贵农22和柔软滨麦草易位系M853-4的抗条锈病基因的分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由条锈菌(Puccinia striiformis f.sp.tritici)引起的重要小麦病害之一,在我国曾多次大流行,给小麦生产上造成了巨大的损失。国内外研究和生产实践证明,种植抗锈良种是控制该病害最经济、有效、易行和对环境安全的核心措施,然而由于小麦条锈病菌的专化性强,生理小种变异快,小麦抗病遗传基础的脆弱性等,常常使病害易于流行。针对这一世界难题,许多小麦条锈病工作者已把注意力转移到利用外源基因来解决这一难题。本研究主要对普通小麦-簇毛麦6A(6V)异代换系贵农22和小麦柔软滨麦草易位系M853-4进行了抗条锈病基因的分子标记,取得了以下结果。
     1.采用我国目前小麦条锈菌流行小种CYR29、CYR30、CYR31、CYR32、Su-4、Su-11对小麦-簇毛麦异代换系贵农22和小麦柔软滨麦草易位系M853-4的苗期进行抗病性评价。结果表明:这两个小麦重要种质对目前小麦条锈菌流行小种具有良好的抗病性。
     2.将M853-4与铭贤169杂交的F2和F3群体接种小麦条锈菌菌系Su-11,遗传分析和分子作图结果表明,M853-4对Su-11的抗病性由一显一隐两对基因控制,利用M853-4与铭贤169杂交的F3代分离群体构建作图群体,从320对SSR引物组合中,在染色体4A的长臂上筛选到4个与抗病基因YrLm2(暂命名)连锁的多态性微卫星标记,它们分别是Xgwm44、Xwmc650、Barc170和Xwmc718,与YrLm2的遗传距离依次为15cM、5cM、3.9cM和3.1cM。
     3.将贵农22对Su-11的抗条锈基因进行SSR分子标记,利用贵农22与铭贤169杂交后代的BC1F2代分离群体构建作图群体,从320对引物中,在染色体1B的长臂上获得了两个与抗病基因YrGn22(暂命名)连锁的多态性微卫星标记,它们分别是Xwmc44和Xcfa2147,其与YrGn22的遗传距离依次为5.1cM和7.3cM。
Stripe rust, caused by Puccinia striiformis. f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Frequent epidemics of stripe rust in our country have caused considerable yield losses.The research and production practice,both at home and abroad, has proved that the most economical, effective, feasible and environment friendly methods to control this disease is planting resistant cultivars. However, high genetic variation and the ability of the pathogen to evolve into new races with added new virulence always have been the major limiting factors in a successful long-term management of stripe rust when race-specific resistance genes are used. For this diffcult question , many researchers have focused their attention to use of alien genes to solve this problem. The objectives of this study were to identify new stripe rust genes in Guinong22 of alien substitution lines 6A(6V) from Triticum aestivum- Hayaldia Villosa and translocation lines M853-4 from Triticum aestivum -Leymus mollis,to map stripe rust resistance gene in these two lines using Simple Sequence Repeat (SSR) techniques.
     1.Seedlings of two wheat lines M853-4 and Guinong22 were tested for resistance to the six Chinese PST isolates CYR29,CYR30,CYR31,CYR32,Su-4,Su-11 under the controlled greenhouse. The result indicated that M853-4 and Guinong22 have effective resistance at all-stage to the dominant races in China.
     2. To identify new resistance genes to yellow rust ,the F2,F3 progeny of the translocation line derived from the cross of M853-4/Mingxian 169 were inoculated with the yellow rust race Su11 at the seeding in the greenhouse.The result suggested that M853-4 have one dominant gene and one recessive gene to Su-11,the mapping population was estabilished from F3 segragated family from the M853-4 crossed with susceptible cultivar Mingxian169, the four molecular marker linked to the resistance gene(temporarily designated as YrLm2)on the long arm of chromosome 4A were selected from 320 pairs of marker,they were Xgwm44,Xwmc650,Barc170 and Xwmc718,to the genetic distance were 15,5,3.9 and 3.1 cM to YrLm2 , respectively.
