乙醇对氧化应激损伤和HBV复制对肝癌系细胞蛋白酶体活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(HBV)作为一种非细胞毒性的嗜肝病毒,感染机体后将导致急慢性肝炎、肝硬化、肝癌等一系列肝脏疾病的发生,成为危害人类健康的一项严重问题。HBV感染后,决定病程转归的一个主要因素是机体的免疫反应能力,尤其是特异性细胞毒性T淋巴细胞(CTL)的反应水平。表达抗原特异性受体细胞毒性T(CD8+T)淋巴细胞能够识别HBV感染肝细胞表面的MHC-Ⅰ抗原肽段复合物,对感染细胞的病毒进行清除,当特异性的CTL建立以后,感染的肝细胞表面如果不表达MHC-Ⅰ抗原肽段复合物,也没法对病毒进行清除,而且最近的研究指出氧化应激损伤与丙肝病毒感染协同作用减弱了肝细胞内负责处理加工MHC-Ⅰ抗原的蛋白酶体的活性,也有研究证据表明乙肝病毒蛋白与蛋白酶体亚基之间可以相互作用降低肝细胞本身的抗原提呈功能,有利于病毒病原体躲避机体的免疫反应。因此乙肝病毒感染肝细胞的处理加工病毒抗原的能力有待于进一步研究证实。
     本研究利用肝癌细胞系HepG2以及在HepG2基础上转染了HBV的HepG2.2.15细胞为靶细胞模型,初步探讨比较HepG2和HepG2.2.15细胞对乙醇致氧化应激损伤的敏感性差异,通过Western bloting方法检测LMP2免疫蛋白酶体的亚基,研究氧化应激损伤对HepG2和HepG 2.2.15细胞处理加工病毒抗原能力的影响。实验过程中,分别用1.5%、3%、5%、8%浓度的乙醇作用HepG2和HepG2.2.15细胞16h以后收集上清检测谷草转氨酶,四甲基偶氮唑盐(MTT)计算细胞活性抑制率。两种细胞1.5%、5%乙醇处理16小时后用WesternBlot检测免疫蛋白酶体亚基LMP2的表达。通过上述研究方案获得如下结果:
     HepG2.2.15细胞对3%、5%的乙醇诱导损伤更敏感。HepG2.2.15细胞的LMP2表达比HepG2细胞低,1.5%乙醇处理16小时以后,HepG2.2.15细胞的蛋白酶体亚基LMP2表达比HepG2细胞下调更明显。
     我们的研究提示了HBV的复制和氧化应激损伤降低了蛋白酶体亚基LMP2的表达,推测HBV的复制可能会造成肝细胞的氧化应激损伤,会减弱肝细胞的对MHC-I类分子限制的病毒抗原的提呈。
     目的:建立一种简便经济的HBV转基因小鼠的原代肝细胞的分离纯化方法,并进行培养,观察HBV转基因小鼠原代肝细胞的生物学功能,探索HBV转基因小鼠原代肝细胞作为抗乙肝病毒药物药效学研究的细胞模型的潜能。
     方法:采用稍加改良的两步胶原酶灌流法分离获取HBV转基因小鼠的肝细胞,用percoll密度梯度离心法纯化原代肝细胞,并进行原代培养。以台盼蓝染色法测细胞活力,显微镜下观察肝细胞形态变化,检测培养体系不同时间培养上清液中白蛋白、乳酸脱氢酶(LDH)、尿素的含量以及不同时间培养上清液中乙肝表面抗原(HBS-Ag)、e抗原(HBe-Ag)、HBVDNA分泌水平,利用HBV转基因小鼠原代肝细胞模型,通过检测培养上清HBS-Ag、HBe-Ag、HBVDNA分泌水平对Bay-4109的抗乙肝病毒作用进行药效学评价。
     结果:改良的两步胶原酶消化法结合percoll密度梯度离心法所获取的肝细胞活细胞达到90%,纯度95%以上,贴壁良好、活性高、功能强;LDH漏出量、白蛋白分泌及尿素合成等指标在1周内呈现规律性变化,第3和第4天时LDH漏出量最低,白蛋白分泌及尿素合成功能正常,HBS-Ag在一周内分泌水平稳定、HBe-Ag在1-2天分泌高峰、后逐渐下降,HBVDNA分泌水平表明所分离的肝细胞在培养第3-4天功能最佳。Bay-4109作用于HBV转基因小鼠原代肝细胞48小时以后能够影响培养上清中HBe-Ag的分泌。
     结论:胶原酶原位灌注法可以用于分离HBV转基因小鼠的原代肝细胞,并且分离获得的肝细胞存活数目以及细胞活性均能够满足实验观察的需要。并且HBV转基因小鼠的原代肝细胞体外培养具有病毒复制以及肝细胞的各种生物学特性,具有作为抗乙肝病毒药物药效学研究的细胞模型的潜能。
Hepatitis B virus(HBV) as a hepatotropic,noncytopathic virus,primarily infects hepatocytes and causes a series of liver diseases such as acute and chronic hepatitis,liver cirrhosis and hepatocellular carcinoma, which are among the most important human health problems worldwide.Immune response to viral antigens plays a crucial role in the pathogenesis of hepatitis B viral infections. However, when clonal expansion of cytotoxic T-lymphocytes (CTLs) is established, the next important restriction for elimination of infected cells is the availability of peptide-major histocompatibility complex (MHC) classⅠcomplexes, which are recognized by CTLs on the surface of target cells (hepatocytes). With the new recognition that the synergistic action of ethanol with HCV results in the suppression of MHC classⅠ-restricted antigen presentation. Evidence for direct interaction with proteasome subunits has been obtained for the HBV protein to reduced MHC classⅠ-restricted antigen presentation.
