梁板挠曲与非线性振动分析的自适定小波方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有限区域初边值问题的小波方法中,解的小波形式在边界上的构造以及对问题边界条件的处理一直是这一方法中所关注的关键问题,目前对此尚未建立统一的途径。为此本文开展了以下工作:
     1).首次提出了一种改进的、对于有限区域初边值问题均适用的小波方法。该方法对边值问题和初值问题的解给出了统一的小波形式,即,通过边界处和区域内小波系数构造Lagrange插值多项式对区域外的小波系数进行外插,从而实现了问题的解向区域外的连续延拓并且完全由区域内的小波系数表征。在此基础之上,对问题的解给出了显式含有所有边界条件(即函数值及其导函数值)的小波形式,以此实现了边界条件的准确处理以及力学问题的求解。
     2).对于梁板结构静/动力学问题,基于上述小波形式以及梁板结构的变分原理,建立了能够统一处理梁、板静/动力学问题的各类齐次、非齐次边界条件和屈曲问题的各类边界支撑条件的小波—变分法,并得到了统一形式的离散静/动力学方程和屈曲问题的特征值方程。由于本文提出的改进小波形式及其小波基函对任意形式的边界条件保持不变,对于给定的梁板结构的横截面和材料性质,离散静/动力学方程、特征值方程无论形式上,还是方程的系数矩阵的值对于各类齐次、非齐次边界条件均保持不变性;同时,本文提出的小波形式中,小波系数是独立的,从而由变分法所建立的离散静/动力学方程、特征值方程自动封闭而且是适定的,对于任意给定的齐次或者非齐次边界条件,离散静/动力学方程存在唯一解。这一方法解决了现有梁板结构静/动力学的小波—Galerkin方法和小波—有限元方法处理非齐次边界条件时存在的离散静/动力学方程不适定的问题,以及对于不同形式的边界条件,离散方程的形式和系数矩阵的值不统一的问题。
     3).基于本文提出的改进小波形式,通过配点方法,将有限时域[0,T]上的多自由度系统非线性振动的初值问题转化求解一组非线性代数方程组,从而建立了非线性振动初值问题的多分辨率、自适应小波配点方法,并针对非线性性给出了基于同伦算法的小波自适应算法和程序。基于本文的小波形式,多自由度系统的非线性振动方程(通常为二阶时间常微分方程组)的初值问题可被直接转化为一组适定的非线性代数方程,而无需事先将其转换为状态方程。因此,与现有的基于状态方程的小波配点方法相比,本文方法所得的非线性代数方程组的未知数个数仅为前者的1/2;从而大大降低了计算所需的存储空间,至多为现有小波配点方法所需存储空间的1/2;同时大大提高了计算效率,至少是现有小波配点方法的2倍。
     4).很多振动控制系统可以表示为具有时滞的多自由度动力系统,本文尝试了将小波自适应方法应用到时滞系统的求解和稳定性分析。首先基于现有的小波自适应分解和重构算法得到了Laplace逆变换的自适应小波数值计算公式,应用该公式将多自由度多时滞线性振动系统近似等价的转换成映射动力系统。由此不仅可求解原时滞系统的初值问题,同时可给出其最右特征根近似值,从而判定其稳定性,并且能够在选定的系统参数平面上给出近似的稳定区域及其边界。与已有的线性多步法相比,本文可避免将时滞振动方程转换成状态方程,从而所得的映射矩阵的阶数将小于前者。
For wavelet methods in solving initial-boundary-value problems on finite domains, the construction of wavelet formation of solutions and the treatment of boundary conditions of the problem are the key to solve problems. However, no general method has been found to handle the construction of wavelet formations and the treatment of boundary conditions of the problem. Therefore, the following works are carried out in this thesis:
     1). A modified wavelet method is proposed for the first time, which is applicable for both initial- and boundary-value problems on finite domains. This method presents a general form of wavelet expansion for the solutions of initial- and boundary-value problems, by extrapolating external wavelet coefficients by boundary and inner ones, in which way the continuity of the solutions' wavelet expansions are preserved near the domain boundaries. Based on this, the values of the solution and its first-order derivatives at the domain boundaries are explicitly combined into the newly presented wavelet expansions of solutions, by which many mechanic problems can be solved with wavelet methods.
