几个离散与连续孤子方程的精确解析解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了三个全离散可积模型和一个(2+1)维导数Schwarzian KdV方程.主要内容可分为三部分:
     其一,讨论Adler-Bobenko-Suris列表中的方程H1(离散势KdV方程)和特殊H3模型(离散势MKdV方程).给出了它们的Lax对,经非线性化得到一些可积辛映射,运用这些映射和同一个Liouville可积平台上之离散相流的可换性,求得H1模型和特殊H3模型的有限亏格解,并得到离散KdV方程(由Nijhoff给出)之特解的theta函数表达式.
     其二,通过一个离散谱问题的非线性化推导出由Veselov给出的离散Neumann模型,基于装配了有限亏格位势的Lax矩阵和Darboux矩阵的交换关系,借助于Baker-Akhiezer-Kriechever函数求出方程的一个特解.
     其三,构造出两个(1+1)维导数Schwarzian KdV方程的零曲率表示,二者相容的结果即为一个(2+1)维导数Schwarzian KdV方程.由Lax对的非线性化和Hamilton相流的拉直,求得方程的有限参数特解和Abel-Jacobi解.
This thesis investigates three fully discrete integrable models and a (2+1)-dimensional derivative Schwarzian KdV equation. It consists chiefly of three parts:
     Firstly, the H1model and the special H3model in the Adler-Bobenko-Suris list, i.e. the lattice potential KdV equation and the lattice potential MKdV equation are discussed. New Lax pairs of them are given, by which integrable symplectic maps are constructed through a non-linearization procedure. Resorting to these maps and the permutability of the discrete phase flows sharing the same Liouville platform, finite genus solutions of the H1model as well as the special H3model are calculated. Besides, a special solution expressed with theta function of the lattice KdV equation with Nijhoff's discretization is also arrived.
     Secondly, the Veselov's discrete Neumann system is derived through non-linearization of a discrete spectral problem. Based on the commutation relation between the Lax matrix and the Darboux matrix with finite genus potentials, a special solution is obtained with the help of the Baker-Akhiezer-Kriechever function.
     Finally, the zero-curvature expressions of two (1+1)-dimensional derivative Schwarzian KdV equations are constructed. According to there compatibility, a (2+1)-dimensional derivative Schwarzian KdV equation is got.Through non-linearization of the Lax pairs and straightening out of the Hamilton phase flows, the special solutions with finite pa-rameters and the Abel-Jacobi solutions are calculated.
引文
[1]Abraham R, Marsden J E. Foundations of mechanics [M]. Londin:Benjamin-Cummings,1978.
    [2]Arnold V I. Mathematical methods in classical mechanics[M]. Berlin:Springer, 1978.
    [3]Hermann R. The differential geometry of foliations, II[J]. J Math Mech,1962,11: 303~315
    [4]Hermann R. Cartan connections and the equivalence problem for geometric struc-tures[J]. Contrib Diff Eq,1964,3:45~64
    [5]Boothby W M. An introduction to differential manifolds and Riemannian geome-try [M]. New York:Academic Press,1975.
    [6]Bianchi L. Sopra i sistemi tripli ortogonali di Weingarten[J]. Ann Mat Pura Appl, 1885,13:177~234
    [7]Matveev B, Salle M A. Darboux transformations and solitons[M]. Berlin and New York:Springer-Verlag,1991.
    [8]Rogers C, Schief W K. Backlund and Darboux transformations[M]. Cambridge: Cambridge Univ. Press,2002.
    [9]Bianchi L. Vorlesungenuber Differenzialgeometrie[M]. Leipzig:Teubner,1899.
    [10]Quispel G R W, Nijhoff F W, Capel H W, et al. Linear integral equations and nonlinear difference-difference equations[J]. Phys A,1984,125(2-3):344~380
    [11]Nijhoff F W. Discrete system and integrability[M]. Leeds:Leeds Univ. Press(MATH 3490/5491),2006.
