北杨树人工林生物量于碳储量的研究.南京林业大学硕士学位论文.2008.南京.P47
    [47]张俊.兴安落叶松人工林群落结构、生物量和碳储量研究.北京林业大学硕士学位论文.2008.北京.P61
    [48]沈文清.江西千烟洲人工林针叶林生态系统碳收支研究.北京林业大学博士学位论文.2006.北京.P117
    [49]李意德,方精云.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究.植物生态学报,1998(2):127-134
    [50]UNFCCC,1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change.23 P.
    [51]UNFCCC,2000. Methodological issues:land-use, land-use change and forestry. Thirteenth session. Item 9 (a) of the provisional agenda. Lyon, United Nations Framework Convention on Climate Change. 223 p.
    [52]赵林,,殷鸣放,陈晓非,王大奇,森林碳汇研究的计量方法及研究现状综述, 西北林学院学报2008,23(1):59-63
    [53]王文杰,石福臣.陆地生态系统二氧化碳通量网的建设和发展[J].东北林业大学学报,2002,30(4):57-61.
    [54]Woodwell,G. M.R. H.Whittacker,W. A.Reiners,G.E. Likens, C. C. Delwiche & D.Botkin.1978.The biota and the world carbon budget. Science,199:141-146.
    [55]Whittaker, R. H.& G. E. Likens.1975. Methods of assessing terrestrial productivity.
    [56]Lieth, H.&R. H. Whittacker eds. Primary productivity of the biosphere. New York, USA; Springer-Verlag.305-328.
    [57]Brown,S&A.E. Lugo.1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle.Biotropica 14:161-189.
    [58]Brown S R, Lugo A E.1992, Aboveground biomass estimate for tropical moist forests of Barzilian Anlazon[J].Interciencia,17:8-18.
    [59]Fang J Y, Wnag G G, Li l, G, etal.1998, Forest biomass of China:an estimate based on the biomass volume relationship[J].Ecol App,8:1084-1091.
    [60]方精云.北纬中高纬度的森林碳库可能远小于目前的估算植物[J].生态学报,2000,24(5):635-38.
    [61]Brown S, Lugo A E.1984, Biomass of tropical forest:A New Estimate Based on forest Volumes [J].Science,223 (6):1290-1293
    [62]Turner, D. P.. G. J. Koepper, M. E..Harmon & J.1. Lee.1995. A carbon budget for forests of the conterminous United States. Ecological Applications,5:421-436.
    [63]王玉辉.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001,25(4:)420-425
    [64]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1),13-16.
    [65]康惠宁,等.中国森林C汇功能基本估计[[J].应用生态学报,19967(3):230234.
    [66]Dixon R K,Brown S,Houghton A,et al.1994,Carbon pools andflux of global forest ecosystems [J].Science,263:185-190.
    [67]王效科,冯宗炜,欧阳志云.中国森林生态系统植物碳储量和碳密度研究[[J].应用生态学报,2001,12(1):1316.
    [68]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):7274.
    [69]Schulze E D,Lloyd J,Kelliher F M,et al.Productivity of forests in the Eurosiberian boreal region and their potential to act as carbon sink-a synthesis[J]. Global Biogeoch. Cycl,1999(5):703-722.
    [70]Grace J., Malhi Y, Lloyd J., McIntyre J., Miranda A. C., Meir P.& Miranda H. S.,1996. The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biology, 2(3), pp.209-217.
    [71]赵林,殷鸣放,陈晓非,王大奇,森林碳汇研究的计量方法及研究现状综述,西北林学院学报2008,23(1):59-63
    [72]吴家兵,张玉书,关得新.森林生态系统CO2通量研究方法与进展[J].东北林业大学学报,2003,31(6):49-51.
    [73]Aylward, E.Barbier.Valuing Environmental Functions in Developing Countries. [J] Biodiversity and Conservation.1992.1(1):34;
    [74]Costanza R. etal The value of the world's ecosystem services and natural capital. [J] Nature 1997.387.(15):253-260
    [75]郎奎建.林业生态工程10种森林生态效益计量理论和方法[J]东北林业大学学报.2000.28(1):1-7
    [76]刘玉龙, 马俊杰,金学林等.生态系统服务功能价值评估方法综述[J]中国人口资源与环境2005.15(1):88-92;
    [77]靳芳,鲁绍伟,余新晓,饶良懿,张振明,毛富铃.中国森林生态系统服务价值评估指标体系初探.中国水土保持科学.20p5.3(2):5-9
    [78]李金昌.生态价值论[M]重庆:重庆大学出版社.1999.29-70
    [79]Dave Sawyer,2001. Valuing Local Environments:A Resource Valuation Guide Book, Gardner Pinfold Consulting Economists, Ottawa, Ontario, Canada,
    [80]肖玉,谢高地,鲁春霞,丁贤忠,吕耀.稻田生态系统气体调节功能及其价值.自然资源学报.2004 19(5).617-623.
    [81]刘敏超;李迪强;温琰茂;三江源区植被固定CO_2释放O_2功能评价.生态环境.2006,15(3):594-597
    [82]高嵩.退耕还林生物量监测及固碳释氧效益初步研究.甘肃林业科技.2008.33(3):43-45
    [83]胡艳琳,戚仁海,由文辉,等.城市森林生态系统生态服务功能的评价.南京林业大学学报:自然科学版,2005,29(3):111-114
    [84]胡海胜.庐山自然保护区森林生态系统服务价值评估.资源科学,2007,29(5):28-36.