     2). Based on the modified wavelet formation mentioned above, wavelet-variational methods are established for the static/dynamic problems of beams and plates, and discrete static/dynamic equations and characteristic equations are derived in a general form, respectively, in which all types of homogeneous and non-homogeneous boundary conditions and boundary support conditions are treated in a general way. Because the wavelet formation for the deflection of beams and plates is general for all boundary conditions, not only the form of discrete static/dynamic equations and the characteristic equations, but also the the coefficient matrices of these equations are invariant to boundary conditions; on the other hand, the wavelet coefficients of the proposed modified wavelet formation are independent from each other, so the derived discrete static/dynamic equations and characteristic equations are well-posed, respectively, and for any given boundary condition the discrete static/dynamic equation has unique solution. The proposed method overcomes the defficiencies of current wavelet-Galerkin methods and wavelet-FEMs for the static/dynamic problems of beams and plates: the non-uniformity of the discrete static/dynamic equations for different types of boundary conditions, and the ill-posedness of equations as non-homogeneous boundary conditions are considered.
     3). On the base of the proposed modified wavelet formation in this thesis, an initial-value problem of the nonlinear vibration of a MDOF system on time domain [0, T] is equivalently reduced to a group of nonlinear algebraic equations by applying collocation scheme; thus, a modified multi-resolution and a modified adaptive wavelet collocation method are established, respectively, for the initial-value problems of the nonlinear vibration of MDOF systems; and an adaptive algorithm based on homotopic algorithm is specially designed to cope with the nonlinearity of the problem. Based on the proposed modified wavelet formation, the nonlinear vibration equation(generally second-order time-dependent ODEs) of a MDOF system are directly transformed to a group of well-posed nonlinear algebraic equations, without been tranformed to state equations in advance. Hence, the number of unkowns in the presented method in this thesis is only 1/2 of that in most current wavelet collocation methods that are based on state equations. Therefore, compared with current wavelet collocation methods, the amount of storage required by the proposed modified wavelet collocation methods is greatly reduced, about 1/2 of the former at most, while the computation efficiency is greatly impoved, at least twice faster that the former.
     4). Ctihsiderihg that many control systems can be described by time-delayed MDOF systems, we have tried to applying wavelets in the stability analysis of time-delayed systems. An adaptive wavelet formula is obtained for numerical inverse (?)aplace transformation, based on a current adaptive decomposition and re-construction algorithm; then time-delayed linear MDOF systems are tranformed to discrete dynamic systems, by using numerical inverse (?)aplace transformation. Therefore, the solution of the linear time-delayed system can be solved, and its right-most eigen-value can be approximately calculated, from which its approximate stable regions can be recognized in a selected parameter plane.
引文
[1] 王勖成.有限单元法.北京:清华大学出版社,2003
    [2] 稽醒,臧跃龙,程玉民.边界元法进展及通用程序.同济大学出版社,1997
    [3] 福雪斯,华沙,胡祖识.偏微分方程的有限差分方法.上海科学技术出版社,1964