    [12]Adler V E, Bobenko A I, Suris Y B. Classification of integrable equations on quad-graphs. The consistency approach[J]. Comm Math Phys,2003,233:513~543
    [13]Adler V E, Bobenko A I, Suris Y B. Discrete nonlinear hyperbolic equations. Clas-sification of integrable cases[J]. Funct Anal Appl,2009,43:3~21
    [14]Adler V E, Bobenko A I, Suris Y B. Classification of integrable discrete equations of octahedron type[J]. Int Math Res Not IMRN,2012,2012(8):1822~1889
    [15]Hietarinta J. A new two-dimensional lattice model that is'consistent around a cube'[J]. J Phys A:Math Gen,2004,37:L67~L73
    [16]Adler V E, Suris Y B. Q4:Integrable master equation related to an elliptic curve[J]. Int Math Res Not IMRN,2004,2004(47):2523~2553
    [17]Adler V E. Backlund transformation for the Krichever-Novikov equation[J]. Int Math Res Not IMRN,1998,1998:1-4
    [18]格列菲斯,代数曲线[M].北京:北京大学出版社,1985.
    [19]Farkas H M, Kra I. Riemann Surfaces[M]. New York:Springer,1992.
    [20]Lang S. Elliptic functions[M]. New York:Springer-Verlag,1987.
    [21]Whittaker E T, Watson G N. A Course of modern analysis[M]. Cambridge:Cam-bridge Univ. Press,2002.
    [22]Husemoller D. Elliptic curves[M]. New York:Springer,2004.
    [23]Adler V E. Discretizations of the Landau-Lifshits equation[J]. Theoret and Math Phys,2000,124(1):897-908
    [24]NijhoffF W. Lax pair for the Adler (lattice Krichever-Novikov) system[J]. Phys Lett A,2002,297:49~58
    [25]Maeda S. Completely integrable symplectic mapping[J]. Proc Japan Acad A,1987, 63:198~200
    [26]Veselov A P. Integrable maps[J]. Russ Math Surv,1991,46:1~51
    [27]Bruschi M, Ragnisco O, Santini P M, et.al. Integrable symplectic maps[J]. Phys D, 1991,49(3):273~294
    [28]Ragnisco O, Cao C W, Wu Y T. On the relation of the stationary Toda equation and the symplectc maps[J]. J Phys A:Math Gen,1995,28:573~588
    [29]van der Kamp P H, Rojas O, Quispel G R W. Closed-form expressions for integrals of MKdV and sine-Gordon maps[J]. J Phys A:Math Theor,2007,40:12789~12798
    [30]Tran D T, van der Kamp P H, Quispel G R W. Closed-form expressions for integrals of traveling wave reductions of integrable lattice equations [J]. J Phys A:Math Theor, 2009,42:225201 (20pp)
    [31]Tran D T, van der Kamp P H, Quispel G R W. Involutivity of integrals of sine-Gordon, modified KdV and potential KdV maps[J]. J Phys A:Math Theor,2011, 44:295206 (13pp)
    [32]Suris Y B. The Problem of integrable discretization:Hamilltonian approach [M]. Basel:Birkhauser,2003.
    [33]Suris Y B. Discrete Lagrangian models[J]. Lect Notes Phys,2004,644:111~184
    [34]Hamilton R S. Three-manifolds with positive Ricci curvature[J]. J Differential Geom, 1982,17(2):255~306
    [35]Dubrovin B A, Fomenko A T, Novikov S P. Modern geometry—methods and ap-plications [M]. New York:Springer-Verlag,1984.
    [36]Kong D, Liu K, Xu D. The hyperbolic geometric flow on Riemann surfaces [J]. Comm Partial Differential Equations,2009,34:553~580
    [37]Novikov S P, Shvarts A S. Discrete Lagrangian systems on graphs. Symplectic-topological properties [J]. Commun Moscow Math Soc,1999,1:258~259
    [38]Veselov A P. Integrable discrete-time systems and difference operators[J]. Funct Anal Appl,1988,22:83~93
    [39]Moser J, Veselov A P. Discrete versions of some classical integrable systems and factorization of matrix polynomials [J]. Commun Math Phys,1991,139:217~243
    [40]Capel H W, Nijhoff F W, Papageorgiou V G. Complete integrability of Lagrangian mappings and lattices of KdV type[J]. Phys Lett A,1991,155:377~387
    [41]Nijhoff F W, Papageorgiou V G, Capel H W, et al. The lattice Gel'fand-Dikii hierarchy[J]. Inverse Problems,1992,8:597~621
    [42]Cartan E. Lecons sur les Invariants Integraux[M]. Paris:Hermann,1922.
