FOXP3△2相互作用分子的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CD4+CD25+调节性T细胞(Tregs)是在机体整个免疫网络的负调节中发挥重要作用的一种CD4+T淋巴细胞亚群,在维持机体免疫自稳和防止自身免疫性疾病中发挥重要作用。叉状头转录因子Foxp3是诱导CD4+CD25+Tregs细胞发育及生物学功能发挥的主调控因子,具有下调免疫应答的功能。Foxp3基因突变或缺失会导致严重的自身免疫性疾病。鼠Foxp3突变导致Xsf/Y雄性杂合子小鼠发生进行性自身免疫缺陷病,表现为器官非特异性淋巴细胞浸润及多种细胞因子的大量分泌,从而导致Xsf/Y雄性杂合子小鼠多数在出生后16-25天内死亡。人类同源的Foxp3功能性突变可导致人类一种免疫调节紊乱的X连锁综合征( immune dysregulation polyendocrinopathy enteropathy X-linked syndrome, IPEX),表现为免疫失调、多种内分泌腺病、肠病、X染色体性联综合征。因此,Foxp3在免疫系统的负调节中发挥非常重要的作用。
     Foxp3的两个亚型(Foxp3FL和Foxp3△2 )在人CD4+CD25+Tregs中均有表达,并且它们都具有赋予CD4+CD25-T细胞转化为CD4+CD25+Tregs的活性,但是目前关于Foxp3的作用机制尚未阐明。大量研究显示,Foxp3作为转录调控因子,并不直接调控下游靶基因,而是与其它一些转录因子或酶分子形成“动态超分子复合物”共同发挥转录调控功能。目前已知的Foxp3相互作用分子有NFAT、NF-кB、AML1/Runx1、AP-1、RORγt和TIP60,其中,在我们课题的进行中,陆续有文献报道Foxp3与AP-1、AML1/Runx1、RORγt和TIP60的相互作用。但是仅仅针对这些分子的研究并不能充分阐明Foxp3的转录调控机制,所以对未知的Foxp3相互作用分子的进一步探讨是Foxp3转录调控研究的热点。
     本课题是以Foxp3△2亚型作为诱饵,从外周血白细胞cDNA文库筛选可以与其相互作用的分子。最终我们获得40个阳性克隆,经DNA测序和Blast核苷酸相似性分析发现这40个阳性克隆所编码的蛋白质在Gal4 DNA激活域开放读框内的共9个。在这9个Foxp3△2候选相互作用分子中,我们重点对泛表达转录子(ubiquitously-expressed transcript,UXT)与Foxp3△2的相互作用进行研究。通过酵母双杂交回交验证和免疫共沉淀证实了Foxp3△2与UXT在酵母细胞和哺乳动物细胞内均存在相互作用,并且激光共聚焦扫描结果显示Foxp3△2和UXT共定位于细胞核,进一步为二者的相互作用提供了理论基础。为了明确Foxp3△2与UXT的作用部位,我们构建了Foxp3△2分子的5个截短体,并通过酵母双杂交中的β-半乳糖苷酶实验发现Foxp3△2的脯氨酸富含域对二者的相互作用是必不可少的。
     此外,我们对Foxp3和UXT相互作用的功能进行了初步的探讨。最近研究显示,Foxp3不但表达于淋巴细胞,还表达于多种肿瘤细胞,表达于肿瘤细胞的Foxp3可能参与了肿瘤的免疫逃逸。我们课题组已证实Foxp3在胃癌细胞系SGC-7901中的表达,现进一步探讨提高UXT的表达是否对Foxp3的表达有影响?结果显示提高胃癌细胞株SGC-7901中UXT的表达,Foxp3的表达量也相应增加,但是具体作用机制还需要深入的研究。
     综上所述,本课题通过酵母双杂交筛选共获得了9个与Foxp3△2相互作用的候选分子,并确认了Foxp3△2与UXT的物理相互作用及作用位点,为阐明Foxp3的转录调节机制奠定基础。
CD4+CD25+T regulatory cells (Tregs) are a subpopulation of CD4+T lymphocytes and engaged in the maintenance of immunological self-tolerance and immune homeostasis by suppressing aberrant or excessive immune responses, such as autoimmune disease and allergy. Transcriptional factor Foxp3 is the master gene for differentiation and function of regulatory T cells and plays an important role in the negative immune regulation. Dysfunction of Foxp3 gene results in fatal, early onset autoimmune disease in both human and mouse. Foxp3 mutation in mice results in lethality in hemizygous males (Xsf/Y) 16-25 days after birth, and is characterized by overproliferation of CD4+CD8-T lymphocytes, extensive multiorgan infiltration and elevation of numerous cytokines. Similarly, mutations of FOXP3 gene in human are responsible for the disease called immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX). Therefore, Foxp3 as a transcription factors plays a critical role by controlling immune homeostasis mediated by CD4+CD25+ regulatory T cells.
