带有可组装基团聚炔的设计合成及其与无机纳米结构的杂化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由共轭聚合物与无机纳米结构形成的复合材料已经在光电池、传感器、非线性光学、电致发光与显示器件等领域引起越来越多的关注。聚炔作为原型的共轭聚合物,近年来在科学家坚持不懈的探索下已经展现出了如发光、光学非线性、手性放大、液晶性等一系列优异的性能。将聚炔与无机纳米结构进行复合,对复合体系进行深入系统的研究,对于丰富和发展光电功能材料的基础科学理论、研制基于共轭聚合物的新型光电功能材料与器件都具有重要意义。
     然而,和其它聚合物一样,聚炔与无机半导体或金属纳米结构是不相容体系。在聚炔侧链引入巯基、吡啶基、氨基等活性官能团来增强其与无机组分的相互作用、改善相容性是本论文采取的一个根本策略。但是,带巯基、吡啶基、氨基等活性基团的聚炔的合成是功能化聚炔领域的一个挑战,也成为这一策略的实施需要解决的关键科学问题。本文通过基团保护、催化剂选择、聚合条件优化等措施成功地合成了一系列带有巯基、氨基和吡啶基等可组装官能团的聚炔,利用这些官能团与无机纳米结构之间强的相互作用成功地制备了聚炔与CdS、ZnO、PbBr_2及Ag纳米粒子等无机纳米材料的复合物,并对复合材料的光电导、导电、发光等性能进行了系统地研究。
     首先,设计合成了巯基官能化的炔单体。巯基易使过渡金属催化剂中毒而无法直接聚合,[Rh(cod)Cl]_2虽然可以将单体聚合,但得到的聚合物不溶。因此我们采用含巯基的炔单体与CdS纳米棒组装进而在其表面引发共聚的方法制备了PPA与CdS纳米棒的复合物,最终的复合体系具有良好的稳定性、溶解性和成膜性,巯基与CdS纳米棒之间强的相互作用极大地提高了两组分之间的相容性,n型CdS纳米棒在复合物薄膜中的均匀分散及其与p型聚炔之间的光致电荷转移共同提高了复合物的光电导性能。
     其次,通过分子结构设计、催化剂选择以及聚合条件优化等方法成功地解决了巯基官能化聚炔溶解性差的问题,合成了三种在有机溶剂中溶解性良好的带有含硫基团侧基的聚炔。利用聚苯乙炔主链对碳纳米管进行增溶,进而利用侧链中的含硫基团成功地将ZnO纳米颗粒或CdS纳米棒组装到碳纳米管表面,分别制备了CNTs/聚炔/ZnO纳米粒子和CNTs/聚炔/CdS纳米棒的三元复合体系,体系中各组分保留了其独立的电子结构。无机组分通过“软着陆”的方式组装于碳管外围,复合后碳管及无机组分的形态特征保持不变,避免了传统的化学或物理气相沉积方法对碳管造成的破坏,克服了水热及溶剂热方法中存在的无机纳米结构不可控的缺点,提供了一种新的多元复合纳米结构的制备方法。
     第三,设计合成了可溶的含吡啶基聚炔,用碘甲烷将吡啶基季胺盐化得到了离子型聚炔。在离子型聚炔溶液中加入Ag~+离子原位生成AgI,进而在紫外光照下分解成功制备了聚炔/Ag纳米粒子复合物,通过加入不同量的Ag~+离子可以对最终体系中Ag纳米粒子的尺寸进行调控,复合体系表现出了良好的储存稳定性,提供了一种制备稳定的金属纳米粒子的新方法。同时,复合物的导电性能随体系中Ag纳米粒子含量的增加而显著提高。
     第四,合成了带有邻苯二甲酰亚胺基团的双取代炔单体,通过聚合、脱保护的方法得到了带有“自由”氨基的双取代聚炔,通过季胺盐化进而与PbBr_2复合的方法成功制备了带有“活性”有机组分的共轭聚合物-PbBr_2杂化钙钛矿复合材料。复合体系中,聚炔赋予材料良好的溶解性、可加工性、电子共轭以及光响应性能,无机组分增大了聚合物的共轭程度、削弱了聚合物链段间的相互作用、提供了荧光发射所需的激子能量、提高了材料的发光效率并加快了复合物的光漂白过程。最终的复合物表现出了许多优于其单独组分的性能,证明了两组分分子级复合后各自的性能在复合体系中不仅实现了“功能互补”还实现了“协同增强”。利用复合物的光漂白性能通过一步法制备了荧光光刻图案,该方法无需任何后处理,有望应用于光学显示,信息存储等领域。
     最后,从发现邻苯二甲酰亚胺基团的双取代聚炔纳米线在高能电子束辐射下发生显著形变的偶然现象出发,系统地观察了线型和超支化、共轭和非共轭聚合物纳米线(管)在电子束作用下的运动行为,提出纳米线(管)形变的物理起因是聚合物的应力松弛的假说,并通过这些纳米线(管)在高于玻璃化转变的温度下退火后形变消除的事实,证明了假说的合理性。这一发现提示:聚合物纳米结构在制备和加工的过程中存在着与宏观材料相同的应力问题,为避免这些应力对纳米线(管)的性能造成负面影响,使用前同样需要经过退火处理。这为研究和使用聚合物纳米结构提供了一个重要的信息。
Hybrids based on conjugated polymers and inorganic nanomaterials have attracted much attention among scientists in the areas of solar cells, sensors, display, optical nonlinearity and light-emitting diodes. Polyacetylene is an archetypalπ-conjugated polymer and its derivatives bearing appropriate substituents have exhibited a variety of novel properties, such as light emission, nonlinear optical property, chirality amplification and liquid crystallinity. The hybridization of polyacetylenes with inorganic nanostructures and the systematic study on the preparation and properties of the hybrids will be significant both for enriching and developing the fundamental understanding of photoelectronic functional materials, and for fabricating electronic and optical devices based on conjugated polymers.
     Unfortunately, the immiscibility between polyacetylenes and inorganic materials and the challenge to synthesize the polyacetylenes with self-assembling functionalities on the side chains make the hybridization of polyacetylenes and inorganic materials to be a hard task. In this paper, we took this challenge. Through molecular design, catalyst selection and optimization of polymerization conditions, we successfully synthesized a series of functional polyacetylene derivatives bearing different self-assembling anchor groups such as thiol, amino and pyridyl. Utilizing the strong interactions between these groups and inorganic nanostructures, we prepared several types of hybrids based on polyacetylenes and inorganic nanomaterials, e.g. CdS nanorods, ZnO nanoparticles, layered PbBr_2 perovskite structures and Ag nanoparticles, and studied the derived hybrids' properties such as photoconductivity, conductivity and light emitting properties.
     We firstly synthesized a thiol-functionalized acetylene monomer, but the monomer cannot be polymerized directly because of the poisoning effect of thiol group on the early transition-metal catalysts. Though [Rh(cod)Cl]_2 can catalyze the polymerizations, the products are insoluble and intractable. Hence, we changed to a modified way and successfully prepared soluble hybrids of poly(phenylacetylene) (PPA) and CdS nanorods by copolymerizations of phenylacetylene with the thiol-functionalized acetylene monomer chemisorbed on the surface of CdS nanorods. The hybrid exhibited excellent stability, solubility and film formability. The interaction between thiol group and CdS nanorods greatly improved the compatibility between the organic and inorganic components. CdS nanorods were uniformly dispersed in the film of the hybrid and the photoinduced charge transfer happened between the n-type inorganic nanostructure and p-type polyacetylenes, which enhanced the photoconductivity of the hybrid.
     Secondly, through molecular design, catalyst selection and optimization of polymeric conditions, we further tackled the problem of the insolubility of thiol-functionalized Polyacetylene derivatives and synthesized three kinds of new polyacetylenes with the sulfur-containing pendants, which can dissolve in many common organic solvents. The hybrids of these sulfur-containing polyacetylenes and multiwalled carbon nanotubes (MWNTs) showed good solubility in organic solvents. Meanwhile, the wrapping of the polymer chains on MWNTs led to the surface functionalization. By aid of the interaction between sulfur-containing group and Zinc cations, ZnO nanoparticles were assembled onto out-shells of the hybrids and hence new three-component nanohybrids of polymer/MWNTs/ZnO were derived. In the hybrids, all the components retained their pristine electric feature and both CNTs and ZnO nanoparticles preserved their pristine morphological characteristics. The inorganic components attached onto CNTs in a "soft-landing" way instead of direct contacting with CNTs in the traditional chemical or physical vapor deposition method, which may result in the damage to CNTs. The successful fabrication of polymer/MWNTs/CdS nanorods hybrids indicated that in our method, we may prepare the inorganic nanostructures with well-defined shape in advance and then assemble them onto the template of CNTs. It was definite that our method is prior to the hydrothermal and solvothermal methods, in which, the morphology of the inorganic materials is uncontrollable. These results suggested a novel route to the fabrication of multi-component nanostructures.
     Thirdly, we synthesized a Polyacetylene with pyridyl group, quaternization of which afforded a type of polysalt. The strong electrostatic interactions among the charged pyridyl groups extended the conjugation length and enhanced the thermal stability of the polymer. By adding Ag~+ into the solution of the polysalt and subsequently exposing to the UV light to in situ decompose the AgI formed in the system, we prepared polymer/Ag nanoparticles hybrid. The size of Ag nanoparticles can be controlled by the amount of Ag~+ added in the solution and the hybrids showed very excellent storage-stability, which provide a new method to prepare Ag nanoparticles stabilized by polymers. The conductivity of the hybrids was increased with increasing the amount of Ag nanoparticles.
     A disubstituted Polyacetylene (PA) with phthalimido group was synthesized, hydrolysis and quaternization of which afforded the desired PA ammonium salt. Mixing this polysalt with PbBr_2 readily yielded a highly photoresponsive perovskite hybrid containing an electroactive Polyacetylene. In the hybrid, organic component endows it with solvent miscibility, macroscopic processability, electronic conjugation, and photonic responsiveness, while the inorganic component helps lengthen the electronic conjugation, weaken the chain interaction, supply the exciton energy, enhance the emission efficiency, and accelerate the photobleaching process. Many properties of the hybrid were better than those of its single components, indicating that the complementary and synergic effects of the two building blocks in the hybrid were realized arising from the molecular interactions between them. The two-dimensional fluorescence image pattern was created by a one-step irradiation process without going through a development step, which has technological implications and may find practical applications in such systems as optical display and information storage.
     Finally, starting from the observation that the nanowires of disubstituted Polyacetylene with phthalimido group showed dramatic deformation under irradiation of electron beams, we investigated this phenomenon for many nanowires and nanotubes derived from linear and hyperbranched, conjugated and non-conjugated polymers, and it was found that all the polymer nanostructures exhibited the similar behavior. Once the nanowires or nanotubes were annealed at the temperature higher than its glass transition temperature before the SEM measurement, the moving phenomenon disappeared. These experimental results indicated that, just like the bulk polymer materials, there will also be some stress left in the polymer nanowires or nanotubes. This is a very important instruction for the people who want to study and use the polymer nanowires or nanotubes. To avoid the disadvantageous effect of these stress to the properties of polymer nanostructures, one must annealed them before use it, just as what we did before use the polymer materials in the macroscopic world.
引文
1. A. J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials, Angew. Chem. Int. Ed., 2001, 40: 2591-2611 (Nobel Lectures).
    2. A. G. MacDiarmid, "Synthetic metals": A novel role for organic polymers, Angew. Chem. Int. Ed, 2001,40: 2581-2590 (Nobel Lectures).
    3. H. Shirakawa, The discovery of polyacetylene film: The dawning of an era of conducting polymers, Angew. Chem. Int. Ed., 2001, 40: 2574-2580 (Nobel Lectures).
    4. a) D. Wasserfallen, M. Kastler, W. Pisula, W. A. Hofer, Y. Fogel, Z. Wang, K. Mullen, Suppressing aggregation in a large polycyclic aromatic hydrocarbon, J. Am. Chem. Soc., 2006, 128: 1334-1339.
    b) S. Bernhardt, M. Baumgarten, M.Wagner, and K. Mullen, Multiple functionalization of benzo-phenones inside polyphenylene dendrimers - toward entrapped ions and radicals, J. Am. Chem. Soc., 2005,127: 12392-12399.
    5. V. A. Azov, A. Schlegel, F. Diederich, Geometrically precisely defined multinanometer expansion/contraction motions in a resorcin[4]arene cavitand based molecular switch, Angew. Chem. Int. Ed., 2005,44: 4635-4638.
    6. a) J. N. Wilson, Uwe H. F. Bunz, Switching of intramolecular charge transfer in cruciforms: Metal ion sensing, J. Am. Chem. Soc., 2005, 127: 4124-4125.
    b) B.Erdogan, L.Song, J. N. Wilson, J. O. Park, M. Srinivasarao, Uwe H. F. Bunz, Permanent bubble arrays from a cross-Linked poly(para-phenylene-ethynylene): Picoliter holes without microfabrication, J. Am. Chem. Soc., 2004, 126: 3678-3679.
    7. a) A. J. McNeil, P. Muller, J. E. Whitten, T. M. Swager, Conjugated polymers in an arene sandwich, J. Am. Chem. Soc., 2006, 128: 12426-12427.
    b) Y. Kim, J. Bouffard, S. E. Kooi, T. M. Swager, Highly emissive conjugated polymer excimers, J. Am. Chem. Soc., 2005,127: 13726-13731.
    8. a) K. Balakrishnan, A. Datar, W. Zhang, X. Yang, T. Naddo, J. Huang, J. Zuo, M. Yen, J. S. Moore, Nanofibril self-Assembly of an arylene ethynylene macrocycle, J. Am. Chem. Soc., 2006, 128: 6576-6577.
    b) K. Matsuda, M. T. Stone, J. S.Moore, Helical pitch of m-phenylene ethynylene foldamers by double spin labeling, J. Am. Chem. Soc., 2002,124: 11836-11837.
    9. a) H. B. Yang, A. M. Hawkridge, S. D. Huang, N. Das, S. D. Bunge, D. C. Muddiman, P. J. Stang, Coordination-driven self-Assembly of metallodendrimers possessing well-defined and controllable cavities as cores, J. Am. Chem. Soc., 2007, 129: 2120-2129.
    b) H. Jude, H. Disteldorf, S. Fischer, T. Wedge, A. M.
    10. Hawkridge, A. M. Arif, M. F. Hawthorne, D. C. Muddiman, and P. J. Stang, Coordination-driven self-assemblies with a carborane backbone, J. Am. Chem. Soc., 2005,127:12131-12139.
    11.0. A. Scherman, I. M. Rutenberg, R. H. Grubbs, Direct synthesis of soluble, end-functionalized polyenes and polyacetylene block copolymers, J. Am. Chem. Soc., 2003,125 (28): 8515-8522.
    
