氨氯地平和依普利酮联合应用在缓解盐敏感高血压所致肾脏损害中作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨氯地平和依普利酮联合应用在缓解盐敏感高血压所致肾脏损害中作用机制的研究
     研究背景和目的
     世界范围内大约10亿人正在受到高血压的困扰。临床研究表明:大约50%的高血压患者为盐敏感高血压。而盐敏感高血压正是导致心血管疾病以及肾脏功能损害的最为重要的致病因素之一。有研究表明:肾功能不全的发生与肾间质纤维化具有极为密切的关系。一些研究发现:慢性肾间质缺氧在肾间质纤维化中发挥了重要作用并最终导致肾功能不全的发生。此外,一些导致慢性肾间质缺氧的诱因也已经查明,其中最为重要的是肾小管周毛细血管损伤以及血流减少。
     缺氧导致的ATP耗竭,会导致肾小管上皮细胞内钙离子浓度升高以及线粒体的损伤并进而导致细胞凋亡。L型钙通道阻断剂可以显著降低由缺氧所导致的肾小管上皮细胞凋亡。此外,有人发现L型钙通道阻断剂还可以显著降低由肾脏缺血再灌注所导致的肾脏各类细胞凋亡以及由血管紧张素Ⅱ所导致的肾小管周围缺血。以上研究暗示,一些临床研究中L型钙通道阻断剂的肾脏保护作用可能是通过对肾间质缺氧的抑制而实现的。然而氨氯地平在高血压中肾脏保护作用的机制尚需进一步研究。
     传统认为,醛固酮通过作用于远端肾单位来调节体内电解质平衡以及血压的稳定。但是最近人们对醛固酮的认识发生了变化。越来越多的证据表明,醛固酮在心血管以及肾脏损害过程中发挥了重要的作用。在肾脏损害方面,许多研究证明:醛固酮水平的升高可以导致蛋白尿、肾小球硬化以及肾间质纤维化。亦有研究发现,在醛固酮持续灌注SD大鼠中,肾小球表达的正常足细胞标记物podocin和nephrin显著降低,然而损伤足细胞标记物desmin表达却显著升高。盐皮质激素受体(MR)阻断剂依普利酮可以显著改善由醛固酮水平升高导致的足细胞损伤以及蛋白尿。因此,足细胞损伤的治疗将具有重要临床意义。以上研究提示,MR在足细胞损伤中可能发挥了重要作用,其可能机制尚需进一步研究。并且,联合应用氨氯地平和依普利酮是否能够提供更好的肾脏保护作用尚需研究。
     本研究首次研究了氨氯地平和依普利酮联合应用对于高盐诱导的Dahlsalt-sensitve(DS)大鼠盐敏感血压以及肾脏损害的治疗作用。并对其可能机制进行了深入探讨。
     方法
     高盐饲料诱导的盐敏感高血压合并肾脏损害动物模型的建立
     6周龄Dahl salt-sensitve(DS)大鼠饲以0.4%低盐饲料或4%高盐饲料,每两周行血压测定以及24小时尿蛋白测定。至第16周龄时,相对于低盐饲料喂养DS大鼠,高盐饲料喂养DS大鼠的收缩压(SBP)超过170 mmHg并且尿蛋白超过70 mg/24h。组织学检查可见严重肾小球硬化以及肾间质纤维化。以上结果证实:高盐饲料诱导的盐敏感高血压合并肾脏损害动物模型建立成功。
     实验动物分组:6周龄DS大鼠40只随机分为两组:对照组(8只,LS)喂以0.4%低盐饲料(Oriental Yeast,大阪,日本),实验组(32只,HS)喂以4%高盐饲料(Oriental Yeast,大阪,日本)。8周龄时将实验组大鼠进一步随机分为4组:阳性对照组(8只,HS),氨氯地平治疗组(8只,3 mg/kg/day,HS+A),依普利酮治疗组(8只,50 mg/kg/day,HS+E)和联合用药组(8只,HS+A+E),治疗时间均为8周。整个实验过程共计10周。
     实验期间,每两周采用套尾法测量血压以及代谢笼采集24小时尿液各一次。血浆和肾脏标本在苯巴比妥麻醉状态下采集,其中肾脏首先行生理盐水灌注冲洗,然后切片放入10%福尔马林(pH 7.4)固定石蜡包埋用于组织学检查,或者直接放入OCT冰冻切片包埋剂制作冰冻切片用于激光捕获微分离(LCM)。剩余肾脏组织放入液氮冷冻并且放入-80℃深低温冰箱保存。
     1.尿液及血液生化学检查
     通过24小时尿蛋白和尿肌酐测定以及血肌酐测定,了解肾脏功能损害情况。通过对血浆钠离子、钾离子和醛固酮水平测定了解体内电解质代谢状况。
     2.组织学检查
     通过PAS染色对肾小球硬化的程度进行评估。通过Azan染色对肾间质纤维化进行评估。
     3.免疫组织化学检查
     通过对缺氧标记物pimonidazole免疫组织化学染色对肾间质缺氧进行检测,aminopeptidase P免疫组织化学染色来评价肾间质毛细血管密度,desmin的免疫组化染色来检测足细胞损伤。
     4.肾小球的激光捕获微分离和总RNA提取
     通过激光捕获微分离技术分离肾小球组织并提取总RNA。
     5.Real-time PCR
     通过方法4中提取的总RNA合成cDNA文库。并通过Real-time PCR检测肾小球podocin、nephrin、MR和Sgk-1表达。
     6.统计学分析
     所有数据均以(?)±SE表示。各组间统计学比较通过方差分析(ANOVA)以及多重比较的Bonferroni事后检验进行。
     结果
     1.成功建立盐敏感高血压合并肾脏损害动物模型。
     2.收缩压(SBP)
     高盐饲料喂养的DS大鼠产生了严重的高血压。并且各个治疗组降低血压的水平相近。
     3.24h尿蛋白,24h尿蛋白/尿肌酐比值(Urinary protein/creatinine ratio,UPCR),血浆肌酐(Plasma creatinine)以及内生肌酐清除率(Creatinine clearance,Ccr)
     高盐饲料喂养DS大鼠发生了24h尿蛋白和UPCR的显著增加。单一用药可以显著降低24h尿蛋白和UPCR水平。但是,联合用药组可以更好的降低24h尿蛋白和UPCR水平。高盐饲料喂养DS大鼠同样也导致了血肌酐的增加以及内生肌酐清除率的降低。只有联合用药组可以显著抑制血肌酐的增加以及内生肌酐清除率的降低。
     4.组织学检查
     低盐饲料饲养DS大鼠的肾小球以及肾间质完全正常。高盐饲料喂养导致了DS大鼠严重的肾小球硬化以及肾间质纤维化。单一应用依普利酮可以显著降低肾小球硬化。然而,与依普利酮比较而言,单一应用氨氯地平可以很好的减轻肾间质纤维化。联合用药组对肾小球硬化以及肾间质纤维化均具有很好的治疗效果。
     5.MR激活导致的足细胞损伤
     高盐饲料喂养DS大鼠肾小球podocin和nephrin表达显著降低,然而desmin表达却显著升高。该结果提示着足细胞损伤的存在。单一应用依普利酮或者联合用药可以显著改善足细胞损伤。通过进一步检测MR表达以及MR活性标志物Sgk-1我们发现,高盐饲料喂养DS大鼠可以促进MR表达水平升高。尽管依普利酮不能够降低MR的表达水平。但是,单一应用依普利酮或者联合用药可以显著降低Sgk-1的表达。
     6.肾间质缺氧检测
     高盐饲料导致了肾间质pimonidazole阳性区域显著增加。这一结果提示肾间质缺氧的存在。氨氯地平可以部分改善肾间质缺氧的情况,但是依普利酮却没有任何效果。而联合用药可以显著改善肾间质缺氧的情况。已有研究表明,肾间质缺氧与肾间质毛细血管的缺失有重要关系。本实验发现,高盐饲料喂养DS大鼠同样导致了肾间质毛细血管的缺失。氨氯地平或联合用药可以显著改善肾间质毛细血管的缺失,而依普利酮却没有任何效果。
     结论
     1.肾小球硬化以及肾间质纤维化并不一定同时发生。二者均与肾功能密切相关,任何一种损伤均可以造成24小时尿蛋白水平升高。
     2.肾小球硬化以及肾间质纤维化的致病因素不完全相同。MR的激活所导致的足细胞损伤在肾小球硬化的发展中发挥了重要作用。而肾间质缺氧则在肾间质纤维化中则发挥了重要作用。
     3.通过不同的作用机制,氨氯地平和依普利酮联合应用可以显著改善由盐敏感高血压所致的肾脏足细胞损伤以及肾间质缺氧,进而抑制肾小球硬化、肾间质纤维化为代表的肾脏损害。本研究对于指导临床慢性肾脏损害治疗具有重要指导意义。
Renoprotective Effects of Amlodipine in Combination with eplerenone in Hypertensive Dahl Rats
     Background and Objective