     In human CD4+CD25+ regulatory T cells, Foxp3 is expressed as two isoforms: the full-length isoform (Foxp3FL) and a splice variant lacking the exon 2 (Foxp3△2). Studies demonstrate that Foxp3 isoforms possess similar capacities to converts conventional CD4+CD25-T cells into bona fide Tregs; however, the underlying molecular mechanism remains almost entirely undefined. Recent studies indicate that Foxp3 may form a dynamic superamolecular complex with a variety of molecular partners including transcription factors and enzymatic proteins to regulate transcription, such as NFAT (nuclear factor of activated T cells), NF-кB (nuclear factorкB), AML1 (acute myeloid leukemia 1)/Runx1 (runt-related transcription factor 1), AP-1 (Activator protein 1), RORγt (retinoicacid-related orphan receptorγt) and TIP60 (Tat-interactive protein, 60 kDa). During our research, however, several reports were published, describing the interaction of Foxp3 with other proteins (AP-1, AML1/Runx1, RORγt and TIP60). However, it is not sufficient to elucidate the mechanism of how Foxp3 orchestrates the cellular and molecular programs involved in Tregs function. Therefore, the further study of unknown Foxp3 interacting protein has become a hotspot of Foxp3 transcription regulation research.
     In this study, Foxp3△2 was used to screen a human leukocyte yeast two-hybrid library and 40 positive clones which encode 9 different protein within the same open reading frame of GAL4 activation domain were obtained by reporter genes screening. The interaction of Foxp3△2 and ubiquitously expressed transcript (UXT) was further confirmed in yeast and in mammalian cells. The confocal fluorescence microscopy result indicates that both Foxp3△2 and UXT were predominantly colocalized in the nucleus, which raises the possibility that these proteins interact to regulate gene expression. The proline-rich domain in the N terminal of Foxp3△2 was necessary for the interaction of Foxp3△2 and UXT.
     In addition, we attempted to do some research for the function of Foxp3△2 and UXT interaction. Recent studies showed that Foxp3 was expressed not only in T lymphocyte, but also in tumor cells which probably took part in the immune escape of tumor. Our teams also have confirmed that Foxp3 expressed in gastric carcinoma cell line SGC-7901. However, will the overexpression of UXT influence on the expression of Foxp3? Preliminary result showed that the forced overexpression of UXT in gastric carcinoma cell line SGC-7901 could elevate the Foxp3 protein level. However, the mechanism of action was not clear.
     In summary, we performed yeast two-hybrid screening using Foxp3△2 as a bait protein and obtained 9 interacting proteins. Physical interaction and interacting domain of Foxp3△2 were proved in vivo. Moreover, the finding of a novel Foxp3△2 interactant will lay a basis for the elucidation of Foxp3 action.
引文
1 Burnet, F. M., A biologist's approach to autoimmune disease. Scand J Rheumatol Suppl 1975: 31-39.
    2 Artsimovich, N. G. and Nastoiashchaia, N. N., [Current concepts concerning immune tolerance]. Usp Sovrem Biol 1976. 82: 403-416.