     In this study,we usede transfected cell line HepG2.2.15 and its parental cell Line HepG2 to research the effect of ethanol-induced oxidative stress and HBV replication on proteasome.Cells were stimulated by ethanol with gradient concentration(1.5%-8%) for 16 hours. The assay of AST release from the cultured cells was used to evaluate the cytotoxicity of ethanol. The inhibition rate of cells was determined by MTT method. Western Blot was utilized to detecte the expression of LMP2. Our major findings are shown as followe:
     HepG2.2.15 was more sensitive to 3% and 5% ethanol induced cell injury. The expressions of LMP2 were much lower in HepG2.2.15 cells compared with HepG2 cells with or without 1.5% ethanol exposure.
     Our study demonstrated ethanol and HBV down-regulated the expression of immunoproteasome subunit LMP2 in hepatoma cells.We deduce HBV replication and Ethanol-induced oxidative stress suppress the generation of peptides for MHC classⅠ-restricted antigen presentation.
     AIM:The purpose of this study was to search a simplified, inexpensive method in isolating HBV-transgenic mice hepatocytes,and the primary hepatocytes of HBV-transgenic mice was observed. To explore the potency of HBV-transgenic mice hepatocytes as a vitro model in anti-HBV drugs.
     METHOAD:Mice hepatocytes were isolated by modified two steps collagenase perfusion,and then purificated by 40% Percoll.The viability of cultured hepatocytes was assessed by trypan blue exclusion. The morphologic change of cultured hepatocytes was observed, and the concentrations of albumin, urea,lactate dehydrogenase (LDH),HBS-Ag,HBe-Ag and HBVDNA in the supernatant collected from different cultural period of better isolated system were examined. Primary hepatocytes were treated with Bay-4109 to evaluate their pharmacodynamics and mechanism of action.
     RESULT:Hepatocytes obtained by modified two steps collagenase perfusion were intact and had a prosperous viability and an active function. The fluctuated changes of LDH leakage, albumin synthesis and urea levelwere displayed in one week, and the lesser LDH leakage and higher concentrations of albumin and urea were observed on the third day. The contents of HBS-Ag secretion mantained higher level from 1th to 7th day, HBe-Ag and HBVDNA decreased gradually over time in the period of culture. The HBS-Ag and HBe-Ag release from the cultrued cells decreased after Bay-4109 treatment.
     CONCLUSION:It is concluded that the collagenase digestion method is feasible for isolation of HBV-transgenic mice hepatocytes. Primary hepatocytes have an potentiality as a vitro model in anti-HBV drugs.