     Hypertension affects around 1 billion people worldwide,and suboptimal control of blood pressure is the number one attributable risk for death throughout the world. Clinical studies have demonstrated that around 50%of hypertensive patients have salt-sensitve hypertension,a well-known independent risk factor for increasing cardiovascular morbidity and mortality,and progressive renal functional impairment. Renal dysfunction and injury have been reported to show better correlations with structural damage to the renal tubuloinsterstitium than with damage to the glomeruli.It has been demonstrated that chronic hypoxia in the tubulointerstitium is a final common pathway to end-stage renal failure.In addition,a number of mechanisms that induce tubulointerstitial hypoxia have been suggested;occurring as a consequence of a reduction in peritubular capillary(PTC) blood flow,i.e.,peritubular ischemia and injury. In hypoxia,ATP depletion causes cellular Ca~(2+) increase,mitochondrial injury and apoptosis in renal tubular cells.Tanaka et al.showed that an L-type Ca~(2+) channel blocker(CCB) attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells.Furthermore,treatment with CCBs restored ischemic/reperfusion-induced apoptosis and angiotensinⅡ-induced peritubular ischemia.These data suggest that the reno-protective effects of CCBs reported in clinical studies may be mediated through inhibition of tubulointerstitial hypoxia.However,the mechanisms by which amlodipine elicits reno-protective effects in hypertensive subjects are not clear.Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis by acting on the distal nephron.Recently,there has been a paradigm shift regarding the role of aldosterone.Growing evidence suggests that aldosterone plays an important pathogenetic roles in cardiovascular and renal injury.In the kidney, aldosterone promotes proteinuria,glomerulosclerosis,arteriopathy,and renal fibrosis. In aldosterone-infused rats,glomerular expressions of slit diaphragm-associated molecules nephrin and podocin were markedly decreased,whereas expression of a damaged podocyte marker desmin was upregulated.Proteinuria and podocyte damage were completely reversed by selective aldosterone blocker eplerenone.Thus,podocytes can be an important therapeutic target.In addition,the combined effects of amlodipine and eplerenone have not been investigated.In the present study,we examined the effects of amlodipine and eplerenone on the blood pressure and renal function in DS rats.In addition,we evaluated the therapeutic efficacy of the combination of amlodipine and eplerenone.Furthermore,we try to investigate the possible mechanisms of the beneficial effects of amlodipine in combination with eplerenone.
     Methods
     Setting up salt-induced hypertension and renal injury model in Dahl salt-sensive rats:6-week-old Dahl salt-sensitive(DS) rats,weighing 165-180g,received 4% high-salt diet for 10 weeks.SBP was measured in conscious rats by tail-cuff plethysmography,and 24-hour urine samples were collected at every two weeks.At the end of the treatment,DS rats showed severe hypertension(SBP > 170 mmHg) and proteinuria(>70 mg/24h).Histological analysis also found severe glomerularsclerosis and tubulointerstitial fibrosis.These evidences confirmed the success of this animal model.
     Experimental groups:Male DS rats at 6 weeks of age were randomly selected to receive rat diet containing high salt(HS;4%NaCl;n=32;Oriental Yeast,Osaka,Japan) or low salt(LS;0.4%NaCl;n=8;Oriental Yeast) for 10 wk.The DS rats fed with high-salt diet were then randomly divided into the following 4 groups(8 rats in each group):control(HS);amlodipine 3mg/kg/day by gavage(HS+A);eplerenone 50mg/kg/day by gavage(HS+E) and amlodipine 3mg/kg/day combined with eplerenone 50mg/kg/day(HS+A+E).The treatments lasted from 3 to 10 weeks after the start of high-salt diet feeding.