    3 von Boehmer, H. and Kisielow, P., Self-nonself discrimination by T cells. Science 1990. 248: 1369-1373.
    4 Schwerer, B., Schuller-Levis, G. B., Mehta, P. D., Madrid, R. E. and Wisniewski, H. M., Cellular and humoral immune response to MBP during the course of chronic relapsing EAE. Prog Clin Biol Res 1984. 146: 187-192.
    5 Sakaguchi, S., Toda, M., Asano, M., Itoh, M., Morse, S. S. and Sakaguchi, N., T cell-mediated maintenance of natural self-tolerance: its breakdown as a possible cause of various autoimmune diseases. J Autoimmun 1996. 9: 211-220.
    6 Yi, H., Zhen, Y., Jiang, L., Zheng, J. and Zhao, Y., The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell Mol Immunol 2006. 3: 189-195.
    7 Jiang, H. and Chess, L., Qa-1/HLA-E-restricted regulatory CD8+ T cells and self-nonself discrimination: an essay on peripheral T-cell regulation. Hum Immunol 2008. 69: 721-727.
    8 Walker, M. R., Carson, B. D., Nepom, G. T., Ziegler, S. F. and Buckner, J. H., De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc Natl Acad Sci U S A 2005. 102: 4103-4108.
    9 Han, Y., Guo, Q., Zhang, M., Chen, Z. and Cao, X., CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J Immunol 2009. 182: 111-120.
    10 Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995. 155: 1151-1164.
    11 Asano, M., Toda, M., Sakaguchi, N. and Sakaguchi, S., Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 1996. 184: 387-396.
    12 Fehervari, Z. and Sakaguchi, S., CD4+ Tregs and immune control. J Clin Invest 2004. 114: 1209-1217.
    13 Stephens, L. A., Mottet, C., Mason, D. and Powrie, F., Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol 2001. 31: 1247-1254.
    14 Thorstenson, K. M. and Khoruts, A., Generation of anergic and potentiallyimmunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 2001. 167: 188-195.
    15 Sakaguchi, S., Regulatory T cells. Springer Semin Immunopathol 2006. 28: 1-2.
    16 Marie, J. C., Letterio, J. J., Gavin, M. and Rudensky, A. Y., TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 2005. 201: 1061-1067.
    17 Sugita, S., Futagami, Y., Horie, S. and Mochizuki, M., Transforming growth factor [beta]-producing Foxp3+CD8+CD25+ T cells induced by iris pigment epithelial cells display regulatory phenotype and acquire regulatory functions. Experimental Eye Research 2007. 85: 626-636.
    18 Fowler, S. and Powrie, F., Control of immune pathology by IL-10-secreting regulatory T cells. Springer Semin Immunopathol 1999. 21: 287-294.
    19 Tsuji-Takayama, K., Suzuki, M., Yamamoto, M., Harashima, A., Okochi, A., Otani, T., Inoue, T., Sugimoto, A., Toraya, T., Takeuchi, M., Yamasaki, F., Nakamura, S. and Kibata, M., The production of IL-10 by human regulatory T cells is enhanced by IL-2 through a STAT5-responsive intronic enhancer in the IL-10 locus. J Immunol 2008. 181: 3897-3905.
    20 Shevach, E. M., DiPaolo, R. A., Andersson, J., Zhao, D. M., Stephens, G. L. and Thornton, A. M., The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev 2006. 212: 60-73.
    21 Rouse, B. T. and Suvas, S., Regulatory cells and infectious agents: detentes cordiale and contraire. J Immunol 2004. 173: 2211-2215.
    22 Suvas, S., Azkur, A. K., Kim, B. S., Kumaraguru, U. and Rouse, B. T., CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol 2004. 172: 4123-4132.