    12. C. Czekelius, J. Hafer, Z. J. Tonzetich, R. R. Schrock, R. L. Christensen, P. Muller, Synthesis of oligoenes that contain up to 15 double bonds from 1,6-heptadiynes, J. Am. Chem. Soc., 2006,128: 16664-16675.
    
    13. a) K. Akagi, G. Piao, S. Kaneko, K. Sakamaki, H. Shirakawa, M. Kyotani, Helical polyacetylene synthesized with a chiral nematic reaction field, Science, 1998, 282: 1683 - 1686.
    
    b) H. J. Lee, Z. X. Jin, A. N. Aleshin, J. Y. Lee, M. J. Goh, K. Akagi, Y. S. Kim, D. W. Kim, Y. W. Park, Dispersion and current-voltage characteristics of helical polyacetylene single fibers,J Am.Chem. Soc., 2004, 126: 16722-16723.
    c) K. Akagi, S. Guo, T. Mori, M. Goh, G. Piao, M. Kyotani, Synthesis of helical poly-acetylene in chiral nematic liquid crystals using crown ether type bina-phthyl derivatives as chiral dopants, J. Am.Chem. Soc., 2005,127: 14647-14654.
    
    14. a) I. Saeed, M. Shiotsuki, T. Masuda, Living polymerization of phenylacetylene with tetra-fluorobenzobarrelene ligand-containing rhodium catalyst systems featuring the synthesis of high molecular weight polymer, Macromolecules, 2006, 39(25): 8567-8573.
    
     b) I. Saeed, M. Shiotsuki, T. Masuda, Remarkable cocatalytic effect of alkali metal amides and alkoxides in the rhodium-catalyzed polymerization of phenylacetylene, Macromolecules, 2006,39(16): 5347-5351.
    