     3. The gene in Guinong22 which confer resistance to Su-11 was developed SSR markers, the mapping population was estabilished from BC1F2 segragated family from the Guinong22 crossed with susceptible cultivar Mingxian169, the two molecular marker linked to the resistance gene(temporarily designated as YrGn22)on the long arm of chromosome 1B were selected from 320 pairs of marker,they are Xwmc44 and Xcfa2147,with the genetic distance of 5.1 and 7.3 cM to YrGn22 , respectively.
引文
[1]李振岐,商鸿生.小麦条锈病及其防治.上海:上海科学技术出版社.1989.
    [2]汪可宁.1975-1984年我国小麦条锈菌生理专化研究[J].植物病理学报.1986,(2):79-85.
    [3]王凤乐,吴立人,徐世昌,等.绵阳系小麦抗条锈病变异的系统调查[J].植物病理学报, 1996,26:105-109.
    [4]李振岐.我国小麦品种抗条锈丧失问题的研究现状和进展[C].农业科学论文集.1979,13-33.
    [5]李振岐.我国小麦品种抗条锈丧失原因及其解决途径[M].中国农业科学. 1980,3:72-77.
    [6]万安民,赵中华,吴立人.2002年我国小麦条锈病发生回顾.植物保护, 2003, 29 (2):5-8.李强,
    [7]杨作民,解超杰,孙其信.后条中32号时期我国小麦条锈抗源之现状.作物学报,2003,29(2):161-168.
    [8]张国彦,凌中南,吕印谱.河南省小麦品种条锈病发生情况调查及抗条锈性评价.植保技术与推广,2002,22(10):5-7.
    [9]杨家秀,张帆,李晓等.四川主要小麦品种(系)抗条锈性变异分析.西南农业学报,1998,(11):119-125.
    [10]万安民,吴立人,贾秋珍等.1997~2001年我国小麦条锈菌生理小种变化动态.植物病学报, 2003,33(3):261-266.
    [11]王保通,李高保等.2003年陕西省小麦条锈菌生理小种鉴定分析.西北农业学报,2004,13(3),43-47.
    [12] Chen XM, Moore M, Milus E A, et al. Wheat stripe rust epidemics and races of Puccinia striiformis f.sp.tritici the United States in 2000[J]. Plant Disease, 2002,86:39-46.
    [13]赵文生.三个中国小麦条锈菌鉴别寄主抗性遗传基础研究[D].北京:中国农业科学院2000,6.
    [14]吴立人,牛永春.我国小麦条锈病持续控制的策略[J].中国农业科学,2000 , 33(5): 46-54.
    [15]李洪杰,朱至清.簇毛麦的利用价值和染色体操作.植物学通报, 1999, 16(5): 504-510.
    [16] Zhong G Y,Qualset C O.Allelic diversity of high-molecular weight glutenin protein subunits in natural populations of Dasypyrum villosum(L.) Candargy. Theor Appl Genet, 1993, 86: 851-858.
    [17] Blanco A , Simeone R, Resta P, et al. Genomic relationships between Dasypy rum villosum (L.)Candargy and D.H ord eaceum (Cosson et Durieu) Candargy [J]. Genome,1995,39: 83-92.
    [18]李振声,容珊,陈漱阳等.小麦远缘杂交[M].北京:科学出版社,1985.
    [19] Biffen R.H. Mendel′s law of inheritance and wheat breeding.Journl of Agricultural Science,1905,1:4-48.
    [20] Stakeman E.C. The determination of biologic forms of puccinia graminis on Triticum spp.Technical bulletin of the reactions patterns Minnesota Agricultural Experimental Station.1922.8:1-10.
    [21] FlorH.H.Host parasite intcraction in flax rust:Its genetics and implication.Phytopathology, 1955,45:680-685.
    [22] Legeing W.Q. A second gene for resistace to puccinia graminis f.sp.tritici in the red Egyptian 2D wheat substitution line.Phytopathology,1968,58:584-586.
    [23] Sears E.R. The aneuploids of commen wheat.Missouri Agricultural Expeirment Station Research Bulletin,1954,572:pp.59.
    [24] Boukhatem.N,Baret P.V.Quantitative trait loci for resistance against Yellow rust in two wheat-derived recombinant inbred line populations,2002,104:111-118.