    23 Yamaguchi, T. and Sakaguchi, S., Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 2006. 16: 115-123.
    24 Shimizu, J., Yamazaki, S. and Sakaguchi, S., Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999. 163: 5211-5218.
    25 Onizuka, S., Tawara, I., Shimizu, J., Sakaguchi, S., Fujita, T. and Nakayama, E., Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999. 59: 3128-3133.
    26 Godfrey, V. L., Wilkinson, J. E., Rinchik, E. M. and Russell, L. B., Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci U S A 1991. 88: 5528-5532.
    27 Godfrey, V. L., Wilkinson, J. E. and Russell, L. B., X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 1991. 138: 1379-1387.
    28 Godfrey, V. L., Rouse, B. T. and Wilkinson, J. E., Transplantation of T cell-mediated,lymphoreticular disease from the scurfy (sf) mouse. Am J Pathol 1994. 145: 281-286.
    29 Lyon, M. F., Peters, J., Glenister, P. H., Ball, S. and Wright, E., The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc Natl Acad Sci U S A 1990. 87: 2433-2437.
    30 Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E., Galas, D., Ziegler, S. F. and Ramsdell, F., Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001. 27: 68-73.
    31 Chatila, T. A., Blaeser, F., Ho, N., Lederman, H. M., Voulgaropoulos, C., Helms, C. and Bowcock, A. M., JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000. 106: R75-81.
    32 Li, B., Samanta, A., Song, X., Iacono, K. T., Brennan, P., Chatila, T. A., Roncador, G., Banham, A. H., Riley, J. L., Wang, Q., Shen, Y., Saouaf, S. J. and Greene, M. I., FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol 2007. 19: 825-835.
    33 Hinz, S., Pagerols-Raluy, L., Oberg, H. H., Ammerpohl, O., Grussel, S., Sipos, B., Grutzmann, R., Pilarsky, C., Ungefroren, H., Saeger, H. D., Kloppel, G., Kabelitz, D. and Kalthoff, H., Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 2007. 67: 8344-8350.
    34 Karanikas, V., Speletas, M., Zamanakou, M., Kalala, F., Loules, G., Kerenidi, T., Barda, A. K., Gourgoulianis, K. I. and Germenis, A. E., Foxp3 expression in human cancer cells. J Transl Med 2008. 6: 19.
    35 Ebert, L. M., Tan, B. S., Browning, J., Svobodova, S., Russell, S. E., Kirkpatrick, N., Gedye, C., Moss, D., Ng, S. P., MacGregor, D., Davis, I. D., Cebon, J. and Chen, W., The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 2008. 68: 3001-3009.
    36 Wildin, R. S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J. L., Buist, N., Levy-Lahad, E., Mazzella, M., Goulet, O., Perroni, L., Bricarelli, F. D., Byrne, G., McEuen, M., Proll, S., Appleby, M. and Brunkow, M. E., X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001. 27: 18-20.
    37 Manavalan, J. S., Kim-Schulze, S., Scotto, L., Naiyer, A. J., Vlad, G., Colombo, P. C., Marboe, C., Mancini, D., Cortesini, R. and Suciu-Foca, N., Alloantigen specific CD8+CD28- FOXP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol 2004. 16: 1055-1068.
    38 Yagi, H., Nomura, T., Nakamura, K., Yamazaki, S., Kitawaki, T., Hori, S., Maeda, M., Onodera, M., Uchiyama, T., Fujii, S. and Sakaguchi, S., Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004. 16: 1643-1656.
    39 Allan, S. E., Passerini, L., Bacchetta, R., Crellin, N., Dai, M., Orban, P. C., Ziegler, S. F., Roncarolo, M. G. and Levings, M. K., The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest 2005. 115: 3276-3284.
    40 Smith, E. L., Finney, H. M., Nesbitt, A. M., Ramsdell, F. and Robinson, M. K., Splice variants of human FOXP3 are functional inhibitors of human CD4+ T-cell activation. Immunology 2006. 119: 203-211.
    41 Aarts-Riemens, T., Emmelot, M. E., Verdonck, L. F. and Mutis, T., Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells. Eur J Immunol 2008. 38: 1381-1390.