     SBP was measured in conscious rats by tail-cuff plethysmography,and 24-hour urine samples were collected at every two weeks.Blood and kidney samples were collected at the end of week 10 under sodium pentobarbital anesthesia.Kidneys were perfused with chilled saline solution,then kidney sections were either fixed in 10% paraformaldehyde(pH 7.4) and embedded in paraffin for histological examination or frozen in Tissue-Tek O.C.T.compound for laser capture microdissection(LCM). Remaining renal tissues were snap-frozen in liquid nitrogen and stored at -80 8888888.
     1.Urine and blood biochemistry
     Determine the renal functional impairment by examining the urinary protein and creatinine excretion,plasma creatinine level and creatinine clearance.We also determine the electrolyte homeostasis by checking the plasma sodium,potassium and aldosterone levels.
     2.Histological examination
     Evaluate the glomerular size and glomerularsclerosis by PAS staining.We also evaluate the tubulointerstitial fibrosis by Azan staining.
     3.Immunohistochemistry
     Renal hypoxia was examined by pimonidazole,which binds to tissues with pO_2 levels below 10 mmHg.PTCs loss was examined by immunohistochemistry of aminopeptidase P.Podocyte injury was examined by immunohistochemistry of desmin.
     4.LCM and RNA isolation
     We microdissected the glomeruli tissues by LCM.Glomerular RNA was extracted using RNAqueous-Micro kits.
     5.Real-time PCR
     Total RNA was reverse transcripted into cDNA.We examined the glomerular expression of podocin,nephrin,MR and Sgk-1 by Real-time PCR.
     6.Statistical analysis
     Values are presented as mean±SE.Statistical comparisons of the differences between treatments were performed using one-way analysis of variance(ANOVA) combined with the Bonferoni post hoc test for multiple comparisons.A value of P< 0.05 was considered statistically significant.
     Results
     1.Salt-sensitive hypertension and renal injury animal model was established successfully.
     2.SBP
     Hypertension developed progressively in the rats fed with high-salt diet,but didn't develop in the rats fed with low-salt diet.The hypotensive effects were comparable among all the treatment groups.
     3.Urinary Protein/Creatinine,Plasma Creatinine and Creatinine Clearance After 10 wk of treatment with a high-salt diet,rats showed a higher urinary protein/creatinine ratio as compared with rats received low-salt diet.Monotherapy with amlodipine or eplerenone could reduce urinary protein/creatinine ratio.Combination of amlodipine and eplerenone exhibited the best improvement of urinary protein/creatinine ratio.Plasma creatinine level was enhanced in the rats fed with high-salt diet compared with rats received low-salt diet.Monotherapy slightly decreased plasma creatinine.Combination treatment could significantly decrease the plasma creatinine level.In accordance with plasma creatinine,creatinine clearance was decreased in rats fed with high salt.Only the combination of amlodipine and eplerenone could significantly increase creatinine clearance compared with other monotherapy.
     4.Histological findings
     Rats that received low-salt diet showed almost normal glomeruli and tubulointerstitium;however,rats that received high-salt diet exhibited injured glomeruli characterized by sclerosis and enlarged glomerular size.In rats that received high-salt diet,severe tubulointerstitial fibrosis were also observed.Monotherapy with eplerenone but not amlodipine significantly inhibited glomerularsclerosis.However,single treatment with amlodipine could provide better improvement of tubulointerstitial fibrosis compared with eplerenone.Surprisingly,the combination of amlodipine and eplerenone dramatically reduced both glomerularsclerosis and tubulointerstitial fibrosis.
     5.Podocyte Injury caused by MR Upregulation and Activation
     In rats receiving a high-salt diet,glomerular expressions of podocin and nephrin were markedly decreased,whereas expression of a damaged podocyte marker desmin was upregulated.Treatment with eplerenone or combining amlodipine with eplerenone improved the podocyte injury.Furthermore,we found that glomerular MR expression was upregualted by high-salt loading.Although the MR expression can not be suppressed by eplerenone,treatment with eplerenone or eplerenone in combination with amlodipine dramatically decreased the upregulation of Sgk-1.
     6.Assessment of Renal Hypoxia
     The pimonidazole-positive area in the renal cortex was markedly increased in control DS rats compared to low salt-fed rats.Treatment with amlodipine partially attenuated the increase in pimonidazole staining,while eplerenone treatment had no effect.The combination treatment markedly improved the increased pimonidazole positive area in renal cortex.
     It is proposed that the loss of peri-tubular capillary is one of the causes for renal hypoxia.The area positive for anti-endothelial aminopeptidase P antibody was smaller in the renal cortex of control rats.The decreased aminopeptidase P immunoreactivity was partially restored by amlodipine or the combination treatment,whereas eplerenone treatment had no effect on the loss of immunoreactivity by high salt feeding.
     Conclusion
     1.Glomerularsclerosis and tubulointerstitial fibrosis don't always co-exist in renal injury.Any of them could cause renal injury alone.
     2.Glomerularsclerosis and tubulointerstitial fibrosis can be caused by different pathological factors.For example,activation of MR and podocyte injury may play a important role in glomerularsclerosis.However,tubulointerstitial hypoxia may be crucial for tubulointerstitial fibrosis.
     3.Amlodipine in combination with eplerenone provide better renoprotective effects characterized by reducing both glomerularsclerosis and tubulointerstitial fibrosis through the improvement of both podocyte injury and tubulointerstital hypoxia.
引文
1 Morimoto A,Uzu T,Fujii T,et al.Sodium sensitivity and cardiovascular events in patients with essential hypertension.Lancet.1997;350:1734-1737.
    2 Weinberger MH,Fineberg NS,Fineberg SE,et al.Salt sensitivity,pulse pressure,and death in normal and hypertensive humans.Hypertension.2001;37:429-432.
    3 Blythe WB,Maddux FW.Hypertension as a causative diagnosis of patients entering end-stage renal disease programs in the United States from 1980 to 1986.Am J Kidney Dis.1991;18:33-37.
    4 Klag MJ,Whelton PK,Randall BL,et al.Blood pressure and end-stage renal disease in men.N Engl J Med.1996;334:13-18.
    5 Whelton PK,Perneger TV,He J,et al.The role of blood pressure as a risk factor for renal disease:a review of the epidemiologic evidence.J Hum Hypertens.1996;10:683-689.