    [4] 袁兆鼎.刚性常微分方程初值问题的数值解法.科学出版社,1987
    [5] Y.-P. Shao. Physics and Modeling of Wind Erosion. Kluwer Academic Publishers, 2000
    [6] 郑晓静,周又和.风沙运动研究中的若干关键力学问题.力学与实践.2003,25(2):1-7
    [7] 郑晓静,黄宁,周又和.风沙运动的沙粒带电机理及其影响的研究进展.力学进展.2004,34(1)
    [8] X.-J. Zheng. Investigations on Several Mechanical Problems in Windblown Sand Movement. Science foundation in China. 2006, 2
    [9] X.-J. Zheng, L.-H. He, J.-J. Wu. Vertical Profiles of Mass Flux for Windblown Sand Movement at Steady State. Journal of Geophysical Research. 2004, 109(B01106)
    [10] G.-W. Yue, X.-J. Zheng. Electric Field in Wind-blown Sand Flux with Thermal Diffusion. ournal of Geophysical Research. 2005
    [11] T.-L. Bo, L. Xie, X.-J. Zheng. Numerical Approach to Wind Ripple in Desert. International Journal of Nonlinear+Sciences and Numerical Simulation. 2006, 7(4)
    [12] Y. Liu, I. T. Camerson, S. K. Bhatia. A Wavelet-based Adaptive Technique for Adsorption Problems Involving Steep Gradient. Computer and Chemical Engineering. 2001, 25: 1611-1619
    [13] Y. Liu, I. T. Cameron, F. Y. Wang. The Wavelet-collocation Method for Transient Problems with Steep Gradients. Chemical Engineering Science. 2000, 55: 1729-1734
    [14] I. Babnska, W. Rheinboldt. Error Estimates for Adaptive Finite Element Methods. SIAM J. Numer. Anal. 1978, 15: 736-754
    [15] R. Verfurth. A Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. J. Comput. Appl. Math. 1994, 44: 283-301
    [16] R. Becker, C. Johnson, R. Rannacher. Adaptive Error Control for Multigrid Finite Element Methods. Computting. 1995, 55: 271-288
    [17] F. Bornemann, B. Erdmann, R. Kornhuber. A Posteriori Error Estimates for Elliptic Problems in Two and Three Space Dimensions. SIAM J. Numer. Anal. 1996, 33: 1188-1204
    [18] A. Haar. Zur Theorie Der Orthogonalen Funktionensysteme. Math.. Ann. 1910, 69: 331-371
    [19] I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. Commun. Pure Appl. Math. 1988, Vol. 41: 909-996
    [20] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF regional conference series in applied mathematics, the Society for Industrial and Applied Mathematics, 1992
    [21] Y. Meyer. Wavelets and Operators. Cambridge University Press, 1992
    [22] C. K. Chui. An Introduction to Wavelets. Academic press, 1992
    [23] Y. Meyer, R. D. Ryan. Wavelet: Algorithms & Applications. Society for Industrial and Applied Mathematics, 1993
    [24] G. Strang, T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press, 1996
    [25] S. Mallat. A Wavelet Tour of Signal Processing. New York: Academic Press, 1998
    [26] Y. Meyer, (Editor). Wavelets and Applications: Proceedings of the Internatioinal Conference, vol. 20 of Researches Notes in Applied Mathematics. Marseille, France, 1989
    [27] S. P. Singh, (Editor). Approximation Theory, Wavelets and Applications, vol. 454 of NATO Science Series C. Maratea, Italy: Kluwer Academic Pub., 1994
    [28] S. Lazaar, P. Ponenti, J. Liandrat, et al. Wavelet Algorithms for Numerical Resolution of Partial Differential Equations. Computer Methods in Applied Mechanics and Engineering. 1994, 116: 309-314
    [29] N. Mahadevan, K. A. Hoo. Wavelet-based Model Reduction of Distributed Parameter Systems. Chemical Engineering Science. 2000, 55: 4271-4290
    [30] V. Comincioli, G. Naldi, T. Scapolla. A Wavelet-based Method for Numerical Solution of Nonlinear Evolution Equations. Applied Numerical Mathematics. 2000, 33: 291-297
