游梁式抽油机采油系统矢量控制节能方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前游梁式抽油机是我国的主要采油设备,在油田的生产中占有重要地位,但是一直存在效率低、能耗大等问题。为解决以上问题,论文以游梁式抽油机采油系统为研究对象,以提高系统效率,节能为目标,对抽油机的四连杆机构、电动机、负载特性以及抽油机优化运行,进行节能降耗研究。论文主要内容如下:
     1游梁式抽油机采油系统矢量控制节能方法研究。该部分内容在分析现有节能型抽油机、电动机以及控制器的节能机理的基础上,提出了矢量控制节能方法,首次将游梁式抽油机采油系统的节能分为周期内节能和多周期运行节能。基于电动机矢量控制技术,使电动机适应抽油机悬点载荷的变化,实现周期内节能。以油井供排平衡为基础,依据抽油机电动机运行参数,判定油井供液能力,对抽汲参数进行优化,实现多周期运行节能。矢量控制节能方法为采油系统建模和优化运行奠定了基础。
     2游梁式抽油机采油系统矢量控制模型构建。运用矢量法对抽油机悬点载荷进行求解。按照异步电动机转子磁场定向的矢量控制方法,建立了游梁式抽油机电动机模型。以抽油机电动机输出轴为等效构件,将由皮带轮、减速箱、四连杆以及悬点载荷产生的等效力矩和惯性力矩作用其上,建立了地面等效力学模型。根据抽油杆柱悬挂的弹性和纵向振动力学方程,建立了抽油杆柱预测模型。利用抽油机采油系统的地面等效力学模型和抽油杆柱的预测模型,进行了系统动态分析研究。
     3游梁式抽油机采油系统供排平衡优化运行研究。分析现有优化方法,提出了基于矢量控制的优化运行方法。根据电动机转矩电流与抽油机供排平衡的关系,建立了8种油井工况下电动机转矩与API标准的示功图对应关系。建立了以系统效率最优为目标的游梁式抽油机供排平衡优化运行模型,实现了系统多周期运行节能。
     4用支持向量机预测油井产液量方法对抽油机供排平衡优化模型进行了改进,并利用网格搜索寻优和粒子群寻优法对支持向量机的参数C、g进行了寻优。优化模型的改进减少了油井预测产液量的误差,增加了模型的准确性。
     5对论文中建立的模型进行了仿真和试验。系统有功功率仿真与实测电能曲线中的有功功率比较,验证了游梁式抽油机采油系统模型的正确性。优化模型仿真验证了周期内节能和多周期运行节能。给定冲次的节能试验和优化运行试验表明:节能效果明显。
At present, the beam puming unit is the main oil extraction equipment in China,and occupies an important position in the oil production, but the problems such as lowefficiency, high energy consumption and other issues are in existence. In order toimprove the efficiency of the system and save energy, taking the beam pumping unitsystem as the research object, saving energy and reducing consumption are studied bythe analysis of the movement of four bar linkage, motor, oil puming unit and thechanges of electrical parameters of pumping unit caused by downhole conditions. Themain contents are as follows:
     1This paper offers an energy-saving method for beam pumping unit oilproducing system based on vector control, on the basis of analysis about the energysaving pumping units, the energy-saving motors and energy saving controllers. Thismethod presents firstly that the energy-saving of beam pumping unit oil producingsystem divides into a cycle of energy-saving and multi-cycles of energy-saving. Acycle of energy saving is based on the motor vector control technology and make themotor adapt to changes of the polished rod load. The multi-cycles of the pumping unitenergy-saving is to find the optimal swabbing parameters on the basis of the balanceof supply and discharge, and determine the oil well capacity for liquid according tothe pumping unit motor operating parameters. On this basis, the swabbing parametersare optimized, and the multi-cycles of the pumping unit energy-saving is relized. Thismethod lays the foundation of modeling and optimization of the production system.
     2The model of beam pumping unit oil producing system based on vector controlis established. The polished rod load is calculated precisely using vector method. Thepumping unit asynchronous motor model is established with the rotor flux orientation.The ground equivalent mechanical model of the beam pumping unit productionsystem is established,which looks the oil pump motor output shaft as the equivalentconstruct, and the inertia moment and equivalent moment generated by the belt pulley,gear box, four connecting rod and the polished rod load are acted on it. The predictionmodel of sucker rod string is established according to the sucker rod suspensionelasticity and the longitudinal vibration equation. On the basis of the above modles,the dynamic characteristis of the oil producing system are analyzed.
     3The optimization of the beam pumping unit oil producing system is studiedbased on the theory of balance of supply and discharge The optimization methodbased on vector control is proposed, on the basis of analysis about the existingoptimization method. According to the relationship between the motor torque currentand the balance of supply and discharge, the eight kinds of correspondence betweenthe motor torque and the API standard dynamometer are established. In order to realize the multi-cycles of the pumping unit energy-saving and improve systemefficiency, the puming uint optimization model for the balance of supply anddischarge is established.