引文
1. W ang J,M aldonado M. A. The ubiquitin2p ro teasome system and it's role in inflammato ry and autoimmune disease [J].Cellular and Molecular Immuno logy 2006,3(4):255-261.
    2. R. Glynne, S. Powis, S. Beck, A. Kelly, L.A. Kerr, J. Trowsdale, A proteasome related gene between the two abc transporter loci in the calls II region of the human MHC, Nature 353 (1991) 357-360.
    3. M.G. Brown, J. Driscoll, J.J. Monaco, Structural and serological similarity of MHC linked LMP and proteasome (multicatalytic proteinase complex), Nature 353 (1991) 355-358.
    4. A. Kelly, S.H. Powis, R. Glynne, J. Trowsdale, Second proteasomerelat-ed gene in the human MHC class Ⅱregion, Nature 353 (1991) 667-668.
    5. V. Ortiz-Narvarete, A. Seelig, M. Gernold, S. Frentzel, Subunit of the 20S proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex, Nature 353 (1991) 662-672.
    6. C.K. Martinez, J.J. Monaco, Homology of proteasome subunits to a major histocompatibilty linked LMP2 gene, Nature 353 (1991) 664-665.
    7. Y. Yang, K. Fruh, J. Chambers, et al;Major histocompatibility complex (MHC)-encoded HAM2 is necessary for antigenic peptide loading onto class I MHC molecules, J. Biol. Chem.267 (1992) 11669-11672.
    8. K.B. Hendil, S. Khan, K. Tanaka, Simultaneous binding of PA28 and PA700 activators to 20S proteasomes, Biochem. J.332 (1998) 749-754.
    9. R. Stohwasser, S. Standera, I. Peters, P.-M. Kloetzel, M. Groettrup,Molecular cloning of the mouse proteasome subunits MC14 and MECL-1:reciprocally regulated tissue expression of interferongamma-modulated proteasome subunits, Eur. J. Immunol.27 (1997) 1182-1187.
    10. A.M. Eleuteri, R.A. Kohanski, C. Cardozo, et al;Bovine spleen multicatalytic proteinase complex (proteasome):replacement of X, Y, and Z subunits by LMP7; LMP2 and MECL1 and changes in properties and specificity, J. Biol. Chem.272 (1997)11824-11831.
    11.谭银玲,董燕麟,汪仕良.MHC-Ⅰ类抗原产生系统—免疫性多功能蛋白酶体[J].细胞与分子免疫学杂志2002,18(2):196-200.
    12.倪兵,吴玉章.蛋白酶体与MHC-Ⅰ类抗原的加工呈递[J].免疫学杂志2001,17(5):391-395.
    13.曾令娥,陈哲生.泛素蛋白酶体系统与内源性抗原[J].检验医学教育2007,14(3):39-40
    14. R. Rousset, C. Desbois, F. Bantignies, P. Jalinot, Effects of the NFkB1/processing of the interaction between HTLV-1 transactivator Tax and the proteasome, Nature 381 (1996)328-331.
    15. M. Fischer, L. Runkel, H. Schaller,et al; HBx protein of hepatitis B virus interacts with the C-terminal portion of a novel human proteasome a-subunit, Virus Genes 10 (1995)99-102.
    16. J. Huang, J. Kwong, E.C. Sun, et al; Proteasome complex as a potential cellular target for hepatitis B virus X protein, J. Virol.70 (1996) 5582-5591.
    17. R. Stohwasser, H.G. Holzhqtter, U. Lehmann, et al;Hepatitis B virus HBx peptide 116-138 and proteasome activator PA28 compete for binding to the proteasome a4/MC6 subunit, Biol. Chem.384 (2002) 39-49.
    18. A.S. Turnell, R.J.A. Grand, C. Gorbea, et al;Regulation of 26S proteasome by adenovirus, EMBO J.19 (2000) 4759-4773.
    19. M. Seeger, K. Ferrell, R. Frank,et al; HIV-tat inhibits the 20S proteasome and its 11S regulator-mediated activation, J. Biol. Chem.272 (1997) 8145-8148.
    20. X. Huang, U. Seifert, U. Salzmann,et al; The RTP site shared by the HIV-1 TAT protein and the 11 regulator subunit a is crucial for their effects on proteasome function including antigen processing, J. Mol. Biol.323 (2002) 771-782.
