萘、苯并(a)芘污染土壤的植物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是指具有两个或两个以上苯的一类有机化合物,是环境中普遍存在的持久性有机污染物,主要源于火山喷发、森林火灾等自然过程及石油化工、燃煤等人类活动。因多数PAHs都具有较强的“三致”效应,威胁着土壤的生态安全和人类健康,修复土壤PAHs污染已成为环境领域研究的热点问题。
     植物修技术具有投资少、费用低的特点,发展潜力巨大。本文采用盆栽试验法,选用萘、苯并(a)芘为PAHs代表物,系统研究不同土壤-植物系统对PAHs的吸收富集、修复、去除的种间差异,明确植物对土壤中PAHs的吸收积累作用;对比分析各种生物、非生物因子在PAHs去除过程中的作用,揭示植物修复机制。探讨单种、混种栽培模式对PAHs污染的修复特征,为生产和科研提供理论依据。主要结果如下:
     (1)植物修复PAHs污染土壤的种间差异
     取用狗牙根(Cynodon dactylon L.)、黑麦草(Lolium multiflor Lam)、细羊茅(Festuca rubra)、结缕草(Zoysia japonica Steud)、地毯草(Axonopus affinis)等5种豫北地区常见乡土植物,采用盆栽试验法对土壤中萘、苯并(a)芘污染的修复作用进行研究。结果显示:0-300mg·kg-1范围内,植物能不同程度地去除促进土壤中萘、苯并(a)芘,但效果在种间差异很大:55d后,地毯草、细羊茅等植物对土壤中PAHs污染的去除效果较好,特别是细羊茅对土壤中萘和苯并(a)芘的去除率分别达到了57.62~86.77%和48.17-77.41%。植物修复土壤萘和苯并(a)芘的效率与植物生物量关系不大。随着土壤中PAHs添加浓度的升高,植物组织中PAHs含量逐渐增大,但对PAHs污染物的富集系数却逐渐减小,相同污染水平下,根系PAHs含量、富集系数远大于茎和叶。PAHs在根系富集系数与根部脂肪含量显著正相关,但与根部含水量的相关性不显著;相同条件下,植物根部的苯并(a)芘含量、对苯并(a)芘的富集系数均大于萘。
     (2)土壤-植物(细羊茅)系统对PAHs污染土壤的修复作用及机制
     以细羊茅为试验材料,研究了植物修复萘、苯并(a)芘污染的去除效果,结果显示,试验浓度范围内,种植细羊茅能有效修复土壤中萘、苯并(a)芘污染。细羊茅能吸收、富集部分PAHs,植物组织中PAHs含量随添加浓度的升高而增大,且根部大于茎叶部、苯并(a)芘大于萘,但生物浓缩系数却系逐渐减小。55d后,细羊茅-微生物系统中萘、苯并(a)芘去除率分别为50.72~83.17%、44.34-77.42%;比对照组高出46.40%、43.53%。修复过程中,植物吸收积累不是植物促进土壤中萘和苯并(a)芘降解的主要原因,非生物因子、植物吸收积累、微生物降解对萘的去除率分别为4.98%、0.017%、18.77%,对苯并(a)芘的去除率分别为2.51%、0.11%、15.55%;植物-微生物交互作用对萘、苯并(a)芘的去除率分别为61.53%、56.275%。说明植物-微生物交互作用是细羊茅修复萘、苯并(a)芘污染的主要途径。
     (3)种植模式(单种、混种)对PAHs污染土壤修复作用的影响
     以黑麦草、地毯草两种植物为试验材料,研究了植物在单种、混种模式下对PAHs的去除效果、修复行为。结果显示,在试验浓度范围内,黑麦草、地毯草能够在萘、苯并(a)芘污染土壤中正常生长,污染水平、栽培模式差异对植物生长影响较小。黑麦草、地毯草联合种植55d后,土壤中萘、苯并(a)芘平均去除率为74.69%、68.16%,分别比单独种植时高出43.92%、46.97%和4.67%、16.32%,联合效应显著。植物本身能吸收与累积一定量的PAHs,累积量与土壤中萘、苯并(a)芘的添加浓度正相关。相同污染水平下,茎叶部积累量低于根部、萘小于苯并(a)芘、混种模式低于单种模式。在植物-微生物系统中,微生物降解、植物-微生物联合效应是萘、苯并(a)芘去除的主要途径,但植物-微生物联合效应是混种模式下强化修复PAHs污染的主要原因。
Polycyclic aromatic hydrocarbons (PAHs), one of the widely existed persistent organic polluants (POPs) in the environment, are formed during the incomplete combustion of fossil fuel, wood, and other organic substances, which is a class organic compounds of two or more benzene in it. PAHs are threatende the health of human being and ecological safety of the environment because of their toxic, mutagenic, and carcinogenic properties. The remediation of PAHs is one of the hot spots in the environment fields.