    [31] G. Chiavassa, J. Liandrat. A Fully Adaptive Wavelet Algorithm for Parabolic Partial Differential Equations. Applied Numerical Mathematics. 2001, 36: 333-358
    [32] W. Dahmen. Wavelet Methods for PDEs - some Recent Developments. Journal of Computational and Applied Mathematics. 2001, 128: 133-185
    [33] O. V. Vasilyev, C. Bowmen. Second-generation Wavelet Collocation Method for the Solution of Partial-differential Equations. Journal of Computational Physics. 2000, 165: 660-693
    [34] O. Vasilyev. Solving Multi-dimensional Evolution Problems with Localized Structures Using Second Generation Wavelets. J. Comput. Fluid Dyn. 2003, vol. 17 of Special issue on High-resolution methods in Computational Fluid Dynamics: 151-168
    [35] N. Kevlahan, O. Vasilyev, D. Goldstein, et al. A Three-dimensional Adaptive Wavelet Method for Fluid-structure Interaction. Direct and Large-Eddy Simulation V. 2004: 147-154
    [36] N.-R. Kevlahan, O. Vasilyev. An Adaptive Wavelet Collocation Method for Fluid-structure Interaction at High Reynolds Numbers. SIAM J. Sci. Comput. 2005, 26(6): 1894-1915
    [37] J. M. Alam, N. K.-R. Kevlahan, O. V. Vasilyev. Simultaneous Space-time Adaptive Wavelet Solution of Nonlinear Parabolic Differential Equations. Journal of Computational Physics. 2006, 214: 829-857
    [38] X. Ren, L. S. Xanthis. 'les Fleurs Du Mal' Ⅱ: A Dynamically Adaptive Wavelet Method of Arbitrary Lines for Nonlinear Evolutionary Problems—capturing Steep Moving Fronts. Computer Methods in Applied Mechanics and Engineering. 2006, 195: 4962-4970
    [39] S. Bertoluzza, G. Naldi. An Adaptive Wavelet Collocation Method. Technical Report 932, Pubbl I. A. N., 1994
    [40] S. Bertoluzza, Y. Maday, J. Ravel. A Dynamically Adaptive Wavelet Method for Solving Partial Differential Equations. Computer Methods in Applied Mechanics and Engineering. 1994, 116: 293-299
    [41] S. Bertoluzza, G. Naldi. A Wavelet Collocation Method for the Numerical Solution of Partial Differential. Equations. Appl. Comput. Harm. Anal. 1996, 3: 1-9
    [42] O. Vasilyev, N.-R. Kevlahan. An Adaptive Multilevel Wavelet Collocation Method for Elliptic Problems. Journal of Computational Physics. 2005, 206: 412-431
    [43] M. HolmstrSn. Solving Hyperbolic PDEs Using Interpolating Wavelet. SIAM Journal of Science and Computers. 1999, volume 21: 405-420
    [44] M. A. Alves, P. Cruz, A. Mendes, et al. Adaptive Multiresolution Approach for Solution of Hyperbolic PDEs. Computer Methods in Applied Mechanics and Engineering. 2002, 191: 3909-3928
    [45] J. Stantos, P. Cruz, M. Alves, et al. Adaptive Multiresolution Approach for Two-dimensional Pdes. Computer Methods in Applied Mechanics and Engineering. 2004, 193: 405-425
    [46] T.-K. Hong, B. L. N. Kennett. On a Wavelet-based Method for the Numerical Simulation of Wave Propagation. Journal of Computational Physics. 2002, Volume 183(Issue 2): 577-622
    [47] A. Avudainayagam, C. Vani. Wavelet-galerkin Method for Integro-differential Equations. Applied Numerical Mathematics. 2000, 32: 247-254
    [48] P. Cruz, A. Mendes, F. D. Magalhaes. Wavelet Based Adaptive Grid Method for the Resolution of Nonlinear PDEs. Process System Engineering. 2002, 48(4)
    [49] J.-C. Xu, W.-C. Shann. Galerkin-wavelet Method for Two-point Boundary Value Problems. Numer. Math. 1992, 63: 123-144
    [50] S. L. Ho, S. Y. Yang. Wavelet-galerkin Method for Solving Parabolic Equations in Finite Domains. Finite Elements in Analysis and Design. 2001, 37: 1023-1037
    [51] 周又和,郑晓静.电磁固体结构力学.科学出版社,1999
