产2,3-丁二醇微生物菌株的筛选及其发酵条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,3-丁二醇(2,3-butanediol)是一种非常重要的化工原料,在化工、食品、燃料等多个领域都有广泛的应用。本研究从自然界的土壤中筛选出一株能够以葡萄糖为底物发酵产2,3-丁二醇的枯草芽孢杆菌,进而对该菌株产2,3-丁二醇的摇瓶发酵培养基和发酵条件进行了研究,并在5 L发酵罐上进行了初步放大实验。主要内容和结果如下:
     (1)从自然界的土壤中筛选出了能够以葡萄糖为底物发酵产2,3-丁二醇的微生物菌株42株,从中选择了一株2,3-丁二醇产量较高的菌株6-7作为本论文研究的对象。经初步发酵,2,3-丁二醇的产量达到48.7 g/L。经16S rDNA序列分析并结合常规生理生化实验鉴定,确定菌株6-7为枯草芽孢杆菌,命名为Bacillus subtilis 6-7。
     (2)在摇瓶水平上考察了碳源、氮源、无机盐和金属离子对Bacillus subtilis 6-7发酵产2,3-丁二醇的影响。经单因素实验筛选,葡萄糖、玉米浆、(NH_4)_2SO_4、K_2HPO_4对菌株发酵产2,3-丁二醇影响较大,通过四因素三水平的正交实验优化了摇瓶发酵培养基,优化后培养基配方为(g/L):葡萄糖150,玉米浆12,(NH_4)_2SO_4 6,K_2HPO_4 10,乙酸钠3,KH_2PO_4 6,柠檬酸钠6,MgSO_4 0.05,ZnSO_4 0.01,FeSO_4 0.05,CaCl_2 0.05,NiCl_2 0.05。
     (3)从pH、温度、摇床转速、装液量、接种量几个方面对摇床发酵产2,3-丁二醇的条件进行了研究,得到了摇床条件下最适的发酵条件:初始pH为6.5,温度37℃,摇床转速为160 r/min,装液量为60 mL/250 mL,接种量为5%(V/V),在此条件下发酵,2,3-丁二醇的产量可达到55.2 g/L,较初始产量提高了13.3%。
     (4)在5 L发酵罐上对Bacillus subtilis 6-7发酵产2,3-丁二醇进行了初步研究,考察了搅拌速度、通气量和pH值对发酵罐分批发酵的影响,确定了发酵罐的最适发酵条件,搅拌转速为300 r/min、通气量为1 L/min、控制pH为6.5时,2,3-丁二醇产量最大可达56.3 g/L。为降低底物葡萄糖的抑制和提高2,3-丁二醇产量,对5 L发酵罐补料分批发酵进行了初步研究,最终测得2,3-丁二醇产量为72.6 g/L。
2,3-butanediol (2,3-BDO) is one of the important chemical intermediate, which can be used in many fields such as food, chemistry, fuel. A Bacillus sublitis strain producing 2,3-BDO from glucose as substrate was isolated from different samples. The fermentation medium and fermentation conditions were investigated. On the baisis of medium and fermentation conditons optimization, preliminary test was performed in 5 L fermentor. The main research contents and results are follows:
     (1) 42 strains capable of producing 2,3-BDO from glucose were isolated from different natural environment samples. The strain 6-7 which could grow on medium containing glucose had a higher 2,3-BDO converting capability. After preliminary fermentation test, the concentration of 2,3-BDO reached 48.7 g/L. In addition to general morphaological and biochemical characteristics, the strain 6-7 was identified by 16S rDNA sequence and systematic analysis. The results showed that 16S rDNA sequence of strain 6-7 had similarity of 99% with Bacillus subtilis strain BIHB332, suggesting that the strain 6-7 is one of subspecied of Bacillus subtilis.