     Phytoremediation is a promising approach to soil remediation due to its low investment and low cost compared to other approaches. In this dissertation, based on the review of phytoremediation of PAHs, pot experiments were applied to investigate the accumulation and remediation behavior and the interspecific difference of naphthalene (Nap) and benzo(a)pyrene pyrene (Pyr), two typical kinds of PAHs, in the system of soils and plants. The accumulation effect of plants to PAHs in the soils was cleared. These degradation effects of biological and non-biological factors were compared and analysed in order to reveal the remediaton mechanisms. On this basis, the removal and remediation of PAHs in soils by single-species and mixed species planting patterns were also compared. These results provided a theoretical basis for the formulation of ecomomic and effective remediation of PAHs. The main original conclusions are shown as follows.
     1. Screening of six plant species for phytoremediation of naphthalene or benzo(a)pyrene pyrene in soils
     Five plant species, Cynodon dactylon L., Lolium multiflorum Lam, Festuca rubra, Zoysia japonica Steud, Axonopus affinis, were screened for their ability for the cleanup of PAH-spiked soil at their initial concentrations of ranging from 0 to 300 mg-kg~(-1) by pots experiments in a greenhouse. It is showed that the removal of Nap and Pyr were promoted by the five plant species, but the interspecific difference varied deeply. At the end of the experiment (55d), it is showed that the removal of Nap and Pyr by Axonopus affinis and Festuca rubra were better than others plants. The removal rates of Nap and Pyr in the vegetated soils were 57.62~82.27% and 48.17~77.41% by Festuca rubra, respectively. Phytoremediation efficiencies of Nap and Pyr in soils have little to do with the plant biomass. It is showed that these plants have absorbation and accumlation effect to PAHs in soil through the remedation. These results suggested that with the increase of their initial concentrations, the accumulations concentrations of Nap or Pyr in plant tissues monotonically increased, but BCFs (bio-concentration factors) of these compounds gradually decreased. Under the same contamination level, PAHs concentrations in shoot and SCFs (shoot concentration factors) were always significantly lower than those concentrations in root and RCFs (root concentration factors). The concentrations of Nap in plants are always lower than those of Pyr. Plants uptake and accumulations of these compounds were evident, RCFs of these compounds significantly positively correlated to root lipid contents, but similar correlations to root water contents could not be found. Results from this study also suggested a feasibility of the establishment of phytoremediation for soil PAHs contamination.