    [52] 周又和,王记增.基于小波理论的悬臂板压电动力控制模式.力学学报.1998,30(6):719-727
    [53] 周又和,王记增,郑晓静.小波迦辽金有限元法在梁板结构中的应用.应用数学和力学.1998,19(8):697-706
    [54] 王记增,周又和.广义小波高斯积分法的误差估计.兰州大学学报(自然科学版).1998,5(增刊):233—238
    [55] Y.-H. Zhou, J.-Z. Wang, X.-J. Zheng. Application of Wavelet Galerin FEM to Bending of Beam and Plate Structures. Applied Mathematics and Mechanics. 1998, 19(8): 745-755
    [56] Y.-H. Zhou, J.-Z. Wang, X.-J. Zheng, et al. Wavelets Control Model of Suppressing Vibration of Beam-plate with Piezoelectric Sensors and Actuators. Proceedings of SPIE. Newport Beach, CA., 1999, 3667: 658-669
    [57] Y.-H. Zhou, J.-Z. Wang, Q. Jiang. Program for Vibration Control of Variable-thickness Plates with Piezoelectric Sensors and Actuators Based on Wavelet Theory. Proceedings of SPIE. 2000: 553-561
    [58] 周又和,王记增.小波尺度函数计算的广义高斯积分法及其应用.数学物理学报.1999,19(3):293-300
    [59] J.-Z. Wang, Y.-F. Gu, Y.-H. Zhou. Vibration Control of Plates in Variable Thermal Environment with Piezoelectric Sensors and Actuators and the Basis of Wavelet. Theory. Proc. ECM'99: International Workshop on Experimental and Computational Mechanics in Engineering and Materials Behaviour. Urumuqi, 1999: 492-498
    [60] Y.-H. Zhou, J.-Z. Wang, X.-J. Zheng. Vibration Control of Variable Thickness Plates with Piezoelectric Sensors and Actuators by Wavelet Theory. Proc. 1st Int. Conf. Advances in Struct. Eng. and Mechanics. Seoul, Korea, 1999, 1: 13-15
    [61] Y.-H. Zhou, J.-Z. Wang, X.-J. Zheng. Applications of Wavelet Galerkin FEM to Bending of Plate Structure. Acta Mechanica Solida Sinica. 1999, 12(2): 136-143
    [62] Y.-H. Zhou, J.-Z. Wang, X.-J. Zheng, et al. Vibration Control of Variable Thickness Plates with Piezoelectric Sensors and Actuators Based on Wavelet Theory. Journal of Sound and Vibration. 2000, 237(3): 395-410
    [63] 周又和,王记增,郑晓静.一种基于小波尺度函数变换的Laplace反演方法.数学物理学报.2001,21A(1):86-93
    [64] 周又和,王记增,郑晓静.变截面梁式压电智能板振动控制的小波模式.航空学报.2001
    [65] Y.-H. Zhou, J.-Z. Wang, X.-J. Zheng. Vibration Control of Nonlinear Plates with Piezoelectric Sensors and Actuators Based on Wavelet Theory. IUTAM-Symposium on Smart Structures and Structronic Systems. Magdeburg, Germany: 2000
    [66] 周又和,王记增,郑晓静.小波理论及其在力学中的应用.力学2000会议文集.北京,2000
    [67] 王记增.正交小波统一理论与方法及其在压电智能结构等力学研究中的应用.兰州大学力学系,Ph.D.thesis.2001
    [68] J.-G. Han, W.-X. Ren, Y. Huang. A Multivariable Wavelet-based Finite Element Method and Its Application to Thick Plates. Finite Elements in Analysis and Design. 2004, 41: 821-833
    [69] J.-G. Han, W.-X. Ren, Y. Huang. A Wavelet-based Stochastic Finite Element Method of Thin Plate Bending. Journal of Engineering Mechanics, ASCE. 2005
    [70] J.-G. Han, W.-X. Ren, Y. Huang. A Spline Wavelet Finite Element Method in Structural Mechanics. International Journal for Numerical Methods in Engineer- ing. 2006, 66(1): 166-190
    [71] J. Crank, P. Nicolson. A Practical Method for Numerical Evaluation of Solutions of Partial Di Erential Equations of the Heat-conduction Type. Proc. Camb. Phil. Soc. 1947, 43: 50-67
    [72] N. A. Newmark. A Method of Computation for Structural Dynamics. J. Eng. Mech. Div. ASCE. 1959, volume 85(EM3): 67-94
    [73] E. L. Wilson, I.. Farhoomand, K. J. Bathe. Nouliear Dynamic Analysis of Complex Structure. Eqrthquake. eng. struct, dyn. 1973, 1: 241-252
    [74] W. M. Zhai, K. Y. Wang, J. H. Lin. Modelling and Experiment of Railway Ballast Vibration. Journal of Sound and Vibration. 2004, 270: 673-683
    [75] 李庆扬,王能超,易大义.数值分析.华中科技大学出版社,1982