     (2) Effect of carbon source, nitrogen source, mineral salt and metal ion on 2,3-BDO production of Bacillus subtilis 6-7 were investigated in the shaking-flask. Glucose, corn steep liquor, (NH_4)_2SO_4, K_2HPO_4 were the siginificant factors based on the results of single factor experiments. The optimum fermentation medium compositions were determined as follows(g/L): glucose 150; corn steap liquor 10; (NH_4)_2SO_4 6; CH3COONa 3; KH_2PO_4 6; K_2HPO_4 12; citrate sodium 6.0; MgSO_4 0.05; ZnSO_4 0.01; FeSO_4 0.05; CaCl_2 0.05; NiCl_2 0.05.
     (3) Fermentation conditons of Bacillus subtilis 6-7 were optimized in the shaking-flask from following aspects: pH, temperature, rotation speed and so on. The best fermentation conditions were described as: initial pH 6.5, temperature37℃, the amount of inoculation 5%(V/V), the liquid volume 60 mL(in 250 mL, flask), rotation speed 160 rpm. Under optimum conditions, afer the strain 6-7 was cultured 72 hours, it produced 55.2 g/L 2,3-BDO, which increased about 13.3% more than before.
     (4) In order to increase the 2,3-BDO production in 5 L fermentor, effect of pH, stirrer speed and air flow on the batch fermentation were studied. The results showed that high 2,3-BDO accumulation was acheieved at the condition follow as: pH 6.5, stirrer speed 300 r/min, air flow 1 L/min. To reduce substrate inhibition and increase 2,3-butanediol yield, the fed-batch fermentation in 5 L fermentor was studied, the final 2,3-butanediol production was 72.6 g/L.
引文
1. E Celinska, W Grajek. Biotechnological production of 2,3-butanediol-Current state and prospects[J]. Biotechnol. Adv., 2009, 27: 715-725
    2. Syu M J. Biological production of 2,3-butanediol[J]. Appl. Microbiol. Biotechnol., 2001, 55(1): 10-18
    3. Saha B C, Bothast R J. Production of 2,3-butanediol by newly isolated Enterobacter cloacae[J]. Appl. Microbiol. Biotechnol., 1999, 52: 321-326
    4.马成伟,杜彤,孙亚琴等.生物转化法生产2,3-丁二醇[J].精细与专用化学品, 2006, 14(15): 15-18
    5.纪晓俊,朱建国,高正等.微生物发酵法生产2,3-丁二醇的研究进展[J].现代化工, 2006, 26(8): 23-27
    6. Zeng A P, Biebl H, Deckwer W D. Production of 2,3-butandiol in a mernbrane bioreactor with cell recycle[J]. Biotechnol. Bioeng., 1998, 60: 617-626
    7. Yu E K, Saddker J N. Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations[J]. Appl. Environ. Microbiol., 1983, 46: 630-635
    8. Qin J Y, Xiao Z J, Xu P. Production of 2,3-butanediol by Klebsillea pneumoniae Using Glucose and Ammonium Phosohate[J]. Chinese J. chem.Eng., 2006, 14(1): 132-136
    9. Garg S K, Jain A. Fermentative production of 2,3-butanediol: Areview[J]. Bioresour Technol., 1995, 51(2): 103-109
    10.戴建英,孙亚琴,修志龙等.生物基化学品2,3-丁二醇的研究进展[J].过程工程学报, 2010, 10(1): 200-208
    11. Perlman D. Production of 2,3-Butylene glycol from wood hydrolyzates[J]. Ind. Eng. Chem., 1944, 36: 803–809
    12. Jacques F, Daniel M, Jean L W. 2,3-Butanediol production from Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC12321. Optimization of kLa profile[J]. Appl. Microbiol. Biotechnol., 1986, 25: 197-202