    [43]Lobb S, Nijhoff F. Lagrangian multiforms and multidimensional consistency[J]. J Phys A:Math Theor,2009,42:454013 (18pp)
    [44]Lobb S B, Nijhoff F W, Quispel G R W. Lagrangian multiform structure for the lattice KP system[J]. J Phys A:Math Theor,2009,42(47):472002 (11pp)
    [45]Yoo-Kong S, Lobb S, Nijhoff F. Discrete-time Calogero-Moser system and La-grangian 1-form structure[J]. J Phys A:Math Theor,2011,44:365203 (39pp)
    [46]Nijhoff F, Atkinson J, Hietarinta J. Soliton solutions for ABS lattice equations:I. Cauchy matrix approach[J]. J Phys A:Math Theor,2009,42:404005 (34pp)
    [47]Hietarinta J, Zhang D J. Soliton solutions for ABS lattice equations:II. Casoratians and bilinearization[J]. J Phys A:Math Theor,2009,42:404006 (30pp)
    [48]Hietarinta J, Zhang D J. Multisoliton solutions to the lattice Boussinesq equation[J]. J Math Phys,2010,51:033505-1~033505-12
    [49]Nijhoff F, Atkinson J. Elliptic N-soliton solutions of ABS lattice equations [J]. Int Math Res Not IMRN,2010,2010(20):3837~3895
    [50]Yoo-Kong S, Nijhoff F. Elliptic (N, N')-soliton solutions of the lattice KP Equa-tion[EB].2011. arXiv:1111.5366v1 [nlin.SI]
    [51]Butler S. Multidimensional inverse scattering of integrable lattice equations[J]. Non-linearity,2012,25:1613~1634
    [52]Zhao S L, Zhang D J, Shi Y. Generalized Cauchy matrix approach for lattice Boussinesq-type equations[J]. Chin Ann Math Ser B,2012,33B(2):259~270
    [53]Zhang D J, Zhao S L. Solutions to the ABS lattice equations via generalized Cauchy matrix approach[EB].2012. arXiv:1208.3752v2 [nlin.SI]
    [54]Feng W, Zhao S L. Generalized Cauchy matrix approach for lattice KP-type equa-tions[J]. Commun Nonlinear Sci Numer Simul,2013,18:1652~1664
    [55]Zhu S D. Exp-function method for the Hybrid-Lattice system[J]. Int J Nonlinear Sci Numer Simul,2007,8(3):461~464
    [56]Zhu S D. Exp-function method for the discrete mKdV lattiee[J]. Int J Nonlinear Sci Numer Simul,2007,8(3):465~468
    [57]Wu G C, Xia T C. Uniformly constructing exact discrete soliton solutions and periodic solutions to differential-difference equations[J]. Comput Math. Appl,2009, 58(11-12):2351~2354
    [58]Rasin O G, Hydon P E. Symmetries of integrable difference equations on the quad-graph[J]. Stud Appl Math,2007,119:253~269
    [59]Tongas A, Tsoubelis D, Xenitidis P. Affine linear and D4 symmetric lattice equa-tions:symmetry analysis and reductions [J]. J Phys A:Math Theor,2007,40: 13353~13384
    [60]Levi D, Winternitz P. Continuous symmetries of difference equations[J]. J Phys A: Math Gen,2006,39:R1~R63
    [61]Dorodnitsyn V A, Kozlov R, Winternitz P. Lie group classification of second order difference equations[J]. J Math Phys,2000,41:480~509
    [62]Levi D, Yamilov R I. The generalized symmetry method for discrete equations [J]. J Phys A:Math Theor,2009,42:454012 (18pp)
    [63]Levi D, Yamilov R I. Generalized symmetry integrability test for discrete equations on the square lattice[J]. J Phys A:Math Theor,2011,44:145207 (22pp)
    [64]Marsden J E, West M. Discrete mechanics and variational integrators[J]. Acta Nu-mer,2001,10:357~514
    [65]Dorodnitsyn V, Kozlov R, Winternitz P. Symmetries, Lagrangian formalism and integration of second order ordinary difference equations[J]. J Nonlinear Math Phys, 2003,10(2):41~56