     2. Removal and remediation mechanisms of PAHs in soil by Festuca rubra
     Pot experiments were carried out to investigate the accumulation and removal mechanisms and efficiencies of PAHs by Lolium multiflorum Lam. It is showed that plantation of Festuca rubra significantly removed Nap and Pyr from soils at their initial concentrations of 0 to 300 mg-kg~(-1). After 55 days plantation of Festuca rubra, about 50.72%-83.17% of Nap and 44.34%~77.42% of Pyr were removed from the soils, respectively. The removal rates of Festuca rubra were averagely 46.40% of Nap and 43.53% of Pyr from the soils higher than that of control soils. PAHs were absorbed and accumulated by Festuca rubra. These results suggested that with the increase of their initial concentrations, the accumulations concentrations of Nap or Pyr in plant tissues monotonically increased, but BCFs (bio-concentration factors) of these compounds gradually decreased. It showed that accumulation of Nap and Pyr by Festuca rubra wasn't the main reason for their degradation. The removal rates of Nap by non-biotic factors, accumulation and degradation of macrobiotic were 4.98%、0.017%、18.77%, respectively. The removal rates of Pyr by non-biotic factors, accumulation and degradation of macrobiotic were 2.51%、0.11%、15.55%, respectively. However, the removal rates of Nap and Pyr by plant-microbial interactions were 61.53%、56.275%, respectively. It suggested that the plant-microbial interactions was the main reason for remove of Nap and Pyr.
     3. Multispecies phytoremediation of naphthalene or benzo(a)pyrene pyrene in soils
     The potentials of two plant species, Lolium multiflorum Lam. and Axonopus affinis, separately or jointly on the degradation of PAHs in soil were estimated by pots experiments in a greenhouse. It showed that the presence of vegetation and multispecies had little effect on their growth in soils at their initial concentrations ranging from 0 to 300 mg-kg~(-1). At the end of the 55 d experiment, the removal rate of Nap and Pyr in soils with Axonopus affinis and Lolium multiflorum in mixed cropping were 74.69%、68.16%, respectively, what were 43.92%、46.97%, 4.67%、16.32% higher than single cropping. PAHs were absorbed and accumulated by plant and the amount was positively related to the initial concentration of Nap and Pyr. Under the same contamination level, PAHs concentrations in shoot and SCFs (shoot concentration factors) were lower than those concentrations in root and RCFs (root concentration factors). The concentrations of Nap in plants are always lower than those of Pyr. In the plant-microbial system, the degradation of microorganism and plant-microbial interactions were the main reason for the removal of Nap and Pyr. These Results suggested a feasibility of the establishment of multispecies phytoremediation to improve the efficiency of bioaugmentation in decontaminating PAHs contaminated soils, decreasing crop accumulations to PAHs and reducing risks associated with PAHs.
引文
[1]宋玉芳,常士俊,李利等.污灌土壤中多环芳烃的积累与动态变化研究[J].应用生态学报,1997,(8):93-98
    [2]刘世亮,骆永明,曹志洪等.多环芳烃污染土壤的微生物与植物联合修复研究进展[J].土壤,2002,(34):257-265
    [3]Fismes J, Perrin-Ganier C, Empereur-Bissoneet P. Soil-to-root transfer and translocation of Polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soil[J]J.Environ.Qual,2002,31:1649-1656