    13. Nakashimada Y, Marwoto B, Kashiwamura T. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa[J]. Biosci. Bioeng., 2000, 90: 661-664
    14. Olson B H, Johnson M J. The production of 2,3-butyleneglycol by Aerobacter aerogenes199[J]. J. Bacteriol., 1948, 55: 209-222
    15.李元芳,徐勤,曹学等.粘质沙雷氏菌产2,3-丁二醇培养基的优化[J].工业微物, 2007, 37(3): 24-28
    16. Afschar A S, Bellgardt K H, Schaller K. The production of 2,3-butanediol by fermentation of high test molasses[J]. Appl. Microbiol. Biotechnol., 1991, 34: 582-585
    17. DeMas C, Jansen N B, Tsao G T. Production of optically active 2,3-butanediol by Bacillus polymyxa[J]. Biotechnol. Bioeng., 1988, 31: 366-377
    18. Johansen L, Larsen S H, Stormer F C. Diacetyl(Acetoin) reductase from Aerobacter aerogenes-kinetic studies of the reduction of diacetyl to acetoin[J]. Eur. J. Biochem., 1973, 34: 97-99
    19. Jonansen L, Bryn K, Stormer F C. Physiological and Biochemical Role of butanediol pathway in Aerobacter(Enterobacter)aerogenes [J]. Bacteriol., 1975, 123: 1124-1130
    20. Juni E, Heym G A. A cyclic pathway for the bacterial dissimilation of 2,3-butanediol acetymethylcarbibol, and diacetyl. I. General aspects of the 2,3-butanediol cycle[J]. Bacteriol., 1956, 71: 425-432
    21.张刚,杨光,曹竹安.生物法生产2,3-丁二醇研究进展[J].中国生物工程杂志, 2008, 28(6): 133-140
    22. Ui S, Masuda T, Masuda H, et al. Mechanism for the formation of 2,3-butanediol stereo-isomers in Bacillus polymyxa[J]. Ferment Technol., 1986, 64(6): 481-486
    23. Ui S, Hosaka T, Watanabe K, Mimura A. Discovery of a new mechamism of 2,3-butanediol stereoisomer formation in Bacillus.cereus YUF-4[J]. J. Ferm. Bioeng., 1998, 85: 79-83
    24. Biebl H. Zeng A P, Menzel K. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae[J]. Appl. Microbial. Biotechnol., 1998, 50: 24-29
    25.冯燕青. Klebsiella oxytoca ZU-03发酵生产2,3-丁二醇的研究[D]: [硕士论文].杭州:浙江大学材化学院, 2008
    26. Sun L H, Wang X D, Dai J Y, et al. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae[J]. Appl. Microbiol. Biotechnol., 2009, 82: 847-852
    27. Jansen N B, Tsao G T. Bioconbersion of Pentoses to 2,3-butanediol by Klebsiella Pneumoniae[J]. Appl. Microbial. Biotechnol., 1984, 26: 362-369
    28. Frazer F R, McCaskey T A. Effect of selected components of acid-hydrolysed hardwood on conversion of D-xylose to 2,3-butanediol by Klebsiella pneumonia[J]. Enzyme Microb. Technol., 1991, 13: 110-115
    29. Barret E I, Collins E B, Hall B J. Production of 2,3-butylene glycol from whey by Klebsiella pneumoniae and Enterobacter aerogenes[J]. J. Dairy Sci.,1983, 66: 2507-2514
    30. Converti A, Perego P, Del Borghi M. Effect of specific oxygen uptake rate onEnerobacter aerogenes energetics: carbon and reduction degree balances in batch cultivations[J]. Biotechnol. Bioeng., 2003, 82: 370-377
    31. Laube V M, Goleau D, Martin S M. 2,3-butanediol production from xylose and other hemicellulosic components by Bacillus polymyxa[J]. Biotechnol. Lett., 1984, 6(4): 257-262
    32. Voloch M M, Ladisch M R, Rodwell V, et al. Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: a new model[J]. Biotechnol. Bioeng., 1983, 25(1): 173-183