    [66]Hydon P E. Conservation laws of partial difference equations with two independent variables[J]. J Phys A:Math Gen,2001,34:10347~10355
    [67]Rasin O G, Hydon P E. Conservation laws of discrete Korteweg-de Vries equation[J]. SIGMA,2005,1(026):1~6
    [68]Rasin O G, Hydon P E. Conservation laws for NQC-type difference equations[J]. J Phys A:Math Gen,2006,39:14055~14066
    [69]Rasin O G, Hydon P E. Conservation laws for integrable difference equations[J]. J Phys A:Math Theor,2007,40:12763~12773
    [70]Rasin A G, Schiff J. Infnitely many conservation laws for the discrete KdV equa-tion[J]. J Phys A:Math Theor,2009,42:175205 (16pp)
    [71]Xenitidis P. Symmetries and conservation laws of the ABS equations and corre-sponding differential difference equations of Volterra type[J]. J Phys A:Math Theor, 2011,44:435201 (22pp)
    [72]Rasin A G. Infnitely many symmetries and conservation laws for quad-graph equa-tions via the Gardner method[J]. J Phys A:Math Theor,2010,43:235201 (11pp)
    [73]Zhang D J, Chen D Y. The conservation laws of some discrete soliton systems[J]. Chaos Solitons Fractals,2002,14:573~579
    [74]Zhang D J, Cheng J W, Sun Y Y. Deriving conservation laws for ABS lattice equations from Lax pairs[EB].2012. arXiv:1210.3454vl [nlin.SI]
    [75]Zhu Z N, Wu X N, Xue W M, et. al. Infinitely many conservation laws for the Blaszak-Marcincik four-field integrable lattice hierarchy [J]. Phys Lett A,2002,296: 280~288
    [76]Zhu Z N, Wu X N, Xue W M. Infinitely many conservation laws of two Blaszak-Marciniak three-field lattice hierarchies [J]. Phys Lett A,2002,297:387~395
    [77]Zhu Z N, Tam H W, Ding Q. Infinitely many conservation laws for two integrable lattice hierarchies associated with a new discrete Schrodinger spectral problem[J]. Phys Lett A,2003,310:281~294
    [78]Mikhailov A V, Wang J P, Xenitidis P. Recursion operators, conservation laws and integrability conditions for difference equations[J]. Theor Math Phys,2011,167: 421~443
    [79]Hone A N W. Laurent polynomials and superintegrable maps[J]. SIGMA,2007, 3(022):1~18
    [80]Hone A N W. Analytic solutions and integrability for bilinear of order six[J]. Appl Anal,2010,89(4):473~492
    [81]Chang X K, Hu X B. A conjecture based on Somos-4 sequence and its extension[J]. Linear Algebra Appl,2012,436:4285~4295
    [82]Chang X K, Hu X B, Zhang Y N. A direct method for evaluating some nice Hankel determinants and proofs of several conjectures[J]. Linear Algebra Appl,2013,438: 2523~2541
    [83]Minesaki Y, Nakamura Y. The discrete relativistic Toda molecule equation and a Pade approximation algorithm[J]. Numer Algorithms,2001,27:219~235
    [84]Iwasaki M, Nakamura Y. An application of the discrete Lotka-Volterra system with variable step-size to singular value computation [J]. Inverse Problems,2004, 20:553~563
    [85]He Y, Hu X B, Tam H W. A q-difference version of the (?)-algorithm[J]. J Phys A: Math Theor,2009,42:095202 (9pp)
    [86]Kodama Y, Pierce V U. The Pfaff lattice on symplectic matrices[J]. J Phys A:Math Theor,2010,43:055206 (22pp)
    [87]Brezinski C, He Y, Hu X B, et.al. Cross rules of some extrapolation algorithms [J]. Inverse Problems,2010,26:095013 (22pp)
    Sun J Q, Hu X B, Tam H W. Short note:An integrable numerical algorithm for computing eigenvalues of a specially structured matrix[J]. Numer Linear Algebra Appl,2011,18:261~274