    [4]Kipopoulou AM, Manoli E, Samara C. Bioconcentration of Polycyclic aromatic hydrocarbons by vegetables grown in industrial area[J]. Environ Pollut,1999,106:369-380
    [5]姜霞,区自清,应佩峰.14C-萘在“植物-火山石-营养液-空气”系统中的迁移和转化[J].应用生态学报,2001,12:451-454
    [6]Ryan JA. Bell RM, Davidson JM, O' Connor GA. Plant uptake of non-ionic organic chemicals from soils[J]. Chemosphere,1988,17:2299-2323
    [7]朱永官.土壤-植物系统中的微界面过程及其生态环境效应[J].环境科学学报,2003,2:205-210
    [8]林道辉,朱利中,高彦征.土壤有机污染的植物修复及影响因素[J].应用生态学报,2003,14:1799-1803
    [9]Simonich SL, Hites RA.Organic pollution accumulation in vegetation [J]. Environ. Sci.Technol,1995,29:2905-2913
    [10]Reilley KA, Banks MK, Schwab AP. DissiPation of Polycyclic aromatic hydrocarbons in the rhizosphere[J]. J. Environ.Qual,1996,25:212-218
    [11]朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展,1999,7:65-71
    [12]Zhou M, Rhue RD.Screening commercial surfactants suitable for remediating DNAPL source zones by solubilization[J].Environ.Sci.Technol,2000,34:1985-1990
    [13]Gao YZ, Zhu LZ. Phytoremediation and its models for organic contaminated soils[J]. JEnviron Sci,2003,15:302-310
    [14]Kelley SL, Aitchison EW, Deshpande M, Schnoor JL, Alvarez PJJ. Biodegradation of 1, 4-dioxane in Planted and unplanted soil:effect of bioaugmentation with Amycolata sp[J]. Cbll90.Water Res,2001,35:3791-3800
    [15]Garrison AW, Nzengung VA, Avants JK. Phytodegradation of p,p'-DDT and the enantiomers of o,p'-DDT[J].Environ.Sci. Techonl,2000,34:1663-1670
    [16]Liste HH, Alexander M. Accumulation of phenanthrene and pyrene in rhizosphere soil[J]. Chemosphere,2000,40:11-14
    [17]Schnoor JL, Lich LA, McCutcheon SC, Wolfe NL, Carreira LH. Phytoremediation of orgnic and nutrient contaminants[J]. Environ.Sci.Techonl,1995,29:318-323
    [18]朱利中,沈学优,刘勇建等.高效液相色谱法分析水中痕量PAHs[J].环境化学,1999,18:488-492
    [19]Zhang Z, Davis LC, Erickson LE. Trabsport of methyl ether through alfalfa plants [J]. Environ.Sci.Technol,2001,35:725-131
    [20]Topp E, Scheunert I, Attar A, Korte F. Factors affecting the uptake of 14C-labelled organic chemical by plants from soil[J]. Ecotoxicol.Environ. Safety,1986,11:219-228
    [21]Mattina M.J.I, Lannucci-Berger W, Musante C, White.J.C. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil[J]. Environ.Pollut,2003,124:375-378
    [22]Schroll R, Bierling B Cao, G Dorfler U, et al. Uptake pathways of organic chemicals from soil by agricultural plants[J]. Chemosphere,1994,28:297-303
    [23]Raskin I, Smith RD, Salt DE. Phytoremediation of metals:using plants to remove pollutants from the environment[J].Current Opinion in Biotech,1997,8:221-226
    [24]Newman LA, Strand SE, Choe N, Duffy J, Ekuan G. Uptake and biotransformation of trichloroethylene by hidrid poplars[J].Environ.Sci.Technol,1997,31:1062-1067
    [25]Field JA,Thurman EM. Glutathione conjugation and contaminant transformation [J]. Environ.Sci.Technol,1996,30:1413-1418
    [26]Paterson S, Mackay D, Tam D, Shiu WY, Uptake of organic chemicals by plants:a review of processes,correlations and models[J].Chemosphere,1990,20:297-331
    [27]Chiou CT, Sheng GY, Manes MA. partition-limited model for plant uptake of organic contaminants from soil and water[J]. Environ.Sci.Technol,2001,35:1437-1444
    [28]Wang MJ, Jones KC, Uptake of chlorobenzenes by carrots from spiked and sewage sludge-amended soil[J]. Environ.Sci.Technol,1994,28:1260-1267