    21. Peter-M. Kloetzel. The proteasome and MHC class I antigen processing [J]. Biochimica et Biophysica Acta 2004,1695:217-225.
    22. Chen Ding, Haiming Weil, Rui Sunl,et al. Hepatocytes proteomic alteration and seroproteome analysis of HBV-transgenic mice [J]. Proteomics 2009,9:87-105.
    23. Natalia A. Osna, Ronda L. White, Sandra Todero,et al. Ethanol-induced oxidative stress suppresses generation of peptides for antigen presentation by hepatoma cells [J]. Hepatology 2007,45:53-61.
    24. M. Fischer, L. Runkel, H. Schaller,et al. HBx protein of hepatitis B virus interacts with the C-terminal portion of a novel human proteasome a-subunit [J]. Virus Genes 1995 10:99-102;
    25. Hsieh, Y. H., Su, I. J., Chang, W. W. et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage [J]. Carcinogenesis 2004,25:2023-2032.
    [1]谭银玲,董燕麟,汪仕良.MHC-Ⅰ类抗原产生系统—免疫性多功能蛋白酶体[J].细胞与分子免疫学杂志2002,18(2):196-200.
    [2]Peter-M. Kloetzel. The proteasome and MHC class I antigen processing [J]. Biochimica et Biophysica Acta 2004,1695:217-225.
    [3]Chen Dingl, Haiming Weil, Rui Sunl,et al. Hepatocytes proteomic alteration and seroproteome analysis of HBV-transgenic mice [J]. Proteomics 2009,9:87-105.
    [4]Natalia A. Osna, Ronda L. White, Sandra Todero,et al. Ethanol-induced oxidative stress suppresses generation of peptides for antigen presentation by hepatoma cells [J]. Hepatology 2007,45:53-61.
    [5]M. Fischer, L. Runkel, H. Schaller,et al. HBx protein of hepatitis B virus interacts with the C-terminal portion of a novel human proteasome a-subunit [J]. Virus Genes 1995 10:99-102;
    [6]张斌,张定凤,任红.乙醇诱导HepG2细胞调亡模型的建立及Bcl—2对抗作用[J].中华肝脏病学2000,8(4):215-217.
    [7]Donohue TM Jr, Kharbanda KK, Casey CA, et al. Decreased proteasome activity is associated with increased severity of liver pathology and oxidative stress in experimental alcoholic liver disease [J]. Alcoholism 2004,28 (8):12572-1262.
    [8]Joshua Ogony,l Richard Matthews, Helen Anni, et al. The mechanism of elevated toxicity in HepG2 cells due to combined exposure to ethanol and ionizing radiation [J]. J. Appl. Toxicol.2008,28:345-355.
    [9]Hsieh, Y. H., Su, I. J., Chang, W. W. et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage [J]. Carcinogenesis 2004,25:2023-2032.
    [10]Jianghua Wang, Dong Jiang, Henghui Zhang,et al. Proteome responses to stable hepatitis B virus transfection and following interferon alpha treatment in human liver cell line HepG2 [J]. Proteomics 2009,9:0000-0011.
    [11]W ang J,M aldonado M. A. The ubiquitin2p ro teasome system and it's role in inflammato ry and autoimmune disease [J].Cellular and Molecular Immuno logy 2006,3(4):255-261.
    [12]Jin Woo Kim,Ying Huang,T. Jake Liang et al. Altered Proteolysis and Global Gene Expression in Hepatitis B Virus X Transgenic Mouse Liver. J of Virology [J]. 2006,80(3):1405-1413.
    [13]Natalia A. Osna, Ronda L. White,Geoffrey M, et al. Ethanol metabolism alters Major Histocompatibility Complex Class I-restricted antigen presentation in liver cells [J]. Hepatology 2009,49:1308-1315.
    1. Martin Franz Sprinzl. Heike Oberwinkler, lteinz Schaller. el al.Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice:crossing the species barrier [J]J Virol.2001,75(11):5108—5118.