     4The puming uint optimization model is improved with the support vectormachine method. And the optimality method of the C, g parameters of support vectormachine is studied based on the grid search and particle swarm optimization methods.The improvement of the optimization model increases the accuracy of the model andreduces the prediction error of oil well producing liquid.
     5The models established in the paper are simulated and tested.The correctness ofthe beam pumping unit oil producing system model is demonstrated by thecomparison between the simulation of system active power and the measured. Themethod of a cycle of energy-saving and multi-cycles of energy-saving is proved bythe simulation of the optimization model. The results of the given speed test and theoptimizing operational test show that the system efficiency is improved obviously.
引文
[1]朱荣东.游梁抽油机增产节能方式研究[D].成都:西南石油学院硕士学位论文,2005.
    [2]李海亮.游梁式抽油机系统动力学分析及节能控制策略研究[D].武汉:武汉理工大学学位论文,2010.
    [3]白连平,马文忠,杨艳等.关于游梁式抽油机用电动机节能的应用讨论[J].石油机械.1999,27(3):41-43.
    [4]苏德胜,刘先刚.游梁式抽油机节能机理综述[J].石油机械.2002,29(5):49-53.
    [5]李金华,华伟棠,李铁.游梁式抽油机节能新技术探讨[J].石油机械.1999,27(12):42-44.
    [6]孙其宏,任新华,孙志刚.基于ATT7022A的Y/Δ切换抽油机节能控制器的研制[J].科学技术与工程.2012,12(17):4288-4291.
    [7]蔡甫权,周挺巧,蔡甫寒.电动机星三角转换节能保护器在抽油机上的应用[J].机床电器.2002,29(6):5051.
    [8]吕金萍.有杆抽油机智能优化控制系统[D].成都:西南石油大学学位论文,2007.
    [9]周封,胡洋,孙志刚.抽油机节能方法与变频技术合理应用研究[J].节能技术.2010,3:218-221.
    [10]胡洋.抽油机柔性自适应节能系统的研制[D].哈尔滨:哈尔滨理工大学学位论文,2001.
    [11]龚大利.有杆抽油系统经济运行措施优化研究[D].大庆:大庆石油学院学位论文,2010.
    [12]S.G.Gibbs. Predicting the Behavior of Sucker Rod Pumping System[J]. Journal ofPetroleum Technology(JPT).July,1963:769-778.
    [13]Svinos J G. Exact Kinematic Analysis of Pumping Units[A]. The58thAnnual TechnicalConferenceand Exhibit, San Francisco,1983.
    [14]万邦烈.采油机械的设计计算[M].北京:石油工业出版社,1988.
    [15]汤淑文,谭英杰.游梁抽油机动平衡精确分析[J].石油学报.1994,15(1):141-145.
    [16]王常斌,陈涛平,郑俊德.游梁式抽油机运动参数的精确解[J].石油学报.1998,19(2):107-l10.
    [17]董世民,马德坤等.游梁式抽油系统动态参数仿真的综合数学模型[J].石油机械.2001,29(6):46-48.
    [18]董世民,马德坤等.有杆抽油系统动态特性的计算机仿真[J].试验力学.1996,11(3):277-284.
    [19]姚春冬,李向久等.超高转差电机驱动有杆抽油系统动态特性的计算机仿真[J].系统仿真学报.1997,9(1):44-49.
    [20]薛承谨,鲍雨峰.超高超差转差率电动机驱动游梁式抽油机动力学研究[J].石油机械.2002,30(1):4-7.
    [21]朱建矿.游梁式抽油机系统动态特性的研究[D].西安:西安理工大学学位论文,2004.
    [22]路爵,林中伟.游梁式抽油机动特性优化仿真方法的研究[J].石油矿场机械.2001,30(增刊):29-31.
    [23]周芸,林中伟,周国防.游梁式抽油机动特性仿真方法研究[J].西安:西安工业学院学报.2001,21(2):99-104.
    [24]齐俊林,曹和平.游梁式抽油机分析的数值法[J].石油机械.2006,34(3):32-35
    [25]郑满圈.游梁式抽油机运动规律的多体动力学分析[J].石油机械.2006,34(5):22-24.
    [26]黄清世,周传喜.竖游梁塔架式抽油机的运动分析[J].石油天然气学报.2009(1).
    [27]王晓,严锦,李滨城.游梁式抽油机运动分析及动态静力分析[J].科技创新导报.2010(35).
    [28]曲刚,孙永兴.抽油机智能化变频控制系统的应用现状田[J].变频器世界.2005(5):72-75.
    [29]蒋仕民.游梁式抽油机节能技术在河南油田的应用分析[[J].石油天然气学报.2009,32(4):394-396.
    [30]赵来军,余国安,齐家昌.变频调速技术在智能化抽油系统中的应用[J].石油机械.1998,26(2):25-27.
    [31]A.F.Da Rocha,C.K.Morooka,L. Alegre. Smart Oil Recovery[J]. IEEE Spectrum.1996,33(7):48-51.