    [85]IPCC,2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Kanagawa, Institute for Global Environmental Strategies.600 p
    [86]Pfaff A. S. P., Kerr S., Hughes R. F., Liu S. G., Sanchez-Azofeifa G. A., Schimel D., Tosi J.& Watson V.,2000. The Kyoto protocol and payments for tropical forest:An interdisciplinary method for estimating carbon-offset supply and increasing the feasibility of a carbon market under the CDM. Ecological Economics,35 (2):203-221.
    [87]UNFCCC,2009. ARNM0023:Rubber outgrowing and carbon sequestration in Ghana (ROCS-Ghana). 77p.
    [88]Naimah I, Zainol E and Yoon P K.1992. Rubber:A social economic environment-friendly industrial products. Third World Organization of Women Scientist Conference, Cairo, Egypt.
    [89]Sivakumaran S and Yew F K.2000. Carbon Sequestration in Rubber:Implication and Model to Fund Continued Cultivation.IRRDB, Bogor-Indonesia,12-14
    [90]Cotta M. K., Jacovine L. A. G., de Paiva H. N., Soares C. P. B., Virgens A. D.& Valverde S. R.,2008. Biomass Quantification and Emission Reduction Certificates for Rubber-Cocoa Intercropping. Revista Arvore.32 (6):969-978
    [91]Rojo-Martinez G. E., Jasso-Mata J., Vargas-Hernandez J. J., Palma-Lopez D. J.& Velazquez-Martinez A.,2005. Aerial biomass in commercial rubber plantations (Hevea brasiliensis Mull. Arg. in the State of Oaxaca, Mexico. Agrociencia,39 (4):449-456
    [92]Wauters. J.B., Coudert S., Grallien E., Jon M., Ponette Q.,2008. Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). Forest Ecology and Management. 255:2347-2361
    [93]Chantuma P., Lacointe A., Kasemsap P., Thanisawanyangkura S., Gohet E., Clement A., Guilliot A., Ameglio T.& Thaler P.,2009. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiology.29 (8):1021-1031
    [94]蒋菊生,王如松 橡胶林固定CO2和释放O2的服务功能及其价值估计生态学报2002,22(9)1545-1551
    [95]Yang J.C, Huang, J.H., Tang, J.W., Pan, Q.M., Han, X.G.,2005.Carbon sequestration in rubber tree plantations established on former arable lands in Xishuangbanna, SW China. Acta Phytoecologica Sinica.29 (2):296-303
    [96]Cheng C. M.,Wang R. S.& Jiang J. S.,2007. Variation of soil fertility and carbon sequestration by planting Hevea brasiliensis in Hainan Island, China. Journal of Environmental Sciences-China.19 (3):348-352
    [97]Cotter M., Martin K.& Sauerborn J.,2009. How Do "Renewable Products" Impact Biodiversity and Ecosystem Services-The Example of Natural Rubber in China. Journal of Agriculture and Rural Development in the Tropics and Subtropics,110 (1):9-22
    [98]沙丽清,西双版纳热带季节雨林、橡胶林及水稻田生态系统碳储量和土壤碳排放研究,2008,[D],中国科学院
    [99]房秋兰,沙丽清,西双版纳热带季节雨林与橡胶林土壤呼吸研究植物生态学报,2006,30(1):97-103
    [100]杨昆,管东生.森林林下植被生物量收获的样方选择和模型.生态学报,2007,27(2):705-714
    [101][森林土壤有机质的测定及碳氮比的计算.[M].中华人民共和国林业行业标准,LY/T 1237-1999.
    [102]彭懿,陈秋波,王春燕,烘箱加热法测定橡胶树不同器官有机碳含量热带农业科学2009,10(29):13-16
    [103]周再知,郑海水,尹光天,杨曾奖,陈康泰橡胶树生物量估测的数学模型。林业科学研究,1995,8(6):624-629
    [104]Joshua T. B.1999. Valuing Forests:A Review of Methods and Applications in Developing Countries. London, UK:International Institute for Environment and Development.149p.
    [105]Shively G. E., Zelek C. A., Midmore D. J.& Nissen T. M.,2004. Carbon sequestration in a tropical
    landscape:an economic model to measure its incremental cost. Agroforestry Systems.60 (3):189-197.
    [106]刘粲,森林固碳与释氧的经济核算南京林业大学学报2003 27(5):25-29
    [107]刘敏超,李迪强,温琰茂三江源区植被固定CO2释放02功能评价生态环境2006,15(3):594-597
    [108]肖建武,康文星,尹少华,谢欣荣城市森林固碳释氧功能及经济价值评估-以第三个“国家森林城市”长沙市为实证分析林业经济问题2009 29(2):129-132
    [109]余新晓,鲁绍伟,靳芳,陈丽华,饶良懿,陆贵巧 中国森林生态系统服务功能价值评估生态学报2005 25(8):2096-2102
    [110]陈莉,李佩武,李贵才,苏笛,袁雪竹应用CITYGREEN模型评估深圳市绿地净化空气与固碳释氧效益生态学报2009 29(1):272-282
    [111]李意德,昊仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报,1998,18(4):371-378.
    [112]Zhang, M., X. H. Fu, W. T. Feng, and X. M. Zou.2007. Soil organic carbon in pure rubber and tea-rubber plantations in sourthwestern China. Tropical Ecology 48:201-208.