    15. a) T. Miyagawa, A. Furuko, K. Maeda, Hi. Katagiri, Y. Furusho, E. Yashima, Dual memory of enantiomeric helices in a polyacetylene induced by a single enantiomer, J. Am. Chem. Soc., 2005,127: 5018-5019.
    
    b) K. Maeda, Y. Takeyama,K.Sakajiri, E. Yashima, Nonracemic dopant-mediated hierarchical amplification of macromolecular helicity in a charged polyacetylene leading to a cholesteric liquid crystal in water, J. Am. Chem. Soc., 2004,126: 16284-16285.
    
    16. Y. Kishimoto, P. Eckerle, T. Miyatake, M. Kainosho, A. Ono, T. Ikariya, R. Noyori, Well-controlled polymerization of phenylacetylenes with organorhodium(I) complexes: Mechanism and structure of the polyenes, J. Am. Chem. Soc., 1999, 121: 12035-12044.
    
    17. a) V. Percec, E. Aqad, M. Peterca, J. G. Rudick, L. Lemon, J. C. Ronda, B. B. De, P. A. Heiney, E. W. Meijer, Steric Communication of Chiral Information Observed in Dendronized Polyacetylenes, J. Am. Chem. Soc., 2006,128: 16365-16372.
    b) V.Percec, J. G. Rudick, M. Peterca, M. Wagner, M. Obata, C. M. Mitchell, W. D. Cho, V. S. K. Balagurusamy, P. A. Heiney, Thermoreversible Cis-Cisoidal to Cis-Transoidal Isomerization of Helical Dendronized Poly-phenylacetylenes, J. Am.Chem.Soc.,2005,127:15257-15264.
    18.Y.Liu,N.Wang,Y.J.Li,H.B.Liu,Y.L.Li,J.C.Xiao,X.H.Xu,C.S.Huang,S.Cui,D.B.Zhu,A new class of conjugated polyacetylenes having perylene bisimide units and pendant fullerene or porphyrin groups,Macromolecules,2005,38:4880-4887.
    19.沈之荃,稀土催化剂在高分子合成中的开拓应用,高分子通报,2005,4:1-12.
    20.X.W.Zhao,M.J.Yang,Z.Q.Lei,Y.Li,Y.Q.Liu,G.Yu,D.B.Zhu,Photoluminescence,electroluminescence,nonlinear optical,and humidity sensitive properties of poly(p-diethynylbenzene)prepared with nickel acetylide catalyst,Adv.Mater.,2000,12(1):51-53.
    21.J.W.Y.Lam,B.Z.Tang,Functional polyacetylenes,Acc.Chem.Res.,2005,38:745-754.
    22.J.W.Y.Lam,B.Z.Tang,Liquid-crystalline and light-emitting polyacetylenes,J.Polym.Sci.Part A:Polym.Chem.,2003,41:2607-2629.
    23.a)M.Hauβler,J.W.Y.Lam,R.H.Zheng,H.Peng,J.D.Luo,J.W.Chen,C.C.W.Law,B.Z.Tang,C.R.Chimie,2003,6:833-842.
    b)M.Hauβler,R.H.Zheng,J.W.Y.Lam,H.Tong,H.C.Dong,B.Z.Tang,Hyperbranched polyynes:Syntheses,photoluminescence,light refraction,thermal curing,metal complexation,pyrolytic ceramization,and soft magnetization,J.Phys.Chem.B,2004,108:10645-10650.
    24.T.Masuda,B.Z.Tang,T.Higashimura,H.Yamaoka,Thermal degradation of polyacetylenes carrying substituents,Macromolecules,2004,37:1891-1896.
    25.T.Masuda,Substituted polyacetylenes,J.Polym.Sci.Part A:Polym.Chem.,2007,45:165-180.
    26.Y.P.Dong,J.W.Y.Lam,H.Peng,H.S.Kwok,B.Z.Tang,Syntheses and mesomorphic and luminescent properties of disubstituted polyacetylenes,Macromolecules,2004,37:6408-6417.
    27.C.W.Law,J.W.Y.Lam,B.Z.Tang,Poly(diphenylacetylene)s:Synthesis and their thermal and light emitting properties,Polym.Prepr.(Am.Chem.Soc.,Div.Polym.Chem.)2004,45(2):839-840.
    28.T.Masuda,B.Z.Tang,A.Tanaka,T.Higashimura,Mechanical properties of substituted polyacetylenes,Macromolecules,1986,19(5):1459-1464.
    29.H.Seki,B.Z.Tang,A.Tanaka,T.Masuda,Tensile and dynamic viscoelastic properties of various new substituted polyacetylenes,Polymer,1994,35:3456-3462.
    30.T.Masuda,E.Isobe,T.Higashimura,K.Takada,Poly[1-(trimethylsilyl)-1-propyne]:a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability,J.Am.Chem.Soc.,1983,105:7473-7474.
    31. M. Teraguchi, T. Masuda, Poly(diphenylacetylene) membranes with high gas permeability and remarkable chiral memory, Macromolecules, 2002, 35(4): 1149-1151.
    
    32. T. Sakaguchi, K. Yumoto, M. Shiotsuki, F. Sanda, M. Yoshikawa, T. Masuda, Synthesis of poly(diphenyiacetylene) membranes by desilylation of various precursor polymers and their properties, Macromolecules, 2005, 38(7): 2704-2709.
    
    33. Y. Shida, T. Sakaguchi, M. Shiotsuki, K. B. Wagener, T. Masuda, Preparation and properties of polytolan membranes bearing p-hydroxyl groups, Polymer, 2005,46: 1-4.
    
    34. C. Ye, G. Q. Xu, Z. Q. Yu, J. W. Y. Lam, J. H. Jang, H. L. Peng, Y. F. Tu, Z. F. Liu, K. Jeong, S. Z. D. Cheng, E. Q. Chen, B. Z. Tang, Frustrated molecular packing in highly ordered smectic phase of side-chain liquid crystalline polymer with rigid polyacetylene backbone, J. Am. Chem. Soc., 2005,127: 7668-7669.
    
    35. J. W. Y. Lam, X. X. Kong, Y. P. Dong, K. K. L. Cheuk, K. T. Xu, B. Z. Tang, Synthesis and properties of liquid crystalline polyacetylenes with different spacer lengths and bridge orientations, Macromolecules, 2000,33: 5027-5040.
    
    36. J. W. Y. Lam, Y. P. Dong, C. C. W. Law, Y. Q. Dong, K. K. L. Cheuk, L. M. Lai, Z. Li, J. Z. Sun, H. Z. Chen, Q. Zheng, H. S. Kwok, M. Wang, X. D. Feng, J. C. Shen, B. Z. Tang, Functional disubstituted polyacetylenes and soluble cross-linked polyenes, Macromolecules, 2005, 38: 3290-3300.
    
    37. B. Z. Tang, X. X. Kong, X. Wan, X. D. Feng, H. S. Kwok, Liquid crystalline polyacetylenes: Synthesis and properties of poly(n-{[(4'-cyano-4-biphenylyl)oxy] carbonyl}-1-alkynes), Macromolecules, 1998, 31: 2419-2432.
    
    38. J. W. Y. Lam, Y. P. Dong, K. K. L. Cheuk, J. D. Luo, Z. L. Xie, H. S. Kwok, Z. S. Mo, B. Z. Tang, Liquid crystalline and light emitting polyacetylenes: Synthesis and properties of biphenyl-containing poly(1-alkynes) with different functional bridges and spacer lengths, Macromolecules, 2002, 35(4): 1229-1240.
    
    39. X. X. Kong, B. Z. Tang, Synthesis and novel mesomorphic properties of the side-chain liquid crystalline polyacetylenes containing phenyl benzoate mesogens with cyano and methoxy Tails, Chem. Mater., 1998,10: 3352-3363.
    
    40. J. X. Geng, E. Zhou, G. Li, J. W. Y. Lam, B. Z. Tang, Electric-field-induced molecular alignment of side-chain liquid-crystalline polyacetylenes containing biphenyl mesogens, J. Polym. Sci., Part B: Polym. Phys., 2004, 42: 1333-1341.
    
    41. E. T. Kang, P. Ehrlich, A. P. Bhatt, W. A. Anderson, Photoconductivity in trans-poly(phenylacetylene) and its charge-transfer complexes, Macromolecules, 1984, 17: 1020-1024.
    