    [29]Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK. Greenhouse evaluation of agronomic and crude oil-phytoremediation potential alfalfa genotypes[J]. J.Environ.Qual, 1998,27:169-173
    [30]Petersen LS, Larsen EH, Larsen PB, Bruun P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils[J]. Environ.Sci.Technol,1994,28:1260-1267
    [31]Meredith ML, Hites RA. Polychlorinated biphenyl accumulation in tree bark and wood growth rings[J]. Environ.Sci.Technol,1987,21:709-712
    [32]Hermanson MH, Hites RA. Polychlorinated biphenyls in tree bark[J]. Environ.Sci.Technol, 1990,24:666-671
    [33]Simonich SL, Hites RA. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environ.Sci.Technol,1994,28:939-943
    [34]Hulster A, Muller JF. Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (cucurbitaceae) [J]. Environ. Sci.Technol,1994,28:1110-1115
    [35]孙铁晰,周启星,李培军.污染生态学[M].北京:科学出版社,2001
    [36]Salt DE, Blaylock M, Kumar N.P.B.A, Dushenkov V, Ensley BD, Chet I. Phytoremediation:A novel strategy for the removal of toxicetals from the environment using plants[J].[J].Technol.1995,13:468-474
    [37]Cunningham SD, Anderson TA, Schwab AP, Hsu FC. Phytoremediation of soils contaminated with organic pollutants[J].Adv.Agron.1996,56:56-114
    [38]Paterson S, Mackay D. A model of organic chemical uptake by plants from soil and the atmosphere[J]. Environ.Sci.Technol,1994,28:2259-2265
    [39]戴树桂,刘小琴,徐鹤.污染土壤的植物修复技术进展[J].上海环境科学,1998,,17:25-31
    [40]董克虞,林春野,王征.氯代苯酚结构与农作物毒性关系的研究[J].土壤与环境,2000,9:96-98
    [41]旷远文,温达志,钟传文,周国逸.根系分泌物及其在植物修复中的作用[J].植物生态学报,2003,27:709-717
    [42]Jones DL, Darrah PR, Role of root derived organic acids in the mobilization of nutrients from the rhizosPhere[J].Plant and Soil,1994,166:247-257
    [43]Marschner H, Rombeld V, Cakmak L. Root-induced of nutrient availability in the rhizosphere[J]J.Plant Nutrient,1987,10:1175-1184
    [44]Lynch JM, Whipps J M. Substrate flow in the rhizosphere[J] .Plant and Siol,1990,129:1-10
    [45]Nichol TD, Rhizosphere microbial populations in contaminated soils[J].Water,Air and Soil Pollution.,1997,95:165-176
    [46]Jodahl JL, Foster L, Schnoor JL. Effect of hybrid trees on microbial populations importantto hazardous waste bioremediation[J].Environ.Toxicol.Chem,1997,16:1318-1321
    [47]魏树和,周启星,张凯松等.根际圈在污染土壤修复中的作用与机理分析[J].应用生态学报,2003,14:143-147
    [48]刘世亮,骆永明,丁克强等.土壤中有机污染物的植物修复研究进展[J].土壤,2003,35:187-192
    [49]张福琐,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29:239-250
    [50]桑伟莲,孔繁翔.植物修复研究进展[J].环境科学进展,1999,7:40-44
    [51]Gunther E, Dornberger U. Effeet of ryegrass on biodegradation of hydrocarbons in soil[J].Chemosphere,1996,33:203-215
    [52]Leyval C, Binet P. Effeet of Poluaromatic hydrocarbons in soil on arbuscular mycorrhizal plants[J] J.Environ.QuaL,1998,27:402-407
    [53]Siciliano SD, Greer CW. Plant-bacterial combinations to Phytoremediate soil contaminated with high concentrations of TNT[J]. J.Environ.QuaL,2000,29:311-316
    [54]Zablotowicz RM, Locke MA, Hoagland RE. Aromatic nitroreduction of acifluorfen in soils, rhizosphere, and pure cultures of rhizobateria[J].Phytoremediation of Soil and Water Contaminants,1997:38-52
    [55]Siciliano SD, Germida J.J. Mechanisms of phytoremediation:Biochemical and ecological interaction between plants and bacteria[J].Eviron.Rev,1998,6:65-79