    [89]Bobenko A I, Pinkall U. Discrete surfaces with constant negative Gaussian curvature and the Hirota equation[J]. J Diff Geom,1996,43:527~611
    [90]Mercat C. Discrete Riemann surfaces and the Ising model[J]. Commun Math Phys, 2001,218:177~216
    [91]Kharevych L, Springborn B, Schroer P. Discrete conformal mappings via circle pat-terns[J]. ACM Trans Graph,2006,25(2):412~438
    [92]Bobenko A I, Hoffmann T, Springborn B A. Minimal surfaces from circle patterns: Geometry from combinatorics[J]. Ann of Math,2006,164:231~264
    [93]Bobenko A I, Springborn B A. A discrete Laplace-Beltrami operator for simplicial surfaces[J]. Discrete Comput Geom,2007,38:740~756
    [94]Bobenko A I, Pottmann H, Wallner J. A curvature theory for discrete surfaces based on mesh parallelity[J]. Math Ann,2010,348:1~24
    [95]Zhang D J, Zhao S L, Nijhoff F W. Direct linearization of extended lattice BSQ systems[J]. Stud Appl Math,2012,129:220~248
    [96]Kuznetsov V B, Petrera M, Ragnisco 0. Separation of variables and Backlund trans-formations for the symmetric Lagrange top[J]. J Phys A:Math Gen,2004,37: 8495~8512
    [97]Bobenko A I. Periodic finite-zone solutions of the Sine-Gordon equation[J]. Funkt-sional Anal i Prilozhen,1984,18(3):73~74
    [98]Bobenko A I. Real algebrometromic solutions of the Landau-Lifshits equation in Prym theta functions[J]. Funktsional Anal i Prilozhen,1985,19(i):6~19
    [99]Bobenko A I, Kubenskii D A. Qualitative analysis and calculation of finite-gap solutions of the Kortewg-De Vries equation. Automorphic Appproach[J]. Teoret Mat Fiz,1987,72(3):352~360
    [100]Cao C W, Geng X G. Classical integrable systems generated through nonlineariza-tion of eigenvalue problems[C]. In:Gu C H, et al., eds. Nonlinear Physics (Research Reports in Physics). Berlin:Springer,1990.66~78
    [101]Cao C W, Geng X G, Wu Y T. From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation[J]. J Phys A:Math Gen,1999,32:8059~8078
    [102]Cao C W, Wu Y T, Geng X G. Relation between the Kadometsev-Petviashvili equa-tion and the confocal involutive system [J]. J Math Phys,1999,40(8):3948~3970
    [103]Cao C W, Cao J L. On an integrable (2+1)-dimensional Korteweg-de Vries equation with a discrete variable[J]. IL NUOVO CIMENTO,2006,121 B(7):675~687
    [104]Cao C W, Cao J L. An integrable (2+1)-dimensional Toda equation with two dis-crete variables[J]. Phys Lett A,2007,365:301~308
    [105]Cao C W, Yang X. A (2+1)-dimensional derivative Toda equation in the context of the Kaup-Newell spectral problem[J]. J Phys A:Math Theor,2008,41:025203 (19pp)
    [106]Cao C W, Zhang G. Y. A finite genus solution of the Hirota equation via integrable symplectic maps[J]. J Phys A:Math Theor,2012,45:095203 (25pp)
    [107]张广耀.几个全离散可积方程的有限亏格解[D].[博士学位论文].郑州:郑州大学,2012
    [108]Nijhoff F W, Capel H W. The discrete Korteweg-de Vries equation[J]. Acta Appl Math,1995,39:133~158
    [109]Cao C W. A classical integrable system and the involutive representation of solutions of the KdV equations[J]. Acta Math Sin,1991,7:216~223
    [110]Cao C W, Yang X. Algebraic-geometric solution to (2+1)-dimensional Sawada-Kotera equation[J]. Commun Theor Phys,2008,49:31~36
    [111]Belokolos E D, Bobenko A I, Enol'skii V Z, et.al. Algebro-geometric approach to nonlinear integrable equations[M]. Berlin:Springer,1994.