    [25] Caetano-Anolles G,Callahan LM,Williams PE.DNA amplification fingerprinting analysis ofbermudagrass(Cynodon):genetic relationships between species and interspecific crosses[J]. Theor Appl Genet,1995,91:228-235.
    [26] Yu XH, Mackill DJ, Bonman JM. Tagging genes for blast resistance in rice via linkage to RFLP markers[J]. Theor Appl Genet,1991,81:471-476.
    [27]朱立煌,徐吉臣,陈英等.用分子标记定位一个未知的抗稻瘟病基因[J].中国科学(B辑)1994,24(10):1048-1052.
    [28] Gustavo CA, Brant J.B, Peter M.G. 1991. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers[J]. BIO/TECHNOLOGY,9:553-557.
    [29] Manninen OM, Turpeinen T, Nissila E. Identification of RAPD markers closely linked to the mlo-locus in barley[J]. Plant Breeding,1997,116:461-464.
    [30] Chen, X. M., Line, R.F. Inheritance of stripe rust resistance in wheat cultivars postulated to have resistance gene at Yr3 and Yr4 loci[J]. Phytopath,1993,83:382-388.
    [31] Labrum K.E.The location of Yr2 and Yr6 genes conferring resistance to yellow rust[J].Proceedings of the 5th European and Mediterranean Cereal Rusts Conference Bari Italy,1980:41-45.
    [32]张建诚等.小麦核质互作抗条锈类型的发现及其遗传机制分析[J].华北农学报,1992,7(1): 14-18.
    [33]陈尚安,董玉深,周荣华.小麦野生近缘植物抗病性鉴定[J].中国农业科学,1990, 23(1):54-59.
    [34] Stalker HT. Utilization of wild species for crop improvement. Adv Agron. 1980, 33: 111-147.
    [35]博杰等.八倍体小滨麦的形成及细胞遗传学研究[J].遗传学报,1993,20(4):317-323.
    [36]博杰等.八倍体小滨麦与缺体小麦杂交的细胞遗传学研究[J].遗传学报,1997,24(4):350-357.
    [37]井金学,郭萍,李落叶等.柔软滨麦草及其杂交后代抗条锈性的研究[J].西北农林科技大学(自然科学版),2001,29(6):107-110.
    [38]郭萍,井金学,傅杰等.柔软滨麦草及其杂交后代抗条锈性的组织病理学研究[J].植物病理学报,2002,32(3),274-277.
    [39]陈佩度,刘大钧.普通小麦与簇毛麦杂种后代的细胞遗传学研究.南京农业大学学报. 1982, 4:1-6.
    [40]陈佩度,刘大钧等.小麦条锈菌新抗源的抗谱鉴定初析.植物病理学报. 2001, 31 (1):31-36.
    [41]刘大钧,陈佩度,吴沛良等.硬粒小麦-簇毛麦双倍体.作物学报. 1986, 12 (3) :155-162.
    [42]裴广铮,陈佩度,刘大钧.小麦簇毛麦杂种后代抗白粉病毒株系的细胞遗传学分析.南京农业大学学报. 1986, 1:1-9.
    [43] Liu DJ, Chen PD, Pei GZ, et al. Transfer of Haynaldia villosa chromosome into Triticum aestivum. MILLER TE, KOEBNER RMD. Proceedings of 7th International Wheat Genetics Symposium. Cambrage: Institute of Plant Science Research, 1988, 355-361.
    [44]齐莉莉,陈佩度,刘大钧等.小麦白粉病新抗原-基因Pm21.作物学报. 1995, 21 (3):257-262.
    [45] Chen PD, Qi LL, Zhou B, et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet. 1995, 21(3): 257-262.
    [46]井金学,郭萍等.小麦外源种质资源的抗病性研究及其利用.西北农业大学学报.1999, 27(6):125-129.
    [47]张庆勤,张立异,朱文华.簇毛麦在小麦抗病育种中的利用.植物保护学报. 1998, 25 (1):41-45
    [48]李在峰.中国小麦条锈菌寄主抗引665抗条锈基因分子标记建立及基因定位[D],沈阳:沈阳农业大学,2003.6.
    [49] Flor, H. H. Current status of the gene-for-gene concept[J]. Annu. Rev. Phytopathol. 1971,9: 275-296.