    6 1995 update of the working group reports on chronic renal failure and renovascular hypertension.National High Blood Pressure Education Program Working Group.Arch Intern Med.1996;156:1938-1947.
    7 Klahr S,Levey AS,Beck GJ,et al.The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease.Modification of Diet in Renal Disease Study Group.N Engl J Med.1994;330:877-884.
    8 Kim-Mitsuyama S,Izumi Y,Izumiya Y,et al.Additive beneficial effects of the combination of a calcium channel blocker and an angiotensin blocker on a hypertensive rat-heart failure model.Hypertens Res.2004;27:771-779.
    9 Nakamoto M,Ohya Y,Shinzato T,et al.Pioglitazone,a thiazolidinedione derivative,attenuates left ventricular hypertrophy and fibrosis in salt-sensitive hypertension.Hypertens Res.2008;31:353-361.
    10 Yao K,Sato H,Ina Y,et al.Renoprotective effects of benidipine in combination with angiotensin Ⅱ type 1 receptor blocker in hypertensive Dahl rats.Hypertens Res.2003;26:635-41.
    11 Zhou MS,Jaimes EA,Raij L.Benazepril combined with either amlodipine or hydrochlorothiazide is more effective than monotherapy for blood pressure control and prevention of end-organ injury in hypertensive Dahl rats.J Cardiovasc Pharmacol.2006;48:857-861.
    12 Risdon RA,Sloper JC,De Wardener HE.Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis.Lancet.1968;2:363-366.
    13 Schainuck LI,Striker GE,Cutler RE,et al.Structural-functional correlations in renal disease.Ⅱ.The correlations.Hum Pathol.1970;1:631-641.
    14 Striker GE,Schainuck LI,Cutler RE,et al.Structural-functional correlations in renal disease.Ⅰ. A method for assaying and classifying histopathologic changes in renal disease.Hum Pathol.1970;1:615-630.
    15 Mackensen-Haen S,Bader R,Grund KE,et al.Correlations between renal cortical interstitial fibrosis,atrophy of the proximal tubules and impairment of the glomerular filtration rate.Clin Nephrol.1981;15:167-171.
    16 Nangaku M.Mechanisms of tubulointerstitial injury in the kidney:final common pathways to end-stage renal failure.Intern Med.2004;43:9-17.
    17 Eddy AA.Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions.J Am Soc Nephrol.1994;5:1273-1287.
    18 Nath KA.Tubulointerstitial changes as a major determinant in the progression of renal damage.Am J Kidney Dis.1992;20:1-17.
    19 Fine LG,Bandyopadhay D,Norman JT.Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia.Kidney Int Suppl.2000;75S:22-26.
    20 Kang DH,Nakagawa T,Feng L,et al.Nitric oxide modulates vascular disease in the remnant kidney model.Am J Pathol.2002;161:239-248.
    21 Eckardt KU,Rosenberger C,Jurgensen JS,et al.Role of hypoxia in the pathogenesis of renal disease.Blood Purif.2003;21:253-257.
    22 Nangaku M.Hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure.Nephron Exp Nephrol.2004;98:e8-12.
    23 Nangaku M.Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure.J Am Soc Nephrol.2006;17:17-25.
    24 Bohle A,von Gise H,Mackensen-Haen'S,et al.The obliteration of the postglomerular capillaries and its influence upon the function of both glomeruli and tubuli.Functional interpretation of morphologic findings.Klin Wochenschr.1981;59:1043-1051.
    25 Choi YJ,Chakraborty S,Nguyen V,et al.Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney:altered expression of vascular endothelial growth factor.Hum Pathol.2000;31:1491-1497.
    26 Yuan HT,Li XZ,Pitera JE,et al.Peritubular capillary loss after mouse acute nephrotoxicity correlates with down-regulation of vascular endothelial growth factor-A and hypoxia-inducible factor-1 alpha.Am J Pathol.2003;163:2289-301.
    27 Kairaitis LK,Wang Y,Gassmann M,et al.HIF-1alpha expression follows microvascular loss in advanced murine adriamycin nephrosis.Am J Physiol Renal Physiol.2005;288:F198-206.
    28 Ohashi R,Kitamura H,Yamanaka N.Peritubular capillary injury during the progression of experimental glomerulonephritis in rats.J Am Soc Nephrol.2000;11:47-56.
    29 Nangaku M,Couser WG.Mechanisms of immune-deposit formation and the mediation of immune renal injury.Clin Exp Nephrol.2005;9:183-191.
    30 Manotham K,Tanaka T,Matsumoto M,et al.Transdifferentiation of cultured tubular cells induced by hypoxia.Kidney Int.2004;65:871-880.
    31 Norman JT,Orphanides C,Garcia P,et al.Hypoxia-induced changes in extracellular matrix metabolism iri renal cells.Exp Nephrol.1999;7:463-469.
    32 Norman JT,Clark IM,Garcia PL.Hypoxia promotes fibrogenesis in human renal fibroblasts.Kidney Int.2000;58:2351-2366.
    33 Tanaka T,Hanafusa N,Ingelfinger JR,et al.Hypoxia induces apoptosis in SV40-immortalized rat proximal tubular cells through the mitochondrial pathways,devoid.of HIF1-mediated upregulation of Bax.Biochem Biophys Res Commun.2003;309:222-231.
    34 Tanaka T,Nangaku M,Miyata T,et al.Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells.J Am Soc Nephrol.2004;15:2320-2333.
    35 Kondo N,Kiyomoto H,Yamamoto T,et al.Effects of calcium channel blockade on angiotensin Ⅱ-induced peritubular ischemia in rats.J Pharmacol Exp Ther.2006;316:1047-1052.
    36 Epstein M.Aldosterone and the hypertensive kidney:its emerging role as a mediator of progressive renal dysfunction:a paradigm shift.J Hypertens.2001;19:829-842.
    37 Rocha R,Rudolph AE,Frierdich GE,et al.Aldosterone induces a vascular inflammatory phenotype in the rat heart.Am J Physiol Heart Circ Physiol.2002;283:H1802-1810.
    38 Blasi ER,Rocha R,Rudolph AE,et al.Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats.Kidney Int.2003;63:1791-1800.
    39 Nishiyama A,Yao L,Nagai Y,et al.Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats.Hypertension.2004;43:841-848.
    40 Shibata S,Nagase M,Yoshida S,et al.Podocyte as the target for aldosterone:roles of oxidative stress and Sgk1.Hypertension.2007;49:355-64.