    [76] A. Prakash, K. D. Hjelmstad. A FETI-based Multi-time-step Coupling Method for Newmark Schemes in Structural Dynamics. International Journal for Numerical Methods in Engineering. 2005, volume 61, Issue 13: 2183-2204
    [77] J. Wendlandt, J. Marsden. Mechanical Integrators Derived from a Discrete Variatioal Principle. Physica D. 1997, 106: 223-246
    [78] C. Kane, J. Marsden, M. Ortiz, et al. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical System. Int. J. Numer. Math. Engrg. 1999, 49: 1295-1325
    [79] J. Marsden, M. West. Discrete Mechanics and Variational Integrators. Acta Numerica. 2001: 357-514
    [80] J. Marsden, S. Shkoller. The Anisotropic Lagrangian Averaged Euler and Navierstokes Equations. Arch. Rat. Mecha. Anal. 2003, 166: 27-46
    [81] A. Lew, J. Marsden, M. Ortiz, et al. Asynchronous Variational Integrators. Arch. Rat. Mech. Anal. 2003, 167: 85-146
    [82] D. Zhou, W. Cal. A Fast Wavelet Collocation Method for Highspeed VLSI Circuit Simulation. IEEE Transactions on Circuits and System-Ⅰ: Foundamental Theory and Applications. 1999, 46(8): 920-930
    [83] D. Zhou, W. Cai. An Adaptive Wavelet Method for Nonlinear Circuit Simulation. IEEE Transaction on Circuit and System-Ⅰ: Fundamental Theory and Applications. 1999, 46(8): 931-938
    [84] C. E. Christoffersen, M. B. Steer. State-variable-based Transient Circuit Simulation Using Wavelets. IEEE Microwave and Guided Wave Letters. 2000
    [85] C. E. Christoffersen, M. B. Steer. Comparison of Wavelet- and Time-marching-based Microwave Circuit Transient Analyses. IEEE Microwave and Guided Wave Letters. 2001
    [86] I. Daubechies. The Wavelet Transformation, Time-frequency Localization and Signal Analysis. IEEE Transactions on Infermation Theory. 1990, 36: 961-1005
    [87] G. Beylkin. On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM J. Numer. Anal. 1993, Vol. 29: 507-537
    [88] M.-Q. Chen, C. Hwang, Y.-P. Shih. The Computation of Wavelet-galerkin Approximation on a Bounded Interval. International Journal for Numerical Methods in Engineering. 1996, Vol. 39: 2921-2944
    [89] C.-F. Xu, C. Cai, G.-K. Li, et al. The Interpolating Wavelet and Its Applications. Conference of International Symposium on Multispectral Image Processing. 1998: 428-432
    [90] D. L. Donoho. Interpolating Wavelet Transforms. Tech. report 408, Dept. of Statistics, Stanford University, 1992
    [91] 徐长发,李国宽.实用小波方法.华中科技大学出版社,2001
    [92] 钱伟长.变分法及有限元(上册).科学出版社,1980
    [93] 钱伟长.广义变分原理.上海-知识出版社,1989
    [94] 张汝清.固体力学变分原理及其应用.重庆大学出版社,1991
    [95] 徐芝纶.弹性力学(下册).高等教育出版社,1992
    [96] V. Comincioli, G. Naldi, T. Scapolla.. A Wavelet-based Method for Numerical Solution of Nonlinear Evolution Equations. Applied Numerical Mathematics. 2000, 33: 291-197
    [97] E. Lahaye. Un M~thode De Resolution D'une Categorie D'equations Transcendantes. C. R. Acad. Sci. 1934, 198: 1840-1844
    [98] J. Leray, J. Schauder. Topologie Et E'quations Fouctionelles. Ann. Sci. Ecole Norm. Sup. 1934, 51(45-78)
    [99] 武际可,苏先樾.弹性系统的稳定性.北京:科学出版社,1994
    [100] 陈予恕,唐云等.非线性动力学中的现代分析方法.北京:科学出版社,1992
    [101] W. Michiels. Stability and Stabilization of Time-delay Systems. Deparment Computerwetenschappen, K. U. Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgie, Ph. D. thesis. 2002
    [102] K. Engelborghs, T. Luzyanina, G. Samaey. DDE-BIFTOOL V. 2.00: A Mat- lab Package for Bifurcation Analysis of Delay Differential Equations. Tech. rep., Report TW 330, 2001
    [103] R. C. Dorf, R. H. Bishop. Modern Control Systems. Addison Wesley Longman, Inc., 1998