    [50] Browder LE. Parasite, host, environment specificity in cereal rusts[J]. Ann Rev Phytopath 1985,23:201-222.
    [51]杨华安,Stubbs r.w.,中国条锈菌鉴别寄主抗条锈基因的分析[J],植物保护学报,1990,17(1):67-72.
    [52]王乐凤,吴立人,万安民等.陕甘川重要小麦品种抗条锈基因分析[J],作物学报,1994,20(5):589-594.
    [53]王凤乐,吴立人,谢水仙等.我国小麦重要抗源材料抗条锈病基因推导及其成株抗病性分析[J].植物病理学报,1994,24(2): 175-180.
    [54]张继新,袁振东,王风乐等.京核系小麦抗条锈性的研究[J].北京农业科学,1996, 14(3): 8-10.
    [55]牛永春,乔奇,吴立人.豫鲁皖三省重要小麦品种抗条锈基因推导[J],植物病理学报, 2000,30(2):122-128.
    [56]辛志勇,Johnson r.,Law CN.冬小麦丰抗13抗条锈病基因的分析[J].作物学报,1984,10(4):217-222.
    [57]徐世昌,张敬原,赵文生等.小麦锈病重要抗原京核8811品系抗性遗传机制[J],植物保护学报,2001,28(4):289-293.
    [58] MaraisG.F., Pretorius,Z.A.,Wellings, C.R., McCallum,B., and Marais A.F. Leaf and stripe rust resistanc egenest ransferred to common wheat from Triticum dicoccoides. Euphytica 2005,143:115-123.
    [59]井金学,徐智斌,王殿波.小偃6号抗条锈性遗传分析[J].中国农业科学,2007, 40(3):499-504.
    [60]周兖晨,张相岐,王献平等.滨麦抗条锈病基因的染色体定位和分子标记[J],遗传学报,2001,28(9):864-869.
    [61]王献平,初敬华,张相岐.小麦异源异位系的高校诱导和分子细胞遗传学[J],遗传学报,2003,30(7):619-624.
    [62] Bostein D etc. 1980 .Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J].Am J Hum Genet, 32:314-331.
    [63] Williams J G K, Kubelik A R, Kenneth J L, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acide Res, 1990, 18: 6531-6535.
    [64] John Welsh, Michael McClelland. 1990. Fingerprinting genomes using PCR with arbitrary prime[J]. Nucleic Acids Research 18(24):7214-7218.
    [65] Lewellen R T.Sharp E L.Iheritance of minor reaction gene combination in wheat to puccinia striiformis at two temperature profiles[J]. Can.Jour.of Bot.1968,46:21-26.
    [66] Paran I, Michelomore RW.1993. Development of reliable PCR-based markers linked to downy mildews resistance genes in lettuce[J]. Theor. Appl. Genet 1985:985-993.
    [67]张志永,陈受宜,盖钧镒。与SMV抗性基因Rsa连锁的一个共显性SCAR标记[J]。自然科学进展,1999,9(6):524-527.
    [68] Amudha J, Balasubramani G, Mayee CD. RAPD and SCAR markers for leaf curl virus resistance in cotton(G. hirsutum) [J]. Cotton Science, 2003, 15(3):168-173.
    [69] Boukar O., Kong L., Singh B. B., Murdock L., and Ohm H. W. AFLP and AFLP-Derived SCAR Markers Associated with Striga gesnerioides Resistance in Cowpea[J]. Crop Sci., 2004; 44: 1259-1264.
    [70] Corrêa Ronan Xavier, Costa M.R., Good-God P.I., Ragagnin V.A., Faleiro F.G., Moreira M.A., and de Barros E.G. Sequence Characterized Amplified Regions Linked to Rust Resistance Genes in the Common Bean[J]. Crop Sci., May 2000; 40: 804-807.
    [71] Luo SuLan, He PuChao, Zhou Peng, et al. Identification of molecular genetic markers tightly linked to Downy Mildew resistant genes in grape[J]. Acta Genetica Sinica, 2001, 28(1):76-82.