    41 Yaoita E,Kawasaki K,Yamamoto T,et al.Variable expression of desmin in rat glomerular epithelial cells.Am J Pathol.1990;136:899-908.
    42 Nagase M,Shibata S,Yoshida S,et al.Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker.Hypertension.2006,47:1084-1093.
    43 Pagtalunan ME,Miller PL,Jumping-Eagle S,et al.Podocyte loss and progressive glomerular injury in type II diabetes.J Clin Invest.1997;99:342-348.
    44 Wolf G,Chen S,Ziyadeh FN.From the periphery of the glomerular capillary wall toward the center of disease:podocyte injury comes of age in diabetic nephropathy.Diabetes.2005;54:1626-1634.
    45 Kretzler M,Koeppen-Hagemann I,Kriz W.Podocyte damage is a critical step in the development of glomerulosclerosis in the uninephrectomised-desoxycorticosterone hypertensive rat.Virchows Arch.1994;425:181-93.
    46 Chen HM,Liu ZH,Zeng CH,et al.Podocyte lesions in patients with obesity-related glomerulopathy.Am J Kidney Dis.2006;48:772-779.
    47 Farjah M,Roxas BP,Geenen DL,et al.Dietary salt regulates renal SGK1 abundance:relevance to salt sensitivity in the Dahl rat.Hypertension.2003;41:874-878.
    48 Nagata K,Obata K,Xu J,et al.Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats.Hypertension.2006;47:656-64.
    49 Nagase M,Matsui H,Shibata S,et al.Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor:role of oxidative stress.Hypertension.2007;50:877-883.
    50 Rocha R,Chander PN,Khanna K,et al.Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats.Hypertension.1998;31:451-458.
    51 Griffing GT,Melby JC,Holbrook M,et al.Elevated 18-hydroxy-corticosterone in inbred salt-sensitive rats.Clin Exp Hypertens A.1991;13:371-382.
    52 Pearce D.The role of SGK1 in hormone-regulated sodium transport.Trends Endocrinol Metab.2001;12:341-347.
    53 Park J,Leong ML,Buse P,et al.Serum and glucocorticoid-inducible kinase(SGK)is a target of the PI 3-kinase-stimulated signaling pathway.EMBO J.1999;18:3024-3033.
    54 Sechi LA,Griffin CA,Giacchetti G,et al.Abnormalities of insulin receptors in spontaneously hypertensive rats.Hypertension.1996.27:955-961.
    55 Tomiyama H,Kushiro T,Abeta H,et al.Blood pressure response to hyperinsulinemia in salt-sensitive and salt-resistant rats.Hypertension.1992;20:596-600.
    56 Dworkin LD,Tolbert E,Recht PA,et al.Effects of amlodipine on glomerular filtration,growth,and injury in experimental hypertension.Hypertension.1996;27:245-50.
    57 Brenner BM.Nephron adaptation to renal injury or ablation.Am J Physiol.1985;249:F324-37.
    1 Navar LG,Inscho EW,Majid SA,et al.Paracrine regulation of the renal microcirculation.Physiol Rev.1996;76:425-536.
    2 Paul M,Mehr AP,Kreutz R.Physiology of local renin-angiotensin systems.Physiol Rev.2006;86:747-803.
    3 Navar LG,Imig JD,Zou L,et al.Intrarenal production of angiotensin Ⅱ.Sem Nephrol 1997;17:412-422.
    4 Navar LG,Harrison-Bernard LM,Imig JD,et al.Intrarenal Angiotensin Ⅱ Generation and Renal Effects of AT1 Receptor Blockade.J Am Soc Nephrol.1999;10:S266-S272.
    5 Navar LG,Harrison-Bernard LM,Wang CT,et al.Concentrations and actions of intraluminal angiotensin Ⅱ.J Am Soc Nephrol.1999;10 Suppl 11:S189-195.
    6 Navar LG and Nishiyama A.Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens.2004;13:107-115.
    7 Navar LG and Nishiyama A.Intrarenal formation of angiotensin Ⅱ.Contrib Nephrol.2001;135:1-15,.
    8 Ichihara A,Kobori H,Nishiyama A,et al.Renal Renin-Angiotensin System.Contrib Nephrol 2004;143:117-130.
    9 Pendergrass KD,Averill DB,Ferrario CM,et al.Differential expression of nuclear AT1 receptors and angiotensin Ⅱ within the kidney of the male congenic mRen2.Lewis rat.Am J Physiol Renal Physiol.2006;290:F1497-1506.
    10 Kobori H,Ozawa Y,Suzaki Y,et al.Young Scholars Award Lecture:Intratubular angiotensinogen in hypertension and kidney diseases.Am J Hypertens.2006;19:541-550.
    11 Darby IA and Sernia C.In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys.Cell Tissue Res.1995;281:197-206.
    12 Lantelme P,Rohrwasser A,Gociman B,et al.Effects of dietary sodium and genetic background on angiotensinogen and renin in mouse.Hypertension.2002;39:1007-1014.
    13 Navar LG,Mitchell KD,Harrison-Bernard LM,et al.Intrarenal angiotensin Ⅱ levels in normal and hypertensive states.J Renin Angiotensin Aldosterone Syst.2001;2:S176-S184.
    14 Rohrwasser A,Morgan T,Dillon HF,et al.Elements of a paracrine tubular renin-angiotensin system along the entire nephron.Hypertension.1999;34:1265-1274.
    15 Kobori H,Nishiyama A,Harrison-Bernard LM,et al.Urinary Angiotensinogen as an Indicator of Intrarenal Angiotensin Status in Hypertension.Hypertension.2003;41:42-49.
    16 Ding Y,Davisson RL,Hardy DO,et al.The kidney androgen-regulated protein promoter confers renal proximal tubule cell-specific and highly androgen-responsive expression on the human angiotensinogen gene in transgenic mice.J Biol Chem.1997;272:28142-28148.
    17 Davisson RL,Ding Y,Stec DE,et al.Novel mechanism of hypertension revealed by cell-specific targeting of human angiotensinogen in transgenic mice.Physiol Genomics.1999;1:3-9.
    18 Casarini DE,Boim MA,Stella RC,et al.Angiotensin I-converting enzyme activity in tubular fluid along the rat nephron.Am J Physiol.1997;272:F405-409.