    [56]Doty SL, Shang TQ, Wilson AM. Enhanced metabolism of balogennated hydrocarbons in transgenic plants containing mammalian cychrome P450 2E1[J]. Proc.Nation.Acad.Sci.United States Amer,2000,97:6287-6291
    [57]程国玲,李培军,王凤友等.多环芳烃污染土壤的植物与微生物修复研究进展[J].环境污染治理技术与设备,2003,4:30-36
    [58]Erickson DC, Loehr RC, Neuhauesr EF. PAH lose during biodegradation of manufaetured gas plant site soils[J].Wat.Res,1991,27:911-919
    [59]宋玉芳,许华夏,任丽萍.土壤中石油及难降解组分萘、花的植物修复调控研究[J].应用生态学报,2000,11:91-94
    [60]孙铁晰,宋玉芳,许华夏.植物法生物修复PAHs和矿物油污染土壤的调控研究[J].应用生态学报,1999,10:225-229
    [61]Li X H, Ma L L, Liu X F, Fu S, Cheng H X, Xu X B. Polycyclic aromatic hydrocarbon in urban soil from Beijing, China[J].Journal of Environmental Sciences,2006,18(5):944-950
    [62]Wilson SC, Jones KC. Bioremediation of soil eontaminated with Polycyclic aromatic hydrocarbons (PAHs):a review[J]. Environ Pollut,1993,81:229-249
    [63]Binet P, Portal JM, Leyval C. Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosPhere of ryegrass[J]. Soil Biol Biochem,2000,32:2011-2017
    [64]Binet P, Portal JM, Leyval C. Application of GC-MS to the study of anthracene disappearance in the rhizosphere of ryegrass[J].Organic Geochem,2001,32:217222
    [65]金赞芳,陈英旭.环境以PAHs污染及其生物修复技术研究进展[J].农业环境保护,2001,20:123-125
    [66]高学展,姜霞,区自清.多环芳烃在土壤中的行为[J].应用生态学报,2002,13:501-504
    [67]Sung K, Corapcioglu MY, Drew MC, et al. Plant contamination by Organic pollutants in phytoremediation[J] JEnviron Qual,2001,30:2081-2090
    [68]Briggs GG, Bromilow RH, Ewans AA. Relationship between lipophilicity and root uptake and transloeation of no-ionized chemicals by barley[J]. Pestic.SCi.1982,13:495-504
    [69]Ding J L, Yu L S, Cai Q S, et al. Optimal light intensity for Dwarf Ophiopogon japonicus from Japan. Acta Bot. Boreal[J]. Occident.Sin.2006,26 (9):1827-1831
    [70]Gao Y Z, Zhu L Z, Ling W T, et al. Analysis Method for Polycyclic Aromatic Hydrocarbons (PAHs) in Plant and Soil Samples[J]. Journal of Agro-Environment Science,2005, 24(5):1003-1006
    [71]潘声旺,魏世强,袁馨等.沿阶草对土壤中萘芘的修复作用[J].生态学报,2008,8:3654-3661
    [72]Beath JM. Consider phytoremediation for waste site cleanup[J]. Chemical Engineering Progress,2000,96(7):61-69
    [73]Jon A, Arnot, Frank A P C. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms [J]. Environmental Reviews,2006,14(4):257-297
    [74]Menzie CA, Potoki BB, Santodomato J. Exposure to carcinogenic PAHs in the environment[J]. Environ. Sci. Technol,1992,26(7):1278-1284
    [75]丁久玲,俞禄生,沈益新等.沿阶草的绿化应用及研究进展[J].草原与草坪,2006,115(2):15-18
    [76]丁克强,骆永明,刘世亮等.黑麦草对土壤中苯并[a]芘动态变化的影响[J].土壤学报,2004,41(3):348-353
    [77]Cunningham SD, Ow DW. Promises and prospects of phytoremediation [J]. Plant physiol. 1996,110:715-719
    [78]Xu S Y, Chen Y X, Wu W X, et al. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation [J]. Sci. Total Environ,2006,363:206-215.
    [79]Ding KQ, Luo Y M, Sun T H, et al. Bioremediation of soil contaminated with petroleum using forced-aeration composting[J]. Pedosphere,2002,12(2):145-150.
    [80]Gao Y Z, Zhu LZ. Plant uptake,accumulation and translocation of phenanthrene and pyrene in soils[J]. Chemosphere,2004,55:1169-1178
    [81]Yoshitomi KJ, Shan J R. Corn (Zea may L.) root exudates and their impact on 14C pyreme minerdization[J]. Soil Biology & Biochemistry,2001,33:1769-1776.