    [72] Park S. O., Coyne D. P., Steadman J. R., et al. RAPD and SCAR Markers Linked to the Ur-6 Andean Gene Controlling Specific Rust Resistance in Common Bean[J]. Crop Sci., 2004; 44: 1799-1807.
    [73] Michelmore R M,Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis : a rapid method to detect markers in specific genomic regions by using segregating population[J]. Proc. Natl. Acad. Sci. USA, 1991,88:9828-9832.
    [74] Chen XM, Jones SS, Line RF. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee, and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology, 1995, 85(3): 375-381.
    [75] Blake TK, Kadyrzhanova D, Shepherd KW, et al. STS-PCR markers appropriate for wheat–barley introgression[J]. Theor Appl Genet, 1996, 93:826-832.
    [76] Shan X, Blake TK, Talbert LE. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat[J]. Theor Appl Genet, 1999, 98:1072-1078.
    [77] Talbert LE, Blake NK, Chee PW, et al. Evaluation of sequence-tagged-site-facilitated PCR Products as molecular markers in wheat[J]. Theor Appl Genet.,1994, 87:789-794.
    [78] Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome[J]. Science, 1989, 245:1434-1435.
    [79] Vos P, Hogers R, Bleeker M, et al. AFLP, a new technique for DNA fingerprinting[J]. Nucl.Acids. Res.,1995, 23:4407-4414.
    [80] Singrun C, Hsam SL, Zeller FJ,et al. Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL[J].Theor Appl Genet, 2004,15:1218-1222.
    [81] Williams CE, Collier CC, Sardesai N, et al. Phenotypic assessment and mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera: Cecidomyiidae)[J].Theor Appl Genet, 2003, 107:1516-1523.
    [82] Xing QH, Ru ZG, Zhou CJ, et al. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat[J].Theor Appl Genet, 2003, 107: 1500-1504.
    [83] Singrun C, Hsam SL, Hartl L, et al. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat ( Triticum aestivum L. em Thell.)[J].Theor Appl Genet, 2003, 106:1420-1424.
    [84] Guo PG, Bai GH, Shaner GE. AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat[J]. Theor Appl Genet, 2003, 106:1011-1017.
    [85] Gervais L, Dedryver F, Morlais JY, et al. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat[J].Theor Appl Genet, 2003, 106:961-970.
    [86] Williams J, Taylor P, Bogacki P, et al. Mapping of the root lesion nematode ( Pratylenchus neglectus) resistance gene Rlnn1 in wheat[J]. Theor Appl Genet, 2002,104:874-879.
    [87] Raman H, Moroni S, Sato K, et al. Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley ( Hordeum vulgare L.)[J]. Theor Appl Genet, 2002,105:458-464.
    [88] Buerstmayr H, Lemmens M, Hartl L, et al.Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance) [J]. Theor Appl Genet, 2002, 104:84-91.
    [89] Peng JH, Fahima T, Roder,et al. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides[J]. Genetics, 2000, 109:199-210.
    [90] Bednarek PT, Lewandowska R, Golas T,et al. The chromosomal location of rye AFLP bands [J].Cell Mol.Biol.Lett., 2003, 8:955-961.
    [91] Ozkan H, Brandolini A, Schafer-Pregl R, et al. AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey[J].Mol.Biol.Evol., 2002, 19:1797-1801.
    [92] Serizawa N, Nasuda S, Endo TR. Barley chromosome addition lines of wheat for screening of AFLP markers on barley chromosomes[J]. Genes Genet Syst., 2001, 76:107-110.
    [93] Anamthawat-Jonsson K. Genetic and genomic relationships in Leymus Hochst[J]. Hereditas, 2001,135:247-253.
    [94] Milla R, Gustafson JP. Genetic and physical characterization of chromosome 4DL in wheat [J]. Genome,2001, 44:883-892.
    [95] Flavell R.B, Bennett MD, Smith JB. 1974 Genome size and proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics. 12:257-269.
    [96] Zhao X, Wu T. 1989. Genome specific repetitive sequences in the genus Oryza. Theor. Appl. Genet. 78:201-209.
    [97] Song QJ, Fickus EW, Cregan PB. Characterization of trinucleotide SSR motifs in wheat[J] Theor.Appl.Genet., 2002, 104:286-293.