    42 Mantel, P. Y., Ouaked, N., Ruckert, B., Karagiannidis, C., Welz, R., Blaser, K. and Schmidt-Weber, C. B., Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol 2006. 176: 3593-3602.
    43 von Boehmer, H. and Nolting, J., What turns on Foxp3? Nat Immunol 2008. 9: 121-122.
    44 Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G. and Wahl, S. M., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003. 198: 1875-1886.
    45 Tone, Y., Furuuchi, K., Kojima, Y., Tykocinski, M. L., Greene, M. I. and Tone, M., Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 2007. advanced online publication.
    46 Tone, Y., Furuuchi, K., Kojima, Y., Tykocinski, M. L., Greene, M. I. and Tone, M., Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 2008. 9: 194-202.
    47 Sauer, S., Bruno, L., Hertweck, A., Finlay, D., Leleu, M., Spivakov, M., Knight, Z. A., Cobb, B. S., Cantrell, D., O'Connor, E., Shokat, K. M., Fisher, A. G. and Merkenschlager, M., T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 2008. 105: 7797-7802.
    48 Fantini, M. C., Dominitzki, S., Rizzo, A., Neurath, M. F. and Becker, C., In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat Protoc 2007. 2: 1789-1794.
    49 Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. and Farrar, M. A., IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 2007. 178: 280-290.
    50 Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R. and Neurath, M. F., Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004. 172: 5149-5153.
    51 Malek, T. R. and Bayer, A. L., Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 2004. 4: 665-674.
    52 Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. and Rudensky, A. Y., A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005. 6: 1142-1151.
    53 D'Cruz, L. M. and Klein, L., Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 2005. 6: 1152-1159.
    54 Zorn, E., Nelson, E. A., Mohseni, M., Porcheray, F., Kim, H., Litsa, D., Bellucci, R., Raderschall, E., Canning, C., Soiffer, R. J., Frank, D. A. and Ritz, J., IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 2006. 108: 1571-1579.
    55 Vigouroux, S., Yvon, E., Wagner, H. J., Biagi, E., Dotti, G., Sili, U., Lira, C., Rooney, C. M. and Brenner, M. K., Induction of antigen-specific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes. J Virol 2003. 77: 10872-10880.
    56 Asano, N., Watanabe, T., Kitani, A., Fuss, I. J. and Strober, W., Notch1 signaling and regulatory T cell function. J Immunol 2008. 180: 2796-2804.
    57 Ou-Yang, H. F., Zhang, H. W., Wu, C. G., Zhang, P., Zhang, J., Li, J. C., Hou, L. H., He, F., Ti, X. Y., Song, L. Q., Zhang, S. Z., Feng, L., Qi, H. W. and Han, H., Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. Mol Cell Biochem 2009. 320: 109-114.
    58 Blokzijl, A., Dahlqvist, C., Reissmann, E., Falk, A., Moliner, A., Lendahl, U. and Ibanez, C. F., Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 2003. 163: 723-728.
    59 Fragale, A., Gabriele, L., Stellacci, E., Borghi, P., Perrotti, E., Ilari, R., Lanciotti, A., Remoli, A. L., Venditti, M., Belardelli, F. and Battistini, A., IFN regulatory factor-1 negatively regulates CD4+ CD25+ regulatory T cell differentiation by repressing Foxp3 expression. J Immunol 2008. 181: 1673-1682.
    60 Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M. and Jones, S., Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 2007. 4: 651-657.
    61 Mahic, M., Yaqub, S., Johansson, C. C., Tasken, K. and Aandahl, E. M., FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 2006. 177: 246-254. -111-
    62 Bryn, T., Yaqub, S., Mahic, M., Henjum, K., Aandahl, E. M. and Tasken, K., LPS-activated monocytes suppress T-cell immune responses and induce FOXP3+ T cells through a COX-2-PGE2-dependent mechanism. Int Immunol 2008. 20: 235-245.