    [112]Its A R, Matveev V B. A class of solutions of the Korteweg-de Vries equation[J]. Probl Mat Fiz,1976,8:70~92
    [113]Eilbeck J C, Enol'skii V E, Kuznetsov V B, et al. Linear r-matrix algebra for classical separable systems[J]. J Phys A:Math Gen,1994,27:567~578
    [114]Zeng Y B, Hietarinta J. Classical Poisson structures and r-matrices from constrained flows[J]. J Phys A:Math Gen,1996,29:5241~5252
    [115]Zhou R G, Ma W X. Classical r-matrix structures of integrable mappings related to the Volterra lattice[J]. Phys Lett A,2000,269:103~111
    [116]Yan Z Y. A pair of finite-dimensional integrable systems possessing the common non-dynamical r-matrix[J]. Chaos Solitons Fractals,2002,14:507~511
    [117]Griffiths P, Harris J. Principles of Algebraic Geometry[M]. New York:Wiley,1978.
    [118]Mumford D. Tata Lectures on Theta I[M]. Boston:Birkhauser,1983.
    [119]Toda M. Theory of Nonlinear Lattices[M]. Berlin:Springer,1981.
    [120]Cao C W, Zhang G Y. Integrable symplectic maps associated with the ZS-AKNS spectral problem[J]. J Phys A:Math Theor,2012,45:265201 (15pp)
    [121]Cao C W, Zhang G Y. Lax pairs for discrete integrable equations via Darboux transformations[J]. CHIN PHYS LETT,2012,29(5):050202-1~050202-2
    [122]Ragnisco O. A discrete Neumann system[J]. Phys Lett A,1992,167(2):165~171
    [123]Lou S Y, Hu X B. Non-local symmetries via Darboux transformations [J]. J Phys A: Math Gen,1997,30:L95~L100
    [124]Lou S Y. Conformal invariance and integrable models[J]. J Phys A:Math Gen,1997, 30:4803~4813
    [125]Lou S Y. Searching for higher dimensional integrable models from lower ones via Painleve analysis[J]. Phys Rev Lett,1998,80(23):5027~5031
    [126]Lou S Y, Tang X Y, Liu Q P. Second order Lax pairs of nonlinear partial differential equations with Schwarzian forms[J]. Z Naturforsch,2002,57(a):737~744
    [127]Zhang S L, Tang X Y, Lou S Y. High-dimensional Schwarzian derivatives and Painleve integrable models[J]. Commun Theor Phys,2002,38:513~516
    [128]Weiss J. The Painleve property for partial differential equations. II:Backlund trans-formation, Lax pairs, and the Schwarzian derivative [J]. J Math Phys,1983,24(6): 1405~1413
    [129]Toda K, Yu S J. The investigation into the Schwarz-Korteweg-de Vries equation and the Schwarz derivative in (2+1) dimensions [J]. J Math Phys,2000,41(7): 4747~4751
    [130]Geng X G, Wu L H, He G L. Quasi-periodic solutions of nonlinear evolution equa-tions associated with a 3x3 matrix spectral problem[J]. Stud Appl Math,2011, 127(2):107~140
    [131]Geng X G, Wu L H, He G L. Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions[J]. Phys D,2011,240(16):1262~1288
    [132]Geng X G, Wu L H, He G L. Quasi-periodic solutions of the Kaup-Kupershmidt hierarchy [J]. J Nonlinear Sci,2013, DOI 10.1007/s00332-012-9160-3
    [133]Wu L H, He G L, Geng X G. Quasi-periodic solutions to the two-component non-linear Klein-Gordon equation[J]. J Geom Phys,2013,66:1~17
    [134]Nijhoff F W. On some'Schwarzian equations'and their discrete analogues[C]. In: Fokas A S, Gel'fand I M, eds. Algebraic aspects of integrable systems:in memory of Irene Dorfman. Basle:Birkhauser,1996.237~260
    [135]Babelon O, Bernard D, Talon M. Introduction to classical integrals system[M]. Cam-bridge:Cambridge Univ. Press,2003.
    [136]Gerdjikov V S, Vilasi G, Yanovski A B. Integrable Hamiltonian hierarchies[M]. Berlin-Heidelberg:Springer-Verlag,2008.
    ①具体理论可参阅文献:Babelon 0, Bernard D, Talon M.[135]和Gerdjikov V S, Vilasi G,Yanovski A B. [136].