    33. Ramachandran K B, Goma G. Effect of oxygen supply and dilution rate on the production of 2,3-butanediol in continuous bioreactor by Klebsiella pneumoniae [J]. Enzyme Microb. Technol., 1987, 9: 107-111
    34. Voloch M M, Ladisch M R, Rodwell V, et al. Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: a new model[J]. Biotechnology and Bioengineering, 1983, 25(1): 173-183
    35. Zeng A P, Biebl H, Deckwer W D. 2,3-butanediol production by Enterobacter aerogenes in continuous culture: role of oxygen[J]. Appl. Microbiol. Biotechnol., 1990, 33: 264-268
    36. Nakashimada Y, Kanai K, Nishio N. Optimization of dillution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture[J]. Miotrchnol. Lett., 1998, 20(12): 113-118
    37.诸葛健,李华钟.微生物学[M].北京:科学技术出版社, 2005. 174-188
    38. Pirt S J, Callow D S. Exocellular product formation by microorganisms in continuous culture[J]. J. Appl. Bacteriol., 1958, 21: 188-205
    39. Perego P, Converti A, Delborghi A. 2,3-butanediol production by Enterobacter aerogenes: selection of the optimal conditions and application to food industry residues[J]. Bioprocess Eng., 2000, 23: 613-620
    40.江汉湖.食品微生物学[M].北京:中国农业出版社, 2006. 70-83
    41.周德庆.微生物学教程[M].北京:高等教育出版社, 2005. 113-151
    42. Van Houdt R, Aertsen A, Michiels C W. Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N[J]. Res. Microbiol., 2007, 158: 379-385
    43. Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae[J]. Enzyme Microb. Technol., 1997, 20: 82-86
    44. Sablayrolles J M, Goma G. Butanediol production by Aerobacter aerogenes NRRL-B119: Effect of initial substrate concentration and aeration agitation[J]. Biotechnol. Bioengin., 1984, 26(2): 148-155
    45. Ramachandran K B, Goma G. 2,3-Butanediol production from glucose by Klebsiella pneumoniae in a cell recycle system[J]. J. Biotechnol., 1988, 9: 39-46
    46. Ghosh S, Swaminathan T. Optimization of the phase system composition of aqueous two-phase system for extraction of 2,3-butanediol by theoretical formulation and using response surface methodology[J]. Chem. Biochem. Eng., 2004, 18(3): 263-271
    47. Lee H K, Maddox I S. Continuous production of 2,3-butanediol from whey permeate using Klebsiella pneumoniae immobilized in calcium alginate[J]. Enzyme Microb. Tecnol., 1986, 8: 409-411
    48.诸葛健,王正祥.工业微生物实验手册[M].北京:中国轻工业出版社, 1984. 335-351
    49.杜军,纪晓俊,黄河.产酸克雷伯氏杆菌发酵产2,3-丁二醇的培养基优化[J].生物加工过程, 2009, 7(1): 34-38
    50.布坎南R E,吉本斯N E.伯杰细菌鉴定手册[M].第8版.北京:科学出版社, 1984. 729-795
    51. Joseph S, David W R. Molecular Cloning.3rd[M]. New York: Cold Spring Harbor Laboratory Press, 2001. 106-454
    52.杨套伟.酵母不对称还原4-羟基-2-丁酮为(R)-1,3-丁二醇的初步研究[D]: [硕士论文].无锡:江南大学生物工程学院, 2009
    53.杨光,郝健,李季伦.产酸克氏杆菌1,3-丙二醇发酵液中2,3-丁二醇的定性和定量分析[J].分析化学, 2007, 35(7): 1039-1042
    54.赵世敏.微生物发酵法生产2,3-丁二醇[D]: [硕士论文].无锡:江南大学生物工程学院, 2008
    55.吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社, 2002. 246-267
    56.秦加阳,肖梓军,许平.一种简单的高产2,3-丁二醇发酵生产方法[J].生物加工过程, 2005, 3(4): 71-73