    42. B. Z. Tang, H. Z. Chen, R. S. Xu, J. W. Y. Lam, K. K. L. Cheuk, H. N. C. Wong, M. Wang, Structure-property relationship for photoconduction in substituted polyacetylenes,Chem.Mater.,2000,12:213-221.
    43.J.L.Hua,J.W.Y.Lam,X.M.Yu,L.J.Wu,H.S.Kwok,K.S.Wong,B.Z.Tang,Synthesis,light emission,and photovoltaic properties of perylene- containing polyacetylenes,J.Polym.Sci.Part A:Polym.Chem.,2008,46:2025-2037.
    44.N.Wang,Y.J.Li,F.S.Lu,Y.Liu,X.R.He,L.Jiang,J.P.Zhuang,X.F.Li,Y.L.Li,S.Wang,H.B.Liu,D.B.Zhu,Fabrication of novel conjugated polymer nanostructure:Porphyrins and fullerenes conjugately linked to the polyacetylene backbone as pendant groups,J.Polym.Sci.Part A:Polym. Chem.,2005,43:2851-2861.
    45.J.W.Chen,H.S.Kwok,B.Z.Tang,Silole-containing poly(diphenylacetylene):Synthesis,characterization,and light emission,J.Polym.Sci.Part A:Polym.Chem.,2006,44:2487-2498.
    46.H.Tong,M.Hauβler,B.Z.Tang,Poly(1-phenyl-1-alkyne)s beating carboxylic acid moieties,Polym.Prepr.(Am.Chem.Soc.,Div.Polym.Chem.)2004,45(2):835-836.
    47.Y.M.Huang,W.K.Ge,J.W.Y.Lam,B.Z.Tang,Influence of electric field on the photoluminescence of a liquid crystalline monosubstituted polyacetylene,Appl.Phys.Lett.,2001,78(12):1652-1654.
    48.M.T.Bernius,M.Inbasekaran,J.O'Brien,W.S.Wu,Progress with lightemitting emitting polymers,Adv.Mater.,2000,12:1737-1750.
    49.Z.Xie,H.S.Kwok,B.Z.Tang,Blue luminescence of poly[1-phenyl-5-(Rnaphthoxy)pentyne],Opt.Mater.,2002,21:231-234.
    50.U.Scherf,E.J.W.List,Semiconducting polyfluorenes-towards reliable structureproperty relationships,Adv.Mater.,2002,14:477-487.
    51.J.W.Y.Lam,M.Hauβler,B.Z.Tang,Conjugated polymers with linear and hyperbranched structures and advanced materials properties,Mol.Cryst.Liq.Cryst.,2004,415:43-60.
    52.K.Xu,Y.Geng,B.Z.Tang,Synthesis and curable polyacetylenes,Polym.Mater.Sci.Eng.,2000,82:103-104.
    53.W.Z.Yuan,A.J.Qin,J.W.Y.Lam,J.Z.Sun,Y.Q.Dong,M.Hauβler,J.Z.Liu,H.P.Xu,Q.Zheng,B.Z.Tang,Disubstituted polyacetylenes containing photopolymerizable vinyl groups and polar ester functionality:Polymer synthesis,aggregation-enhanced emission,and fluorescent pattern formation,Macromolecules,2007,40:3159-3166.
    54.F.Ciardelli,S.Lanzillo,O.Pieroni,Optically active polymers of 1-alkynes,Macromolecules,1974,7(2):174-179.
    55.B.Z.Tang,N.Kotera,Synthesis of optically active polyacetylene containing an asymmetric silicon by using organotransition-metal complexes as catalysts,Macromolecules,1989,22(11):4388-4390.
    56. J. S. Moore, C. B. Gorman, R. H. Grubbs, Soluble, chiral polyacetylenes: Syntheses and investigation of their solution conformation, J. Am. Chem. Soc., 1991,113: 1704-1712.
    
    57. B. Z. Tang, H. Peng, H. N. C. Wong, Synthesis and optical properties of poly(thienylacetylene)s, Chin. J. Polym. ScL, 1999, 17: 81-86.
    
    58. a) K. K. L. Cheuk, J. W. Y. Lam, B. Z. Tang, Amino acid-containing polyacetylenes, Macromolecules, 2003, 36: 5947-5959.
    
    b) B. S. Li, L. Wan, C. Bai, B.Z. Tang, Formation of vesicular fibers via selforganization of an amphiphilic chiral oligomer, Langmuir, 2004, 20: 2515-2518.
    
    c) B. S. Li, K. K. L. Cheuk, C.Bai, B. Z. Tang, Synthesis and hierarchical structures of amphiphilic polyphenyl-acetylenes, Macromolecules, 2003, 36: 77-85.
    
    d) K. K. L. Cheuk, B. S. Li, B.Z.Tang, Amphiphilic polymers comprising of conjugated polyacetylene backbone and naturally occurring pendants: Synthesis, chain helicity, self-assembly and biological activity, Curr. Trends Polym. Sci., 2002, 7: 41-55.
    
    59. K. K. L. Cheuk, J. W. Y. Lam, L. M. Lai, Y. Dong, B. Z. Tang, Syntheses, hydrogen-bonding interactions, tunable chain helicities, and cooperative supramolecular associations and dissociations of poly(phenylacetylene)s bearing L-valine pendants: Toward the development of proteomimetic polyenes, Macromolecules, 2003, 36(26): 9752-9762.
    
    60. B. Z. Tang, Optically active polyacetylenes: helical chirality and biomimetic hierarchical structures, Polym. News, 2001,26: 262-272.
    
    61. M. M. Green, J. W. Park, T. Sato, A. Teramoto, S. Lifson, R. B. Selinger, J. V. Selinger, The macromolecular route to chiral amplification, Angew. Chem., Int. Ed, 1999,38:3139-3154.
    
    62. B. S. Li, K. K. L. Cheuk, F. Salhi, J. W. Y. Lam, J. A. K. Cha, X. D. Xiao, C. L. Bai, B. Z. Tang, Tuning the chain helicity and organizational morphology of an L-valine-containing polyacetylene by pH change, Nano Lett., 2001,1: 323-328.
    
    63. R. Nomura, J. Tabei, T. Masuda, Biomimetic stabilization of helical structure in a synthetic polymer by means of intramolecular hydrogen bonds, J. Am. Chem. Soc., 2001,123:8430-8431.
    
    64. J. Tabei, R. Nomura, T. Masuda, Conformational study of poly(N-propargyl-amides) having bulky pendant groups, Macromolecules, 2002, 35(14): 5405-5409.
    
    65. J. P. Deng, J. Tabei, M. Shiotsuki, F. Sanda, T. Masuda, Conformational transition between random coil and helix of poly(N-propargylamides), Macromolecules, 2004,37(5): 1891-1896.
    
    66. R. Nomura, S. Nishiura, J. Tabei, F. Sanda, T. Masuda, Stereoregular poly(N-propargylcarbamates) having helical conformation stabilized by the intramolecular hydrogen bonds, Macromolecules, 2003, 36(14): 5076-5080.
    