    19 Gimenez-Roqueplo AP Celerier J,Lucarelli G,et al.Role of N-glycosylation in human angiotensinogen.J.Biol.Chem.1998;273:21232-21238.
    20 Sherrod M,Liu X,Zhang X,et al.Nuclear localization of angiotensinogen in astrocytes.Am.J.Physiol.Regul.Integr.Comp.Physiol.2004;288:R539-R546.
    21 Lavoie JL,Liu X,Bianco RA,et al.Evidence supporting a functional role for intracellular renin in the brain.Hypertension.2006;47:461-466.
    22 Clausmeyer S,Reinecke A,Farrenkopf R,et al.Tissue-specific expression of a rat renin transcript lacking the coding sequence for the prefragment and its stimulation by myocardial infarction.Endocrinology.2000;141:2963-2970.
    23 Camargo de Andrade MC,Di Marco GS,de Paulo Castro Teixeira V,et al.Expression and localization of N-domain ANG I-converting enzymes in mesangial cells in culture from spontaneously hypertensive rats.Am.J.Physiol.Renal Physiol.2006;290:F364-F375.
    24 Miyazaki M and Takai S.Tissue angiotensin Ⅱ generating system by angiotensin-converting enzyme and chymase.J.Pharmacol.Sci.2006;100:391-397.
    25 Belova LA.Angiotensin Ⅱ-generating enzymes.Biochemistry(Mosc).2000;65:1337-1345.
    26 Vidotti DB,Casarini DE,Cristovam PC,et al.High glucose concentration stimulates intracellular renin activity and angiotensin Ⅱ generation in rat mesangial cells.Am.J.Physiol.Renal Physiol.2004;286:F1039-F1045.
    27 Gimenez-Roqueplo AP,Leconte I,Cohen P,et al.The natural mutation Y248C of human angiotensinogen leads to abnormal glycosylation and altered immunological recognition of the protein.J.Biol.Chem.1996;271:9838-9844.
    28 Nakajima T,Cheng T,Rohrwasser A,et al.Functional analysis of a mutation occurring between the two in-frame AUG codons of human angiotensinogen.J.Biol.Chem.1999;274:35749-35755.
    29 Singh VP,Le B,Bhat VB,et al.High glucose induced regulation of intracellular angiotensin Ⅱsynthesis and nuclear redistribution in cardiac myocytes.Am.J.Physiol.Heart Circ.Physiol.2007;293(2):H939-948.
    30 Paul M,Nakamura N,Pratt RE,et al.Glycosylation influences intracellular transit time and secretion rate of human prorenin in transfected cells.J.Hypertens.Suppl.6:S487-S489,1988.
    31 Saris,J.J.et al.Cardiomyocytes bind and activate native human prorenin:role of soluble mannose 6-phosphate receptors.Hypertension.2001;37:710-715.
    32 Bacani C and Frishman,W.H.Chymase:a new pharmacologic target in cardiovascular disease.Cardiol.Rev.2006;14:187-193.
    33 Urata H,Boehm KD,Philip A,et al.Cellular localization and regional distribution of an angiotensin Ⅱ-forming chymase in the heart.J.Clin.Invest.1993;91:1269-1281.
    34 Huang XR,Chen WY,Truong LD,et al.Chymase is upregulated in diabetic nephropathy:implications for an alternative pathway of angiotensin H-mediated diabetic renal and vascular disease.J.Am.Soc.Nephrol.2003;14:1738-1747.
    35 Durvasula RV and Shankland SJ.Activation of a local renin angiotensin system in podocytes by glucose.Am J Physiol Renal Physiol.2008;294:F830-F839.
    36 Booz GW,Conrad KM,Hess AL,et al.Angiotensin-Ⅱ-binding sites on hepatocyte nuclei.Endocrinology 1992;130:3641-3649.
    37 Re RN,Vizard DL,Brown J,et al.Angiotensin Ⅱ receptors in chromatin fragments generated by micrococcal nuclease.Biochem.Biophys;Res.Commun.1984;119:220-227.
    38 Tang SS,Rogg H,Schumacher R,et al.Characterization of nuclear angiotensin-Ⅱ binding sites in rat liver and comparison with plasma membrane receptors.Endocrinology 1992;131:374-380.
    39 Pendergrass KD,Averill DB,Ferrario CM,et al.Differential expression of nuclear AT1 receptors and angiotensin Ⅱ within the kidney of the male congenic mRen2.Lewis rat.Am.J.Physiol.Renal Physiol.2006;290:F1497-F1506.
    40 Eggena P,Zhu JH,Clegg K,et al.Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA.Hypertension 1993;22:496-501.
    41 Re R and Parab M.Effect of angiotensin Ⅱ on RNA synthesis by isolated nuclei.Life Sci.1984;34:647-651.
    42 Cook JL,Mills SJ,Naquin R,et al.Nuclear accumulation of the AT1 receptor in a rat vascular smooth muscle cell line:effects upon signal transduction and cellular proliferation.J.Mol.Cell.Cardiol.2006;40:696-707.
    43 Lee DK,Langa AJ,Cheng R,et al.Agonist-independent nuclear localization of the apelin,angiotensin AT1 and bradykinin B2 receptors.J.Biol.Chem.2003;279:7901-7908.
    44 Bkaily G,Sleiman S,Stephan J,et al.Angiotensin Ⅱ AT1 receptor internalization,translocation and de novo synthesis modulate cytosolic and nuclear calcium in human vascular smooth muscle cells.Can.J.Physiol.Pharmacol.2003;81:274-287.
    45 Cook JL,Re R,Alam J,et al.Intracellular angiotensin Ⅱ fusion protein alters AT1 receptor fusion protein distribution and activates CREB.J.Mol.Cell.Cardiol.2004;36:75-90.
    46 Sugiura N,Hagiwara H and Hirose S.Molecular cloning of porcine soluble angiotensin-binding protein.J.Biol.Chem.1992;267:18067-18072.
    47 Kiron MA and Soffer RL.Purification and properties of a soluble angiotensin Ⅱ-binding protein from rabbit liver.J.Biol.Chem.1989;264:4138-4142.
    48 Regitz-Zagrosek V,Neuss M,Warnecke C,et al.Subtype 2 and atypical angiotensin receptors in the human heart.Basic Res.Cardiol.1996;91:73-77.
    49 Karamyan VT and Speth RC.Identification of a novel non- AT1 non-AT2 angiotensin binding site in the rat brain.Brain Res.2007;1143:83-91.