    2.Zhang YY, Summers J. Rapid production of neutralizing antibody leads to transient hepadnavirus infection. J Virol 2004;78:1195-1201
    3.Seigneres B, Martin P, Werle B. et al. Effects of pyrimidine and purine analog combinations in the duck hepatitis B virus infection model.[J] Antimicrob Agents Chemother 2003;47:1842-1852
    4.Zoulim F, Berthillon P, Guerhier FL, Seigneres B, Germon S,Pichoud C, Cheng YC, Trepo C. Animal models for the study of HBV infection and the evaluation of new anti-HBV strategies. J Gastroenterol Hepatol 2002; 17:S460-463
    5.Delmas J, Schorr O, Jamard C, Gibbs C, Trepo C, Hantz O,Zoulim F. Inhibitory effect of adefovir on viral DNA synthesis and covalently closed circular DNA formation in duck hepatitis B virus-infected hepatocytes in vivo and in vitro. Antimicrob Agents Chemother 2002; 46:425-433
    6. Chisari, FV. Pinke-, CA. Milich, DR. et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state.[J]. Science,1985,230(4730): 1157—1160
    7. Babinet C, Farza H, Morello D, et al. Specific expression of hepatitis B surface antigen (HBsAg) in transgenic mice[J]. Science 1985,230 (4730):1160-1163
    8. Morrey JD, Korba BE, Sidwell RW.Transgenic mice as a chemotherapeutic model for hepatitis B virus infection [J]. j. Antivir Ther,1998,3(Suppl 3):59—68.
    9.刘光泽,熊一力,王洪敏,等.近交系高表达HBV转基因小鼠建立及表达传代稳定性[J].中国兽医报,2003,23(6):580-582.
    10.Poso AR,Penltila KE,suolinna EM,et al.Urea synthesis in freshly isolated and cultured periportal and perivenous hepatocytes[J].Biochem J.1986 239(2):263-267
    11.Seglen PO,Preparation of isolated rat liver cells[J]. Methods Cell Biol.1976. 13:29-83
    12.刘立新,王炜,严律南.一种改良的单肝细胞分离方法[J].中国普外基础与临床杂志,2005,12(3):265-267
    13.邓颖,陈杰,毕惠嫦等.原代肝细胞培养及其在药物代谢和毒理学研究中的应用进展.[J]中国药理学通报2006 Aug;22(8):900-3
    14. Burkey J L, Sawer J M, McQueen C A, et al;Cytotoxicity and genotoxicity of methyleugenol and related congeners—a mechanism of activation for methyleugenol [J]. M uta Res,2000,453 (1):25-33.
    15. Yan C, Gong L K, Qi X M, et al. Apop tosis initiated by carbon tetrachloride in mitochondria of rat p rimary cultured hepatocytes[J]. Acta Pharm acol S in,2005,26 (8):969-75.
    16.史美娜,王小众,郑伟达,等.白介素210对肝纤维化大鼠星状细胞EGF及HGF表达的影响[J].中国药理学通报,2005,21(3):327-31.
    17. Howard RB et al. The enzymatic preparation of isolated intact parenchymal cells from rat liver[J].J Cell Biol,1967,35:675
    18. Berry MN et al. High-yield preparation of isolated rat liver parenchymal cells:a biochemical and fine structural study. J Cell Biol,1969,43:506
    19. Seglen PO. Preparation of isolated rat liver cells Methods Cell Biol,1976,13:292
    20. Pan XB, Han JC, Wei L, et al; Subcellular distribution and translocation of hepatitis B virus core protein in HepG2.2.15 cells[J]. Zhonghua Gan Zang Bing Za Zhi.2008 Jan; 16(1):29-32.
    21. Shi C, Wu CQ, Cao AM, et al;NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-4109, a novel anti-HBV compound, induced hepatotoxicity in rats[J].Toxicol Lett.2007 Sep 28;173(3):161-7. Epub 2007 Aug 2.
    22. Stray SJ, Zlotnick A; BAY 41-4109 has multiple effects on Hepatitis B virus capsid assembly[J].J Mol Recognit.2006 Nov-Dec;19(6):542-8.
    23.Bernard J K, Zhang SM, Cai H B, et al. Induction and inhibition of cytochromes P450 by the St. John'sWort constituent hyperforin in human hepatocyte culture[J]. D rug Metab D ispos,2004,32 (5):514-8.