    63 Polanczyk, M. J., Carson, B. D., Subramanian, S., Afentoulis, M., Vandenbark, A. A., Ziegler, S. F. and Offner, H., Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immunol 2004. 173: 2227-2230.
    64 Polanczyk, M. J., Hopke, C., Huan, J., Vandenbark, A. A. and Offner, H., Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J Neuroimmunol 2005. 170: 85-92.
    65 Tai, P., Wang, J., Jin, H., Song, X., Yan, J., Kang, Y., Zhao, L., An, X., Du, X., Chen, X., Wang, S., Xia, G. and Wang, B., Induction of regulatory T cells by physiological level estrogen. J Cell Physiol 2008. 214: 456-464.
    66 Polanczyk, M. J., Hopke, C., Vandenbark, A. A. and Offner, H., Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J Neurosci Res 2006. 84: 370-378.
    67 Polanczyk, M. J., Hopke, C., Vandenbark, A. A. and Offner, H., Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol 2007. 19: 337-343.
    68 Karagiannidis, C., Akdis, M., Holopainen, P., Woolley, N. J., Hense, G., Ruckert, B., Mantel, P. Y., Menz, G., Akdis, C. A., Blaser, K. and Schmidt-Weber, C. B., Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J Allergy Clin Immunol 2004. 114: 1425-1433.
    69 Braitch, M., Harikrishnan, S., Robins, R. A., Nichols, C., Fahey, A. J., Showe, L. and Constantinescu, C. S., Glucocorticoids increase CD4CD25 cell percentage and Foxp3 expression in patients with multiple sclerosis. Acta Neurol Scand 2009. 119: 239-245.
    70 Chen, X., Oppenheim, J. J., Winkler-Pickett, R. T., Ortaldo, J. R. and Howard, O. M., Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3(+)CD4(+)CD25(+) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol 2006. 36: 2139-2149.
    71 Xia, Z. W., Xu, L. Q., Zhong, W. W., Wei, J. J., Li, N. L., Shao, J., Li, Y. Z., Yu, S. C. and Zhang, Z. L., Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of foxp3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor- 1. Am J Pathol 2007. 171: 1904-1914.
    72 Delgado, M., Chorny, A., Gonzalez-Rey, E. and Ganea, D., Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J Leukoc Biol 2005. 78: 1327-1338.
    73 Fernandez-Martin, A., Gonzalez-Rey, E., Chorny, A., Ganea, D. and Delgado, M., Vasoactive intestinal peptide induces regulatory T cells during experimental autoimmune encephalomyelitis. Eur J Immunol 2006. 36: 318-326.
    74 Gonzalez-Rey, E., Fernandez-Martin, A., Chorny, A. and Delgado, M., Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect incollagen-induced arthritis. Arthritis Rheum 2006. 54: 864-876.
    75 Ciancio, G., Burke, G. W., Gaynor, J. J., Carreno, M. R., Cirocco, R. E., Mathew, J. M., Mattiazzi, A., Cordovilla, T., Roth, D., Kupin, W., Rosen, A., Esquenazi, V., Tzakis, A. G. and Miller, J., A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monitoring. Transplantation 2005. 80: 457-465.
    76 Fontenot, J. D. and Rudensky, A. Y., A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005. 6: 331-337.
    77 Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 1057-1061.
    78 Khattri, R., Cox, T., Yasayko, S. A. and Ramsdell, F., An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003. 4: 337-342.
    79 Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003. 4: 330-336.
    80 Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G. and Rudensky, A. Y., Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005. 22: 329-341.
    81 Ziegler, S. F., FOXP3: of mice and men. Annu Rev Immunol 2006. 24: 209-226.
    82 Walker, M. R., Kasprowicz, D. J., Gersuk, V. H., Benard, A., Van Landeghen, M., Buckner, J. H. and Ziegler, S. F., Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 2003. 112: 1437-1443.
    83 Zhou, Z., Song, X., Li, B. and Greene, M. I., FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity. Immunol Res 2008.