    67. J. Q. Qu, M. Shiotsuki, F. Sanda, T. Masuda, Synthesis and properties of helical polyacetylenes carrying cholesteryl moieties,Macromol.Chem.Phys.,2007,208:823-832.
    68.J.P.Deng,J.Tabei,M.Shiotsuki,F.Sanda,T.Masuda,Effects of steric repulsion on helical conformation of poly(N-propargylamides)with phenyl groups,Macromolecules,2004,37:7156-7162.
    69.R.Y.Liu,F.Sanda,T.Masuda,Synthesis and properties of ornithine- and lysine-based poly(N-propargylamides).Responsiveness of the helical structure to acids,Polymer,2007,48:6510-6518.
    70.E.A.Rahim,F.Sanda,T.Masuda,Synthesis and properties of optically active amino acid based polyacetylenes bearing eugenol and fluorene moieties,J.Polym.Sci.Part A:Polym.Chem.,2006,44:810-819.
    71.T.Fujii,M.Shiotsuki,Y.Inai,F.Sanda,T.Masuda,Synthesis of helical poly(N-propargylamides)carrying azobenzene moieties in side chains.Reversible arrangement-disarrangement of helical side chain arrays upon photoirradiation keeping helical main chain intact,Macromolecules,2007,40:7079-7088.
    72.H.C.Zhao,F.Sanda,T.Masuda,Synthesis and properties of pyrenefunctionalized polyacetylene.A stable helical polymer emitting fluorescence,Polymer,2006,47:1584-1589.
    73.J.Tabei,M.Shiotsuki,F.Sanda,T.Masuda,Determination of helical sense of poly(N-propargylamides)by exciton-coupled circular dichroism,Macromolecules,2005,38:9448-9454.
    74.K.Okoshi,K.Sakajiri,J.Kumaki,E.Yashima,Well-defined lyotropic liquid crystalline properties of rigid-rod helical polyacetylenes,Macromolecules,2005,38:4061-4064.
    75.H.C.Zhao,F.Sanda,T.Masuda,Novel optically active polyacetylenes:Synthesis and helical conformation of L-lysine-dendronized poly(phenylacetylene),Macromol.Chem.Phys.,2006,207:1921-1926.
    76.T.Aoki,T.Kaneko,M.Teraguchi,Synthesis of functional π-conjugated polymers from aromatic acetylenes,Polymer,2006,47:4867-4892.
    77.K.Maeda,K.Morino,Y.Okamoto,T.Sato,E.Yashima,Mechanism of helix induction on a stereoregular poly((4-carboxyphenyl)acetylene)with chiral amines and memory of the macromolecular helicity assisted by interaction with achiral amines,J.Am.Chem.Soc.,2004,126:4329-4342.
    78.H.Onouchi,T.Hasegawa,D.Kashiwagi,H.Ishiguro,K.Maeda,E.Yashima,Helicity induction in charged poly(phenylacetylene)s beating various acidic functional groups in water and its mechanism,Macromolecules,2005,38:8625-8633.
    79.T.Hasegawa,K.Morino,Y.Tanaka,H.Katagiri,Y.Furusho,E.Yashima,Temperature-driven switching of helical chirality of Poly[(4-carboxyphenyl)- acetylene] induced by a single amidine enantiomer and memory of the diastereomeric macromolecular helicity, Macromolecules, 2006,39: 482-488.
    
    80. H. Onouchi, D. Kashiwagi, K. Hayashi, K. Maeda, E. Yashima, Helicity induction on poly(phenylacetylene)s bearing phosphonic acid pendants with chiral amines and memory of the macromolecular helicity assisted by interaction with achiral amines in dimethylSulfoxide, Macromolecules, 2004, 37: 5495-5503.
    
    81. H. Onouchi, T. Miyagawa, A. Furuko, K. Maeda, E. Yashima, Enantioselective esterification of prochiral phosphonate pendants of a polyphenylacetylene assisted by macromolecular helicity: Storage of a dynamic macromolecular helicity memory, J. Am. Chem. Soc., 2005, 127: 2960-2965.
    
    82. K. Morino, M. Oobo, E. Yashima, Helicity induction in a poly(phenylacetylene) bearing aza-18-crown-6 ether pendants with optically active bis(amino acid)s and its chiral stimuli-responsive gelation, Macromolecules, 2005,38: 3461-3468.
    
    83. F. Salhi, K. K. L. Cheuk, B. Z. Tang, Rapid fabrication of 3D porous films with biomimetic patterns by natural evaporation of amphiphilic polyacetylene solutions, J. Nanosci. Nanotechnol., 2001, 1: 137-141.
    
    84. W. Zhang, M. Shiotsuki, T. Masuda, J. Kumaki, E. Yashima, Synthesis of polymer brushes composed of poly(phenylacetylene) main chain and either polystyrene or poly(methyl methacrylate) side chains, Macromolecules, 2007, 40: 178-185.
    
    85. S. Sakurai, K. Kuroyanagi, K. Morino, M. Kunitake, E. Yashima, Atomic force microscopy study of helical poly(phenylacetylene)s on a mica substrate, Macromolecules, 2003, 36: 9670-9674.
    
    86. a) B. S. Li, J. Zhou, Y. Xie, B. Z. Tang, Biological effects of amino acid-containing polyacetylenes, Polym. Mater. Sci. Eng., 2001, 85: 401-402. b) B. S. Li, J. Zhou, Y. Xie, B. Z. Tang, Synthesis and cytotoxicity of a D-galactose-containing polyphenylacetylene, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2001, 42 (1): 543-544.
    
    87. J. Q. Qu, Y. Suzuki, M. Shiotsuki, F. Sanda, T. Masuda, Synthesis and electro-optical properties of helical polyacetylenes carrying carbazole and triphenylamine moieties, Polymer, 2007,48: 4628-4636.
    
    88. J. Q. Qu, T. Katsumata, M. Satoh, J. Wada, T. Masuda, Synthesis and properties of polyacetylene and polynorbornene derivatives carrying 2,2,5,5-tetramethyl-1-pyrrolidinyloxy moieties, Macromolecules, 2007,40: 3136-3144.
    
    89. J. Q. Qu, T. Katsumata, M. Satoh, J. Wada, J. Igarashi, K. Mizoguchi, T. Masuda, Synthesis and charge/discharge properties of polyacetylenes carrying 2,2,6,6-tetramethyl-1-piperidinoxy radicals, Chem, Eur, J., 2007,13: 7965-7973.
    
    90. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science,1995,270:1789-1791.
    91.G.Li,V.Shrotriya,Y.Yao,Y.Yang,Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),J.Appl.Phys.,2005,98:043704.
    92.W.Huynh,J.Dittmer,A.P.Alivisatos,Hybrid nanorod-polymer solar cells,Science,2002,295:2425-2427.
    93.V.L.Colvin,M.C.Schlamp,A.P.Alivisatos,Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,Nature,1994,370:354-357.
    94.J.H.Park,Y.T.Lim,O.O.Park,Y.C.Kim,Enhancement of photostability in blue-light-emitting polymers doped with gold nanoparticles,Macromol.Rapid Commun.,2003,24:331-334.
    95.B.Z.Tang,H.Y.Xu,Preparation,alignment,and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes,Macromolecules,1999,32:2569-2576.
    96.Z.Li,Y.Q.Dong,M.Hauβler,J.W.Y.Lam,Y.P.Dong,L.J.Wu,K.S.Wong,B.Z.Tang,Synthesis of,light emission from,and optical power limiting in soluble single-walled carbon nanotubes functionalized by disubstituted polyacetylenes,J.Phys.Chem.B,2006,110:2302-2309.
    97.W.Z.Yuan,J.Z.Sun,Y.Q.Dong,M.Hauβler,F.Yang,H.P.Xu,A.J.Qin,J.W.Y.Lam,Q.Zheng,B.Z.Tang,Wrapping carbon nanotubes in pyrenecontaining poly(phenylacetylene)chains:Solubility,stability,light emission,and surface photovoltaic properties,Macromolecules,2006,39:8011-8020.
    98.W.Z.Yuan,Y.Mao,H.Zhao,J.Z.Sun,H.P.Xu,J.K.Jin,Q.Zheng,B.Z.Tang,Electronic interactions and polymer effect in the functionalization and solvation of carbon nanotubes by pyrene- and ferrocene-containing poly(1-alkyne)s,Macromolecules,2008,41:701-707.
    99.袁望章,赵辉,徐海鹏,孙景志,J.W.Y Lam,毛宇,金佳科,张双,郑强,唐本忠,用带不同侧链的双取代聚乙炔衍生物增溶多壁碳纳米管,高分子学报,2007,10:901-904.
    100.B.Z.Tang,H.Y.Xu,J.W.Y.Lam,P.P.S.Lee,K.T.Xu,Q.H.Sun,K.K.L.Cheuk,C_(60)-containing poly(1-phenyl-1-alkynes):Synthesis,light emission,and optical limiting,Chem.Mater.,2000,12:1446-1455.
    101.T.Nishimura,K.Tsuchiya,S.Ohsawa,K.Maeda,E.Yashima,Y.Nakamura,J.Nishimura,Macromolecular helicity induction on a poly(phenylacetylene)with C_2-symmetric chiral[60]fullerene-bisadducts,J.Am.Chem.Soc.,2004,126:11711-11717.
    102.T.Nishimura,S.Ohsawa,K.Maeda,E.Yashima,A helical array of pendant fullerenes on a helical poly(phenylacetylene) induced by non-covalent chiral interactions, Chem. Commun., 2004, 646-647.
    
    103. G. Kwak, S. Y. Kim, M. Fujiki, T. Masuda, Y. Kawakami, T. Aoki, Versatile and facile preparation of chiral polyacetylene-based gel film and organic-inorganic composites, Chem. Mater., 2004, 16: 1864-1868.
    