    50 Jandeleit-Dahm K and Cooper ME:Hypertension and diabetes:role of the renin-angiotensin system.Endocrinol.Metab.Clin.North Am.2006;35:469-490.
    51 Leehey DJ,Isreb MA,Marcic S,et al.Effect of high glucose on superoxide in human mesangial cells:role of angiotensin Ⅱ.Nephron Exp.Nephrol.2005;100:e46-e53.
    52 Robertson AL Jr and Khairallah PA.Angiotensin Ⅱ:rapid localization in nuclei of smooth and cardiac muscle.Science 1971;172:1138-1139.
    53 Haller H,Lindschau C,Erdmann B,et al.Effects of intracellular angiotensin Ⅱ in vascular smooth muscle cells.Circ.Res.1996;79:765-772.
    54 De Mello WC.Intracellular angiotensin Ⅱ regulates the inward calcium current in cardiac myocytes.Hypertension 1998;32:976-982.
    55 Brailoiu E,Filipeanu CM,Tica A,et al.Contractile effects by intracellular angiotensin Ⅱ via receptors with a distinct pharmacological profile in rat aorta.Br.J.Pharmacol.1999;126:1133-1138.
    56 Filipeanu CM,Henning RH,de Zeeuw D,et al.Intracellular angiotensin Ⅱ and cell growth of vascular smooth muscle cells.Br.J.Pharmacol.2001;132:1590-1596.
    57 Cook JL,Zhang Z and Re RN.In vitro evidence for an intracellular site of angiotensin action.Circ.Res.2001;89:1138-1146.
    58 Baker KM and Kumar R.Intracellular angiotensin Ⅱ induces cell proliferation independent of AT1 receptor.Am.J.Physiol.Cell Physiol.2006;291:C995-C1001.
    59 Baker KM,Chernin MI,Schreiber T,et al.Evidence of a novel intracrine mechanism in angiotensin Ⅱ-induced cardiac hypertrophy.Regul.Pept.2004;120:5-13.
    60 De Mello WC.Cardiac intracrine renin angiotensin system.Part of genetic reprogramming?Regul.Pept.2006;133:10-12.
    61 Re RN and Cook JL.The intracrine hypothesis:an update.Regul.Pept.2006;133:1-9.
    62 Zhuo JL,Li XC,Garvin JL,et al.Intracellular angiotensin Ⅱ induces cytosolic Ca2+mobilization by stimulating intracellular ATI receptors in proximal tubule cells.Am.J.Physiol.Renal Physiol.2006;290:F1382-F1390.
    63 Meggs LG,Huang HE,Li B,et al.Coronary artery stenosis in rats affects betaadrenergic receptor signaling in myocytes.Cardiovasc Res.1997;33:98-109.
    64 Frustaci A,Kajstura J,Chimenti C,et al.Myocardial cell death in human diabetes.Circ.Res.2000;87:1123-1132.
    65 Fiordaliso F,Li B,Latini R,et al.Myocyte death in streptozotocin-induced diabetes in rats in angiotensin Ⅱ- dependent.Lab.Invest.2000;80:513-527.
    66 Carey RM and Siragy HM.The intrarenal renin-angiotensin system and diabetic nephropathy.Trends Endocrinol.Metab.2003;14:274-281.
    67 Singh R Singh AK and Leehey DJ.A novel mechanism for angiotensin Ⅱ formation in streptozotocin-diabetic rat glomeruli.Am.J.Physiol.Renal Physiol.2005;288:F1183-F1190.
    68 Re RN.Implications of intracrine hormone action for physiology and medicine.Am.J.Physiol.Heart Circ.Physiol.2003;284:H751-H757.
    69 Schunkert H,Ingelfinger JR,Jacob H,et al.Reciprocal feedback regulation of kidney angiotensinogen and renin mRNA expressions by angiotensin Ⅱ.Am J Physiol 1992;263:E863-E869.
    70 Kobori H,Harrison-Bernard LM and Navar LG.Expression of angiotensinogen mRNA and protein in angiotensin Ⅱ-dependent hypertension.J Am Soc Nephrol.2001;12:431-439.
    71 Kobori H,Harrison-Bernard LM and Navar LG.Enhancement of angiotensinogen expression in angiotensin Ⅱ-dependent hypertension.Hypertension.2001;37:1329-1335.
    72 Kobori H and Nishiyama A.Effects of tempol on renal angiotensinogen production in Dahl salt-sensitive rats.Biochem Biophys Res Commun 2004;315:746-750.
    73 Guan S,Fox J,Mitchell KD and Navar LG.Angiotensin and angiotensin converting enzyme tissue levels in two-kidney,one clip hypertensive rats.Hypertension.1992;20:763-767.
    74 Iwai J,Dahl LK and Knudsen KD.Genetic influence on the renin-angiotensin system:low renin activities in hypertension-prone rats.Circ Res 1973;32:678-684.
    75 Hayakawa H,Coffee K and Raij L.Endothelial dysfunction and cardiorenal injury in experimental salt- sensitive hypertension:effects of antihypertensive therapy.Circulation.1997;96:2407-2413.
    76 Kodama K,Adachi H and Sonoda J.Beneficial effects of long-term enalapril treatment and low-salt intake on survival rate of Dahl salt-sensitive rats with established hypertension.J Pharmacol Exp Ther 1997;283:365-369.
    77 Otsuka F,Yamauchi T,Kataoka H,et al.Effects of chronic inhibition of ACE and AT1 receptors on glomerular injury in Dahl salt-sensitive rats.Am J Physiol.1998;274:R1797-1806.
    78 Hayashida W,Kihara Y,Yasaka A,et al.Stage-specific differential activation of mitogen-activated protein kinases in hypertrophied and failing rat hearts.J Mol Cell Cardiol.2001;33:733-744.
    79 Sakata Y,Masuyama T,Yamamoto K,et al.Renin angiotensin system-dependent hypertrophy as a contributor to heart failure in hypertensive rats:different characteristics from renin angiotensin system-independent hypertrophy.J Am Coll Cardiol 2001;37:293-299.
    80 Nishikimi T,Mori Y,Kobayashi N,et al.Renoprotective effect of chronic adrenomedullin infusion in Dahl salt- sensitive rats.Hypertension.2002;39:1077-1082.