    [98] Litt MaJAL. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Am.J.Hum.Genet., 1989, 44:397-401.
    [99] Condit RaHSP. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes[J].Genome, 1991, 34:66-71.
    [100] Bell CJaEJR. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis [J]. Genomics,1994, 19:137-144.
    [101] Areshchenkova TaGMW. Long tomato microsatellites are predominantly associated with centromeric regions[J]. Genome, 1999, 42:536-544.
    [102] Cho YG,M SR,K MK,et al. Intergrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.)[J]. Theor Appl Genet, 1998, 97: 370-380.
    [103] Taramino G, Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize[J]. Genome, 1996, 39:277-287.
    [104] Liu K, Somerville S. Cloning and characterization of a highly repeated DNA sequence in Hordeum vulgare[J].Genome. 1996, 39:1159-1168.
    [105] Fahima T, Roder MS, Wendehake K,et al. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel[J]. Theor.Appl.Genet., 2002,104:17-29.
    [106] Korzun VM, Nikitin AI. Asymmetry of the chaetae in fleas (Citellophilus tesquorum) as a possible marker of their capacity for blocking[J]. Med.Parazitol.(Mosk), 1997,5:34-36.
    [107] Buerstmayr H, Lemmens M, Hartl L, et al.Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance) [J].Theor Appl Genet, 2002, 104:84-91.
    [108] Dholakia BB, Ammiraju JS, Santra DK, et al. Molecular marker analysis of protein content using PCR-based markers in wheat[J]. Biochem.Genet, 2001, 39:325-338.
    [109] Liu M, Smith M, Gill S. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6[J].Theor.Appl.Genet., 2002, 104:1042-1048.
    [110] Feldman M, L.F., Miller TE,et al. Evolution of Crops.[M]. London:Longman Scientific, 2004.
    [111] Roder MS, Plaschke J, Konig SU, et al. Abundance,variability and chromosomal location of microsatellites in wheat[J]. Mol.Gen.Genet., 1995,246:327-333.
    [112] Nicot N, Chiquet V, Gandon B, et al. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs)[J]. Theor Appl.Genet, 2004.
    [113] Gao LF, Jing RL, Huo NX, et al. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat[J]. Theor Appl Genet.,2004, 108:1392-1400.
    [114] Gupta PK, Rustgi S, Sharma S, et al. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat[J].Mol.Genet Genomics, 2003, 270:315-323.
    [115] Eujayl I, Sorrells ME, Baum M, et al. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theor Appl Genet, 2002, 104:399-407
    [116] Varshney RK, Thiel T, Stein N, et al. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species[J]. Cell Mol.Biol.Lett., 2002, 7:537-546.
    [117] Altinkut A, Gozukirmizi N. Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis[J]. Mol.Biotechnol., 2003, 23:97-106.
    [118] Leister,D., Bslklvora,A., Salamini,F.etc. A PCR-based apporch for isolating pathogen resistance genes from potato with potential for wide application in plants[J]. Nature Genet.2000.14:421-429.
    [119] Yong GY, Glenn RB, Saghaim MA. 1996 Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site[J]. Proc. Natl. Sci USA. 1993:11751-11756.
    [120] ChenXM, Line RF, etc. Genome scanning for resistance gene analogs in rice, barley, and wheat by high-resolution electrophoresis[J]. Theor Appl Genet, 1998. 97:345-355.
    [121] Leister D, Kurth J, Laurie DA. Rapid reorganization of resistance gene homologues in cereal genome[J]. Proc Natl Acad Sci USA. 1998. 370-375.
    [122] Catherine F, Christophe R, Per K. Molecular characterization of a new type of receptor-like kinase(wlrk)gene family in wheat[J]. Plant Molecular Bilology. 1998.37:943-953.
    [123] N C Collins, C A Webb, S Siah. The isolation and mapping of disease resistance gene analogs in maize[J]. MIPI. 1998.11(10)968-978.
    [124] T Ohmori, Murata m, Motoyoshi F. Characterization of disease resistance gene-like [92] sequences in near-isogenic lines of tomato[J]. Theor Appl Genet. 1998. 96:331-338.
    [125] Katherine AS, Blake CK, Nurul MIF. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance gene in lettuce[J]. MIPI. 1998.11(8):815-823.