    84 Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C., Bates, D. L., Guo, L., Han, A., Ziegler, S. F., Mathis, D., Benoist, C., Chen, L. and Rao, A., FOXP3 Controls Regulatory T Cell Function through Cooperation with NFAT. Cell 2006. 126: 375-387.
    85 Bettelli, E., Dastrange, M. and Oukka, M., Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A 2005. 102: 5138-5143.
    86 Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., Miyachi, Y., Tsukada, T. and Sakaguchi, S., Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007. 446: 685-689.
    87 Ichiyama, K., Yoshida, H., Wakabayashi, Y., Chinen, T., Saeki, K., Nakaya, M., Takaesu, G., Hori, S., Yoshimura, A. and Kobayashi, T., Foxp3 inhibits RORgamma t-mediated IL-17A mRNA transcription through direct interaction with RORgamma t. J Biol Chem 2008.
    88 Lee, S. M., Gao, B. and Fang, D., FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1. Blood 2008. 111:3599-3606.
    89 Li, B. and Greene, M. I., FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 2007. 6: 1432-1436.
    90 Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B., A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 1999. 17: 1030-1032.
    91 Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. and Cormier, M. J., Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992. 111: 229-233.
    92 Mahajan, N. P., Linder, K., Berry, G., Gordon, G. W., Heim, R. and Herman, B., Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol 1998. 16: 547-552.
    93 Fields, S. and Song, O., A novel genetic system to detect protein-protein interactions. Nature 1989. 340: 245-246.
    94 Brent, R. and Ptashne, M., A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 1985. 43: 729-736.
    95 Van Aelst, L., Two-hybrid analysis of Ras-Raf interactions. Methods Mol Biol 1998. 84: 201-222.
    96 Li, B. and Fields, S., Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. Faseb J 1993. 7: 957-963.
    97 Staudinger, J., Zhou, J., Burgess, R., Elledge, S. J. and Olson, E. N., PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol 1995. 128: 263-271.
    98 Schroer, A., Schneider, S., Ropers, H. and Nothwang, H., Cloning and characterization of UXT, a novel gene in human Xp11, which is widely and abundantly expressed in tumor tissue. Genomics 1999. 56: 340-343.
    99 Taneja, S. S., Ha, S., Swenson, N. K., Torra, I. P., Rome, S., Walden, P. D., Huang, H. Y., Shapiro, E., Garabedian, M. J. and Logan, S. K., ART-27, an androgen receptor coactivator regulated in prostate development and cancer. J Biol Chem 2004. 279: 13944-13952.
    100 McGilvray, R. and Bartholomew, C., UXT interacts with the transcriptional repressor protein EVI1 and suppresses cell transformation Febs J 2007, pp 3960-3971.
    101 Zhao, H., Wang, Q., Zhang, H., Liu, Q., Du, X., Richter, M. and Greene, M. I., UXT is a novel centrosomal protein essential for cell viability Mol Biol Cell 2005, pp 5857-5865.
    102 Nwachukwu, J. C., Li, W., Pineda-Torra, I., Huang, H. Y., Ruoff, R., Shapiro, E., Taneja, S. S., Logan, S. K. and Garabedian, M. J., Transcriptional regulation of the androgen receptor cofactor androgen receptor trapped clone-27. Mol Endocrinol 2007. 21: 2864-2876. -114-
    103 Sun, S., Tang, Y., Lou, X., Zhu, L., Yang, K., Zhang, B., Shi, H. and Wang, C., UXTis a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. J Cell Biol 2007. 178: 231-244.
    104 Philpott, A., Krude, T. and Laskey, R. A., Nuclear chaperones. Semin Cell Dev Biol 2000. 11: 7-14.
    105 Loyola, A. and Almouzni, G., Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 2004. 1677: 3-11.
    106 Li, B., Saouaf, S. J., Samanta, A., Shen, Y., Hancock, W. W. and Greene, M. I., Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Curr Opin Immunol 2007. 19: 583-588.