    81 Okamoto K,Tabei R,Fukushima M,et al.Further observations of the development of a strain of spontaneously hypertensive rats.Jpn Circ J.1966;30:703-716.
    82 Vincent M,Dupont J and Sassard J.Plasma renin activity as a function of age in two new strains of spontaneously hypertensive and normotensive rats.Clin Sci Mol Med.1976;50: 103-107.
    83 Kuriyama S,Kawashima K and Sokabe H.Plasma renin activity determined by two different methods in spontaneously hypertensive rats.Jpn Heart J 1982;23:587-592.
    84 Nakamura Y,Ono H,Zhou X,et al.Angiotensin type 1 receptor antagonism and ACE inhibition produce similar renoprotection in N(omega)-nitro-L>-arginine methyl ester/spontaneously hypertensive rats.Hypertension.2001;37:1236-1267.
    85 Teng J,Fukuda N,Suzuki R,et al.Inhibitory effect of a novel angiotensin II type 1 receptor antagonist RNH-3670 on growth of vascular smooth muscle cells from spontaneously hypertensive rats:different anti-proliferative effect to angiotensin-converting enzyme inhibitor.J Cardiovasc Pharmacol.2002;39:161-171.
    86 Pu Q,Larouche I and Schiffrin EL.Effect of dual angiotensin converting enzyme/neutral endopeptidase inhibition,angiotensin converting enzyme inhibition,or AT1 antagonism on coronary microvasculature in spontaneously hypertensive rats;Am J Hypertens.2003;16:931-937.
    87 Taniguchi M,Kim S,Zhan Y,et al.Role of intrarenal angiotensin-converting enzyme in nephropathy of type II diabetic rats.Hypertens Res.2002;25:287-294.
    88 Nagai Y,Yao L,Kobori H,et al.Temporary angiotensin II blockade at the prediabetic stage attenuates the development of renal injury in type 2 diabetic rats.J Am Soc Nephrol.2005;16:703-711.
    89 Sharma R,Sharma M,Reddy S,et al.Chronically increased intrarenal angiotensin II causes nephropathy in an animal model of type 2 diabetes.Front Biosci.2006;11:968-976.
    90 Anderson S,Jung FF and Ingelfinger JR.Renal renin-angiotensin system in diabetes:functional,immunohistochemical,and molecular biological correlations.Am J Physiol.1993;265:F477-486.
    91 Choi KC,Kim NH,An MR,et al.Alterations of intrarenal reninangiotensin and nitric oxide systems in streptozotocin-induced diabetic rats.Kidney Int Suppl.1997;60:S23-27.
    92 Zimpelmann J,Kumar D,Levine DZ,et al.Early diabetes mellitus stimulates proximal tubule renin mRNA expression in the rat.Kidney Int.2000;58:2320-2330.
    93 Siragy HM,Awad A,Abadir P,et al.The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-alpha in diabetic rats.Endocrinology.2003;144:2229-2233.
    94 Imig JD,Navar GL,Zou LX,et al.Renal endosomes contain angiotensin peptides,converting enzyme,and AT(1A)receptors.Am J Physiol.1999;277:F303-311.
    95 Komine N,Khang S,Wead LM,et al.Effect of combining an ACE inhibitor and an angiotensin II receptor blocker on plasma and kidney tissue angiotensin II levels.Am J Kidney Dis.2002;39:159-164.
    96 Timmermans PB,Wong PC,Chiu AT,et al.Angiotensin II receptors and angiotensin II receptor antagonists.Pharmacol Rev.1993;45:205-251.
    97 Paul M,Mehr AP and Kreutz R.Physiology of local renin-angiotensin systems.Physiol Rev.2006;86:747-803.
    98 Navar LG,Harrison-Bernard LM,Nishiyama A,et al.Regulation of intrarenal angiotensin Ⅱ in hypertension.Hypertension.2002;39:316-322.
    99 Navar LG,Kobori H and Prieto-Carrasquero MC.Intrarenal angiotensin Ⅱ and hypertension.Curr Hypertens Rep.2003;5:135-143.
    100 Nishiyama A,Yoshizumi M,Rahman M,et al.Effects of ATI receptor blockade on renal injury and mitogen-activated protein activity in Dahl saltsensitive rats.Kidney Int.2004;65:972-981.
    101 Anderson S,Rennke HG and Zatz R.Glomerular adaptations with normal aging and with long-term converting enzyme inhibition in rats.Am J Physiol.1994;267:F35-43.
    102 Navar LG and Harrison-Bernard LM.Intrarenal angiotensin Ⅱ augmentation in angiotensin Ⅱ dependent hypertension.Hypertens Res.2000;23:291-301.
    103 Kobori H,Ozawa Y,Suzaki Y,et al.Enhanced intrarenal angiotensinogen contributes -to early renal injury in spontaneously hypertensive rats.J Am Soc Nephrol.2005;16:2073-2080.
    104 Kasper SO,Basso N,Kurnjek ML,et al.Divergent regulation of circulating and intrarenal renin-angiotensin systems in response to long-term blockade.Am J Nephrol.2005;25:335-341.
    105 Fan YY,Baba R,Nagai Y,et al.Augmentation of intrarenal angiotensin Ⅱ levels in uninephrectomized aldosterone/salt-treated hypertensive rats;renoprotective effects of an ultrahigh dose of olmesartan.Hypertens Res.2006;29:169-178.
    106 Yoshiyama M,Nakamura Y,Omura T,et al.Angiotensin converting enzyme inhibitor prevents left ventricular remodelling after myocardial infarction in angiotensin Ⅱ type 1 receptor knockout mice.Heart.2005;91:1080-1085.
    107 Schupp M,Janke J,Clasen R,et al.Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity.Circulation 2004;109:2054-2057.
    108 Watanabe T,Suzuki J,Yamawaki H,et al.Losartan metabolite EXP3179 activates Akt and endothelial nitric oxide synthase via vascular endothelial growth factor receptor-2 in endothelial cells:angiotensin Ⅱ type 1 receptorindependent effects of EXP3179.Circulation.2005;112:1798-1805.
    109 Weber MA and Giles T.D.Inhibiting the renin-angiotensin system to prevent cardiovascular diseases:do we need a more comprehensive strategy? Rev.Cardiovasc.Med.2006;7:45-54.
    110 Turnbull F,Neal B,Algert C,et al.Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus:results of prospectively designed overviews of randomized trials.Arch.Intern.Med.2005;165:1410-1419.