    104. S. Matteucci, E. V. Wagner, B. D. Freeman, S. Swinnea, T. Sakaguchi, T. Masuda, Desilylation of substituted polyacetylenes by nanoparticles, Macromolecules, 2007,40: 3337-3347.
    
    105. W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer, Adv. Mater., 2004, 16: 1009-1013.
    
    106. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 2005,105: 1103-1169.
    
    107. T. T. Liang, Y. Naitoh, M. Horikawa, T. Ishida, W. Mizutani, Fabrication of steady junctions consisting of α,ω-bis(thioacetate) oligo(p-phenylene vinylene)s in nanogap electrodes, J. Am. Chem. Soc., 2006,128: 13720-13726.
    
    108. A. Shavel, N. Gaponik, A. Eychmuller, Factors governing the quality of aqueous CdTe nanocrystals: Calculations and experiment, J. Phys. Chem. B, 2006, 110: 19280-19284.
    
    109. A. C. Wisher, I. Bronstein, V. Chechik, Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as protein transfection agents, Chem. Commun., 2006, 1637-1639.
    
    110. C. L. McGuiness, A. Shaporenko, C. K. Mars, S. Uppili, M. Zharnikov, D. L. Allara, Molecular self-assembly at bare semiconductor surfaces: Preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001), J. Am. Chem. Soc., 2006, 128: 5231-5243.
    
    111. M. D. Lay, K. Varazo, J. L. Stickney, Formation of sulfur atomic layers on gold from aqueous solutions of sulfide and thiosulfate: Studies using EC-STM, UHV-EC, and TLEC, Langmuir, 2003, 19: 8416-8427.
    
    112. Y. D. Li, H. W. Liao, Y. Ding, Y. Fan, Y. Zhang, Y. T. Qian, Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod, Inorg. Chem., 1999, 38: 1382-1387.
    
    113. J. L. Hua, Z. Li, J. W. Y. Lam, H. P. Xu, J. Z. Sun, Y. P. Dong, Y. Q. Dong, A. J. Qin, W. Z. Yuan, H. Z. Chen, M. Wang, B. Z. Tang, Induced chain alignment, efficient energy transfer, and enhanced light emission in functional polyacetylene-perovskite hybrids, Macromolecules, 2005, 38: 8127-8130.
    