    [126] Mark G M A, Bas T L H, Eric B H. Identification of R-gene homologous DNA fragment genetically linked to disease resistance loci in Arabidopsis thaliana[J]. MPMI. 1998.11(4)251-258.
    [127] Gale M.D.,Atkinson M.D.,Chinoy C.N., et aL,Genetic maps of hexaploid wheat.Li Z.S,Xin Z.Y., The 8th International Wheat Genetics Symposium [C]. Beijing, China: Agricultural Scientech Press 1995.29-40.
    [128] Nelson J.C.,Van Deynze A.E., Autrique E.,Sorrells M.E.,Lu Y.H., Merlino M., AtkinsonM., LeroyP., Molecular mapping of wheat. Homoeologous group2. Genome 1995,38 :516-524.
    [129] Nelson J.C., Van Deynze A.E., Autrique E., Sorrells M.E., Lu Y.H., Negre S., Bernard M.,Leroy P., Molecular mapping of wheat. Homoeologous group 3. Genome 1995, 38:525-533.
    [130] R?der M.S.,Korzun V, Wendehake K., Plaschke J., Tixier M.H., Leroy E,and Ganal M.W. A microsatellite map of wheat. Genetics 1998,149:2007-2023.
    [131] Somers D.J.,Isaac E,and Edwards K.A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.).Theoretical and Applied Genetics,2004,109:1105-1114.
    [132] Torada A,Koike M., Mochida K.,Ogihara Y.,SSR-based linkage map with new markers using an intraspecfic population of common wheat. Theor. Appl. Genet. 2006, 112(6):1042-1051.
    [133]刘孝坤.小麦抗源对条锈病的抗性遗传研究初报.植物保护学报,1988, 15(1): 33-39.Liu X K.A preliminary study on the inheritance of resistance to stripe rust in wheat.Acta Phytophylacica Sinica,1988,15(1):33-39 (in Chinese) .
    [134] Rogers S 0, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissuses. Plant Mol Biol, 1985,5:39-76.
    [135]杨敏娜,井金学,刘佩,等.普通小麦-柔软滨麦草易位系抗条锈病基因的遗传分析和微卫星标记[J].西北农林科技大学学报, 2008 36(4) 186-198.
    [136]宋晓贺,侯璐,杨敏娜,等.小麦-滨麦易位系M8657-1抗条锈病基因遗传分析和分子标记[J].植物病理学报,2008,38(6): 652-655.
    [137]王金平,王洪刚,赵瑾,等.小滨麦易位系山农0096抗条锈基因的微卫星标记和染色体定位.分子植物育种, 2008, 6(3) 475-479.
    [138] Pestsovca E, Ganal M W, R?der M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome,2000, 43: 689-697.
    [139] Song QJ , Shi J R , Singh S , Fickus E W, Costa J M, Lewis J , Gill B S , Ward R , Cregan P B1 Development and mapping of microsatellite(SSR) markers in wheat1 Theor Appl Genet , 2005 , 110(3) : 550-560.
    [140] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175.
    [141] Ma J X (马渐新) , Zhou R H (周荣华) , Jia J Z (贾继增) .Identification of wheat-Haynaldia villosa substitution lines conferring resistance to powdery mildew using genomic in situ hybridization (GISH) and RFLP markers1 Acta Genet Sin (遗传学报) , 1997 , 24(5) : 447-452 (in Chinese with English abstract) .
    [142]曹张军,井金学,王美南,等.小麦品种贵农22号抗条锈基因遗传分析[J].西北植物学报2004,24;(6):991-996.
    [143] Chen XM, Jones SS, Line RF. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathology, 1996, 86:1228-1233.
    [144]马渐新,周荣华,董玉琛,贾继增.小麦抗条锈病基因定位及分子标记研究进展生物技术通报.1999 1(1-6).
    [145] Zeller FJ. 1B/1R Wheat-rye chromosome substitutions and translocations. In: Proceedings of the 4th International Wheat Genetics Symposium. Columbia, Missouri, USA, 1973, 209-221.
    [146] William M, Singh RP, Huerta-Espino J, Ortiz-Islas S, Hoisington D. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 2003, 93: 153-159.