    [82]Kan A T, Fu G M, Hunter M A. Irreversible adsorption of naphthalene and tetrachorobiphenyl to lulu and surrogate sediment[J]. Environ. Sci.Technol,1997, 31(8):2176-2185.
    [83]Zhu L Z, Cao Y Z. Prediction of phenanthrene uptake by plants with a partition-limited model[J]. environmental pollution,2004,131:505-508.
    [84]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学,2000,19:24-29
    [85]许超,夏北成.土壤多环芳烃污染根际修复研究进展[J].生态环境,2007,16(1):216-222
    [86]Toner EJ, Lceyval C. Rhizosphere gradients of Polycyclic Aromatic Hydrocarbons (PAHs) dissipation in two industrial soil and the impact of arhuscular mycorrhiza[J]. Environ. Sci. Technol,2003,37:2371-2375.
    [87]Chen Y C, Katherinebanks M, Paulschwab A. Pyrene degradation in the rhizosphere of tall Fescue(Festuca arundinacea) and switchgrass(panicum virgatum L.) [J]. Environ. Sci. Technol,2003,37:5778-5782.
    [88]L.Ke, W.Q.Wang. Removal of pyrene from contaminated sediments by mangrove microcosms[J]. Chemosphere,2003,51:25-34
    [89]Manoli E, Samara C. Polycyclic aromatic hydrocarbons in natural waters:sources, occurrence and analysis[J]. Trends in Analytical Chemistry,1999,18(6):417-428
    [90]Tao S, Cui Y H, Xu F L, Li B G, Cao J, Liu W X, Schmitt G, Wang X J, Shen W R, Qing B P, Sun R. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetable from Tianjin[J]. The Science of the Total Environment,2004,320:11-24
    [91]Parrish ZD, Banks MK, Schwab A P. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbons impacted soil[J]. Environmental Pollution,2005,137:187-197
    [92]Gao Y Z, Zhu L Z. Phytoremediation for phenanthrene and pyrene contaminated soils. Journal of Environmental Sciences,2005,17(1):14-18
    [93]Polder MD, Hulzebos EM, Jager DT. Validation of models on uptake of organic chemicals by plant roots[J]. Hazard Assessment,1995,14(9):1615-1623
    [94]Child R, Miller CD, Liang Y, Sims RC, Anderson AJ. Pyrene mineralization by Mycobacterium sp. strain KMS in a barley rhizosphere [J]. Journal of Environmental Quality,2007,36(5):1260-1265
    [95]Gianfreda L, Maria AR. Potential of extra cellular enzymes in remediation of polluted soils: a review[J]. Enzyme and Microbial Technology,2004,35:339-354
    [96]Joner EJ, Leyval C. Rhizosphere gradients of polycyclic aromatic hydrocarbons (PAHs) dissipation in two industrial soil and the impact of arbuscular mycorrhiza[J]. Environmental Science & Technology,2003,37:2371-2375
    [97]Kirk JK, Klironomos JN, Lee H, Trevors JT. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil[J]. Environmental Pollution,2005,133:455-465
    [98]Corgie SC, Joner EJ, Leyval C. Rhizospheric degradation of phenanthrene is a function of proximity to roots[J]. Plant and Soil,2003,257(1):143-150
    [99]Yi H, Crowley DE. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid[J]. Environmental Science & Technology,2007,41(12): 4382-4388
    [100]Rugh CL, Susilawati E, Kravchenko AN, Thomas JC. Biodegrader metabolic expansion during polyaromatic hydrocarbons rhizoremediation[J]. Zeitschrift Fur Naturforschung C-A Journal of Biosciences,2005,60(3):331-339
    [101]Maila MP, Randima P, Cloete TE. Multispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) from the soil[J]. International Journal of Phytoremedition,2005,7(2):87-98
    [102]Wild E, Dent J, Thomas GO,et al. Direct observation of organic contaiminant uptake, storage, and metabolism within plant roots[J].Environ Sci Technol,2005,39:3695-310