    114. D. Xu, Z. P. Liu, J. B. Liang, Y. T. Qian, Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol, J. Phys. Chem.B,2005,109:14344-14349.
    115.H.P.Xu,M.M.Shi,H.Z.Chen,M.Wang,B.Z.Tang,Photoconductivity study of new polyacetylene derivatives with different substituents,Chinese J.Polm.Sci.,2005,23(6):675-679.
    116.L.Cao,H.Z.Chen,M.Wang,J.Z.Sun,X.B.Zhang,F.Z.Kong,Photoconductivity study of modified carbon nanotube/oxotitanium phthalocyanine composites,J.Phys.Chem.B,2002,106:8971-8975.
    117.孙景志,曹健,李寒莹,洪剑,汪茫,CdS纳米棒/酞菁氧钛复合光导体的光电导性能,高等学校化学学报,2005,26(9):1722-1725.
    118.P.M.Borsenberger,D.S.Weiss,Organic photoreceptors for imaging systems,Marcel Dekker,New York,1993.
    119.Dictionary of Organometallic Compounds,2nd ed.;Chapman &Hall:London,1995.
    120.R.R.Schrock,J.A.Osborn,π-Bonded complexes of the tetraphenylborate ion with rhodium(Ⅰ)and Iridium(Ⅰ),Inorg.Chem.,1970,9:2339-2343.
    121.a)A.Furlani,S.Licoccia,M.V.Russo,A.Camus,N.Marsich,Rhodium and platinum complexes as catalysts for the polymerization of phenylacetylene,J.Polym.Sci.,Part A:Polym.Chem.,1986,24:991-1005.
    b)徐洪耀,光善仪,张胜义,童保云,唐本忠,聚苯乙炔立体结构与光致发光性能关系的研究,彦分子学报,2001,186-190.
    c)J.Z.Sun,H.Z.Chen,R,S.Xu,M.Wang,J.W.Y.Lam,B.Z.Tang,Electric field induced cis-to-trans isomerization of polyphenylacetylene in solid state,Chem.Commun.,2002,1222-1223.
    d)B.S.Li,K.K.L.Cheuk,D.L.Yang,J.W.Y.Lam,L.J.Wan,C.L.Bai,B.Z.Tang,Self-assembling of an amphiphilic polyacetylene carrying L-leucine pendants:A homopolymer case,Macromolecules,2003,36:5447-5450.
    122.a)K.Huang,M.Tabata,Y.Mawatari,A.Miyasaka,E.Sato,Y.Sadahiro,Y.Kashiwaya,K.Ishiii,Origin of the color of π-conjugated columnar polymers:Poly(p-n-octylthiophenyl)acetylene prepared using a[Rh(norbomadiene)Cl]_2catalyst,J.Polym.Sci.Part A:Polym.Chem.,2005,43:2836-2850.
    b)A.Nakazato,I.Saeed,M.Shiotsuki,F.Sanda,T.Masuda,Polymerization of N-propargylamides with a Rh-vinyl complex:Confirmation of the presence of long-lived active species,Macromolecules,2004,37:4044-4047.
    c)K.Hirao,Y.Ishii,T.Terao,Y.Kishimoto,T.Miyatake,T.Ikariya,R.Noyori,Solid-state NMR study of poly(phenylacetylene)synthesized with a rhodium complex initiator,Macromolecules,1998,31:3405-3408.
    123.a)J.W.Y.Lam,Y.P.Dong,K.K.L.Cheuk,C.C.W.Law,L.M.Lai,B.Z.Tang,Helical conjugated polymers:Synthesis,stability,and chiroptical properties of poly(alkyl phenylpropiolate)s bearing stereogenic pendants,Macromolecules, 2004,37:6695-6704.
    b)X.X.Kong,J.W.Y.Lam,B.Z.Tang,Synthesis,mesomorphism,isomerization,and aromatization of stereoregular poly{[4-({[4'-(heptyl)oxy-4-biphenylyl]carbonyl}oxy)-hexyl]oxy}carbonyl)phenyl]acetylene},Macromolecules,1999,32:1722-1730.
    124.Z.Q.Yu,J.H.Liu,J.J.Yan,X.B.Liu,D.H.Liang,J.W.Y.Lam,Y.P.Dong,Z.C.Li,E.Q.Chen,B.Z.Tang,Sheetlike side-chain liquid crystalline polyacetylenes forming monolayer lamellae in dilute solutions,Macromolecules,2007,40:8342-8348.
    125.a)G.Wegner,Nanocomposites of hairy-rod macromolecules:Concepts,constructs,and materials,Macromol.Chem.Phys.,2003,204:347-357.
    b)D.Cochin,F.Candau,R.Zana,Y.Talmon,Direct imaging of microstructures formed in aqueous solutions of polyamphiphiles,Macromolecules,1992,25:4220-4223.
    126.a)T.Masuda,Y.Okano,K.Tamura,T.Higashimura,Polymerization of 1-butyne and isopropylacetylene by transition metal catalysts and geometric structure of polymers,Polymer,1985,26:793-797.
    b)T.Masuda,B.Z.Tang,T.Higashimura,H.Yamaoka,Thermal degradation of polyacetylenes carrying substituents,Macromolecules,1985,18:2369-2373.
    127.S.Iijima,Helical microtubes of graphitic carbon,Nature,1991,354:56-58.
    128.Y.P.Sun,K.F.Fu,Y.Lin,W.J.Huang,Functionalized carbon nanotubes:Properties and applications,Acc.Chem.Res.,2002,35:1096-1104.
    129.J.N.Coleman,U.Khan,Y.K.Gun'ko,Mechanical reinforcement of polymers using carbon nanotubes,Adv.Mater,2006,18:689-706.
    130.J.Cao,J.Z.Sun,J.Hong,H.Y.Li,H.Z.Chen,M.Wang,Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method,Adv.Mater,2004,16:84-87.
    131.Y.Lin,M.J.Meziani,Y.P.Sun,Functionalized carbon nanotubes for polymeric nanocomposites,J.Mater Chem.,2007,17:1143-1148.
    132.Y.N.Xia,P.D.Yang,Y.G.Sun,Y.Y.Wu,B.Mayers,B.Gates,Y.D.Yin,F.Kim,H.Q.Yan,One-dimensional nanostructures:Synthesis,characterization,and applications,Adv.Mater,2003,15:353-389.
    133.L.W.Qu,L.M.Veca,Y,Lin,A.Kitaygorodskiy,B.L.Chen,A.M.McCall,J.W.Connell,Y.P.Sun,Soluble nylon-functionalized carbon nanotubes from anionic ring-opening polymerization from nanotube surface,Macromolecules,2005,38:10328-10331.
    134.a)P.X.Gao,Y.Ding,W.J.Mai,W.L.Hughes,C.S.Lao,Z.L.Wang,Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,Science,2005,309:1700-1704.
    b)U.Pal,P.Santiago,Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process,J.Phys.Chem.B,2005,109:15317-15321.
    c)F.K.Shan,G.X.Liu,W.J.Lee,G.H. Lee,I.S.Kim,B.C.Shin,Structural,electrical,and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition,Appl.Phys.Lett.,2005,86:221910.
    135.a)S.Malynych,I.Luzinov,G.Chumanov,Poly(vinyl pyridine)as a universal surface modifier for immobilization of nanoparticles,J.Phys.Chem.B,2002,106:1280-1285.
    b)M.S.Kunz,K.R.Shull,A.J.Kellock,Colloidal gold dispersions in polymer matrices,J.Colloid Interface Sci.,1993,156:240-249.
    c)S.A.Sukhishvili,S.Granick,Adsorbed monomer analog of a common polyelectrolyte,Phys.Rev.Lett.,1998,80:3646-3649.
    d)D.I.Gittins,F.Caruso,Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media,Angew.Chem.Int.Ed.,2001,40:3001-3004.
    e)K.R.Shull,A.J.Kellock,Metal particle adsorption and diffusion in a model polymer/metal composite system,J.Polym.Sci.,Part B:Polym.Phys.,1995,33:1417-1422.
    136.a)S.Subramanyam,A.Blumstein,Conjugated ionic polyacetylenes.3.Polymerization of ethynylpyridinium salts,Macromolecules,1991,24:2668-2674.
    b)S.Subramanyam,A.Blumstein,K.P.Li,Conjugated ionic polyacetylenes.4.Polymerization of ethynylpyridines with bromine,Macromolecules,1992,25:2065-2069.
    c)P.G.Zhou,A.Blumstein,Conjugated ionic polyacetylenes.8.Amphiphilic poly(N-octadecyl-2-ethynylpyridinium bromide),Polymer,1996,37:1477-1485.
    137.a)A.G.Kanaras,F.S.Kamounah,K.Schaumburg,C.J.Kiely,M.Brust,Thioalkylated tetraethylene glycol:A new ligand for water soluble monolayer protected gold clusters,Chem.Commun.,2002,2294-2295.
    b)K.Ohno,K.Koh,Y.Tsujii,T.Fukuda,Synthesis of gold nanoparticles coated with well-defined,high-density polymer brushes by surface-initiated living radical polymerization,Macromolecules,2002,35:8989-8993.
    c)S.Y.Lin,Y.T.Tsai,C.C.Chen,C.M.Lin,C.Chen,Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles,J.Phys.Chem.B,2004,108:2134-2139.
    d)D.V.Leff,L.Brandt,J.R.Heath,Synthesis and characterization of hydrophobic,organically-soluble gold nanocrystals functionalized with primary amines,Langmuir,1996,12:4723-4730.
    e)T.Yonezawa,T.Kunitake,Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization,Colloids surfaces A:Physicochem.Eng.Aspects,1999,149:193-199.
    f)M.Green,P.O'Brien,A simple one phase preparation of organically capped gold nanocrystals,Chem.Commun.,2000,183-184.
    138.D.B.Mitzi,C.A.Feild,W.T.A.Harrison,A.M.Guloy,Conducting tin halides with a layered organic-based perovskite structure,Nature,1994,369:467-469.
    139.a)T.Hattori,T.Taira,M.Era,T.Tsutsui,S.Saito,Highly efficient electroluminescence from a heterostructure device combined with emissive layered- perovskite and an electron-transporting organic compound,Chem.Phys.Lett.,1996,254:103-108.
    b)G.C.Papavassiliou,I.B.Koutselas,Structural,optical and related properties of some natural three- and lower-dimensional semiconductor systems,Synth.Met.,1995,71:1713-1714.
    c)A.Lappas,A.Zorko,E.Wortham,R.N.Das,E.P.Giannelis,P.Cevc,D.Arcon,Low-energy magnetic excitations and morphology in layered hybrid perovskite-poly(dimethyl-siloxane)nanocomposites,Chem.Mater.,2005,17:1199-1207.
    d)N.Kitazawa,Y.Watanabe,Optical properties of self-assembled nano-hybrid materials,Surf.Coat.Technol.,2005,198:9-13.
    e)Z.Y.Cheng,B.L.Shi,B.X.Gao,M.L.Pang,S.Y.Wang,Y.C.Han,J.Lin,Spin-coating preparation of highly ordered photoluminescent films of layered PbI_2-aminoalkyloxysilane perovskites,Eur.J.Inorg.Chem.,2005,1:218-223.
    f)B.L.Zhu,X.Chen,Z.M.Sui,L.M.Xu,C.J.Yang,J.K.Zhao,J.Liu,In situ fabrication of ZnS semiconductor nanoparticles in layered organic-inorganic solid template,Chin.Chem.Lett.,2004,15:97-100.
    g)G.L.Frey,K.J.Reynolds,R.H.Friend,Novel electrodes from solutionprocessed layer-structure materials,Adv.Mater.,2002,14:265-268.
    h)Z.L.Xiao,H.Z.Chen,M.M.Shi,G.Wu,R.J.Zhou,Z.S.Yang,M.Wang,B.Z.Tang,Preparation and characterization of organic-inorganic hybrid perovskite (C_4H_9NH_3)_2CuCl_4,Mater.Sci.Eng.B,2005,117:313-316.
    i)N.V.Venkataraman,S.Bhagyalakshmi,S.Vasudevan,R.Seshadri,Conformation and orientation of alkyl chains in the layered organic-inorganic hybrids:(C_nH_(2n+1)NH_3)_2PbI_4(n=12,16,18),Phys.Chem.Chem.Phys.,2002,4:4533-4538.
    j)V.V.Popov,T.Y.Bagaeva,T.V.Teperik,N.J.M.Horing,Y.Ayaz,Ultrafast radiative decay of polaritons in an interface layer with strong excitonic response,J.Lumin.,2005,112:225-229.
    k)R.M.Sullivan,J.D.Martin,An illuminating framework:Understanding the photoluminescence of α-CuAlCl_4,J.Am.Chem.Soc.,1999,121:10092-10097.
    1)A.M.Guloy,Z.J.Tang,P.B.Miranda,V.I.Srdanov,A new luminescent organic-inorganic hybrid compound with large optical nonlinearity,Adv.Mater.,2001,13:833-837.
    m)J.Calabrese,N.L.Jones,R.L.Harlow,N.Herron,D.L.Thorn,Y.Wang,Preparation and characterization of layered lead halide compounds,J.Am.Chem.Soc.,1991,113:2328-2330.
    140.a)X.H.Zhu,N.Mercier,P.Frere,P.Blanchard,J.Roncali,M.Allain,C.Pasquier,A.Riou,Effect of mono- versus di-ammonium cation of 2,2'-bithiophene derivatives on the structure of organic-inorganic hybrid materials based on iodo metallates,Inorg.Chem.,2003,42:5330-5339.
    b)M.Era,T.Kobayashi,M.Noto,PbBr-based layered perovskite organic-inorganic superlattice having hole-transporting carbazole chromophore in organic layer,Curr.Appl.Phys.,2005,5:67-70.
    c)M.Okubo,M.Enomoto,N.Kojima,Study on photomagnetism of 2-D magnetic compounds coupled with photochromic diarylethene cations, Synth. Met., 2005, 152: 461-464.
    
    d) K. Kikuchi, Y. Takeoka,M. Rikukawa, K. Sanui, Fabrication and characterization of organic-inorganic perovskite films containing fullerene derivatives, Colloid Surf. A, 2005, 257: 199-201.
    
    141. D. B. Mitzi, K. Chondroudis, C. R. Kagan, Design, structure, and optical properties of organic-inorganic perovskites containing an oligothiophene chromophore, Inorg. Chem., 1999,38: 6246-6256.
    
    142. K. Chondroudis, D. B. Mitzi, Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers, Chem. Mater., 1999,11: 3028-3030.
    
    143. a) M. Era, S. Yoneda, T. Sano, M. Noto, Preparation of amphiphilic poly(thiophene)s and their application for the construction of organic-inorganic superlattices, Thin Solid Films, 2003, 438: 322-325.
    b) M. Era, Formation of PbBr-based layered perovskite structure having poly(thiophene) as an organic layer by soaking thin film of hydrogen bromide salt of poly(3-aminododecyl-thiophene) in aqueous lead bromide solution, Chem. Lett., 2003, 32: 272-273.
    
    144. a) Y. Takeoka, K. Asai, M. Rikukawa, K. Sanui, Incorporation of conjugated polydiacetylene systems into organic-inorganic quantum-well structures, Chem. Commun., 2001, 2592-2593.
    
    b) H. Kosuge, S. Okada, H. Oikawa, H. Nakanishi,Polydiacetylenes in organic-inorganic hybrid systems, Mol. Cryst. Liq. Cryst., 2002,377: 13-18.
    
    145. J. L. Hua, J. W. Y. Lam, Z. Li, A. J. Qin, J. Z. Sun, Y. Q. Dong, Y. P. Dong, B. Z. Tang, Synthesis of liquid crystalline poly(1-pentyne)s and fabrication of polyacetylene-perovskite hybrids, J. Polym. Sci., Part A: Polym. Chem., 2006, 44: 3538-3550.
    
    146. Z. Q. Xie, B. Yang, G. Cheng, L. L. Liu, F. He, F. Z. Shen, Y. G. Ma, S. Y. Liu, Supramolecular interactions induced fluorescence in crystal: Anomalous emission of 2,5-diphenyl-1,4-distyrylbenzene with all cis double bonds, Chem. Mater., 2005, 17: 1287-1289.
    
    147. Z. Li, Y. Q. Dong, A. J. Qin, J. W. Y. Lam, Y. P. Dong, W. Z. Yuan, J. Z. Sun, J. L. Hua, K. S. Wong, B. Z. Tang, Functionalization of disubstituted polyacetylenes through polymer reactions: Syntheses of functional poly(1-phenyl-1-alkyne)s, Macromolecules, 2006, 39: 467-469.
    
    148. E. Prestsch, P. Buhlmann, C. Affolter, Structure Determination of Organic Compounds: Tables of Spectral Data; Springer: New York, 2000.
    
    149. Q. H. Sun, K. T. Xu, H. Peng, R. H. Zheng, M. Haussler, B. Z. Tang, Hyperbranched organometallic polymers: Synthesis and properties of poly(ferrocenylenesilyne)s, Macromolecules, 2003, 36: 2309-2320.
    150.D.B.Mitzi,K.Chondroudis,C.R.Kagan,Organic-inorganic electronics,IBM J.Res.Dev.,2001,45:29-45.
    151.Y.M.Huang,J.W.Y.Lam,K.K.L.Cheuk,W.K.Ge,B.Z.Tang,Strong luminescence from poly(1-alkynes),Macromolecules,1999,32:5976-5978.
    152.a)E.T.Kang,P.Ehrlich,A.P.Bhatt,W.A.Anderson,Photoconductivity in trans-poly(phenylacetylene)and its charge-transfer complexes,Macromolecules,1984,17:1020-1024.
    b)E.T.Kang,K.G.Neoh,T.Masuda,T.Higashimura,M.Yamamoto,Photoconductivity in poly[[o-(trimethylsilyl)phenyl]acetylene],Polymer,1989,30:1328-1331.
    c)S.Q.Zhou,H.P.Hong,Y.X.He,D.L.Yang,X.F.Jin,R.Y.Qian,T.Masuda,T.Higashimura,Cartier transport properties of poly(substituted phenylacetylene)s,Polymer,1992,33:2189-2193.
    d)J.Vohlidal,J.Sedlacek,M.Pacovska,O.Lavastre,P.H.Dixneuf,H.Balcar,J.Pfleyer,Poly(p-iodophenylacetylene):Synthesis,characterization,polymer stability and photoelectrical properties,Polymer,1997,38:3359-3367.
    153.a)L.F.Thompson,C.G.Wilson,J.M.J.Eds.Frechet,Materials for Microlithography,American Chemical Society:Washington,DC,1984.
    b)E.Reichmanis,L.F.Thompson,Polymer materials for microlithography,Chem.Rev.,1989,89:1273-1289.
    c)R.Rubner,Innovation via photosensitive polyimide and poly(benzoxazole)precursors-a review by inventor,J.Photopolym.Sci.Technol.,2004,17:685-691.
    154.a)H.C.Dong,R.H.Zheng,J.W.Y.Lam,M.Haussler,A.J.Qin,B.Z.Tang,A new route to hyperbranched macromolecules:Syntheses of photosensitive poly(aroylarylene)s via 1,3,5-regioselective polycyclotrimerization of bis(aroyl-acetylenes)s,Macromolecules,2005,38:6382-6391.
    b)J.L.Hua,J.W.Y.Lam,H.C.Dong,L.J.Wu,K.S.Wong,B.Z.Tang,Synthesis,light emission,and photo-cross-linking of luminescent polyacetylenes containing acrylic pendant goups,Polymer,2006,47:18-22.
    155.a)高分子物理(第二版),第6到8章,金日光、华幼卿主编。
    b)高分子材料的制备与加工,第7章,益小苏等著。
    156.a)B.Z.Yu,H.L.Li,Morphology and photoluminescent properties of poly(pphenylene)nanofibre arrays fabricated by template method,Materials Science and Engineering A,2002,325:215-220.
    b)L.J.Zhi,J.S.Wu,J.X.Li,M.Stepputat,U.Kolb,K.Mullen,Diels-Alder reactions of tetraphenylcyclopentadienones in nanochannels:Fabrication of nanotubes from hyperbranched polyphenylenes,Adv.Mater,2005,17:1492-1496.
    c)J.Y.Shen,Z.J.Chen,N.L.Wang,H.L.Yan,G.Q.Shi,A.Z.Jin,C.Z.Gu,Electrical properties of a single electrochemically template-synthesized polypyrrole nanowire,Appl.Phys.Lett.,2006,88:253106.
    d)H.L.Yan,L.Zhang,J.Y.Shen,Z.J.Chen,G.Q.Shi,B.L.Zhang,Synthesis, property and field-emission behaviour of amorphous polypyrrole nanowires,Nanotechnology,2006,17:3446-3450.
    e)H.L.Yan,G.Q.Shi,Incorporation of gold nanocrystals into poly(3-alkylthiophene)nanowires and fabrication of gold nanowires,Nanotechnology,2006,17:13-18.
    f)D.O'Carroll,I.Lieberwirth,G.Redmond,Microcavity effects and optically pumped lasing in single conjugated polymer nanowircs,Nature Nanotechnology,2007,2(3):180-184.
    g)A.K.Wanekaya,M.A.Bangar,M.Yun,W.Chen,N.V.Myung,A.Mulchandani,Field-effect transistors based on single nanowires of conducting polymers,J.Phys.Chem.C,2007,111:5218-5221.
    h)J.L.Duvail,Y.Z.Long,S.Cuenot,Z.J.Chen,C.Z.Gu,Tuning electrical properties of conjugated polymer nanowires with the diameter,Appl.Phys.Lett.,2007,90:102114.
    i)G.A.O'Brien,A.J.Quinn,D.A.Tanner,G.Redmond,A single polymer nanowire photodetector,Adv.Mater.,2006,18:2379-2383.
    157.a)A.Shik,H.E.Ruda,I.G.Currie,Electromechanical and electro-optical properties of nawires,J.Appl.Phys.,2005,98:094306.
    b)D.A.Dikin,X.Chen,W.Ding,G.Wagner,R.S.Ruoff,Resonance vibration of amorphous SiO_2nanowires driven by mechanical or electrical field excitation,J.Appl.Phys.,2003,93:226-230.
    c)Y.J.Zhang,N.L.Wang,R.R.He,Q.Zhang,J.Zhu,Y.J.Yan,Reversible bending of Si_3N_4 nanowire,Journal of Materials Research,2000,15:1048-1051.
    d)X.D.Wang,C.J.Summers,Z.L.Wang,Self-attraction among aligned Au/ZnO nanorods under electron beam,Appl.Phys.Lett.,2005,86:013111.