    [32]W G Qi,X. L.Zhu,Y L. Zhang. Study of Fuzzy Neural Network Control of EnergySaving of Oil Pump[J].Proceedings of the Chinese Society of Electrical Engineering,2004,24(6):137-140.
    [33]丁宝,张延丽.RL模糊神经网络及其在采油控制中的应用[J].控制工程.2002,9(6):57-59.
    [34]李敏,何平,孟臣.基于模糊神经网络的抽油机节能专家控制器设计[[J].计算技术与自动化.2009,28(4):56-58
    [35]马菊莲,马军鹏,周好斌.具有自学习功能的智能抽油机变频控制系统研究[J].钻采工艺.2007,33(4):77-79.
    [36]王彩云.油田采油控制系统神经网络建模和优化算法研究[D].长春:吉林大学学位论文,2006.
    [37]王德华.基于自调整比例因子模糊控制的抽油机节能控制系统研究[D].沈阳:东北大学学位论文,2011.
    [38]孙正贵.游梁式抽油机节能控制技术[M].东营:中国石油大学出版社,2008.
    [39]朝泽云.无速度传感器矢量控制系统的若干问题研究[D].武汉:华中科技大学学位论文,2007.
    [40]Kubota H,Matsuse K,Nakano T. DSP-Based Speed Adaptive Flux Observer of InductionMotor[J].IEEE Transactions on Industry Applications,March-April.1993,29(2):344-348.
    [41]Jang-Hwan Kim,Jong-Woo Choi,Seung-Ki Sul. Novel Rotor Flux Observer usingObserver Characteristic Function in Complex Vector Space for Field Oriented InductionMotor Drives[C]. Sixteenth Annual IEEE Applied Power Electronics Conference andExposition. March,2001,1(1):615-621.
    [42]Rehman H,Derdiyok A,Guven MK. et al. ANew Current Model Flux Observer for WideSpeed Range Sensorless Control of an Induction Machine[J].IEEE Transactions on PowerElectronics,Nov.2002,17(6):1041-1048.
    [43]Ohtani T, Takada N, Tanaka K. Vector Control of Induction Motor without ShaftEncoder[J]. IEEE Transactions on Industry Applications,Jan.-Feb.1992,28(1):157-164.
    [44] Fei Lin, Chunpeng Zhang, Wenchao Song. et al. A Robust Rotor Flux ObserverofInduction Motor with Unknown Rotor and Stator Resistance[C].The29th AnnualConference of the IEEE Industrial Electronics Society,Nov.2003,1(1):738-741.
    [45]Gang-Youl Jeong.Speed-Sensorless Induction Motor Control System using a Rotor SpeedCompensation with the Rotor Flux Error[C]. IEEE35th Annual Power ElectronicsSpecialists Conference,June.2004,2(2):1398-1403.
    [46]Jung-Soo Choi, Wang-Moon Kim, Young-Seok Kim. Speed Sensorless Control ofInduction Motor Considering the Flux Saturation[C]. Fifteenth Annual IEEE AppliedPower Electronics Conference and Exposition, Feb.2000,1(1):148-153.
    [47]何飚,齐智平.无速度传感器矢量控制系统的电机参数测算[J].农业机械学报.2005,36(2):85-92.
    [48]陈德传,何旭亮.异步电动机T型等值电路参数估算的新方法探讨[J].电气传动自动化.2003,25(1):20-23.
    [49]Yang G,Chin TH. Adaptive-speed identification scheme for a vector-controlled speedsensorless inverter-induction motor drive[J]. IEEE Transactions on Industry Applications,July-Aug,1993,29(4):820-825.
    [50]Guidi G,Umida H. A Novel Stator Resistance Estimation Method for Speed-SensorlessInduction Motor Drives[J]. IEEE Transactions on Industry Applications,Nov.-Dec.2000,36(6):1619-1627.
    [51]Jeong SK, Lee ZG, Toliyat HA. et al. Sensorless Control of Induction MotorswithSimultaneous On-Line Estimation of Rotor Resistance and Speed Based on the Feedforward Torque Control Scheme[C].IEEE International Electric Machines and DrivesConference,June.2003,3(3):1837-1842.
    [52]Akatsu K, Kawamura A.Online Rotor Resistance Estimation Using the TransientStateUnder the Speed Sensorless Control of Induction Motor[J].IEEE Transactions onPower Electronics,May.2000,15(3):553-560.
    [53]Kazuhiro Ohyama, Greg M. Asher, Mark Summer. Comparative Analysis ofExperimental Performance and Stability of Sensorless Induction Motor Drives[J].IEEETransaction on Industrial Electronics,Feb,2006,53(1):178-186
    [54]胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法[J].中国电机工程学报.2005,25(3):13-17.
    [55]骆华峰.常规机的技术改造及节能技术的研究[D].大庆:大庆石油学院学位论文,2004.
    [56]李祥林.抽油机变频节能及测控技术研发[D].北京:中国石油大学学位论文,2010.
    [57]刘沪雄.有杆泵抽油系统的电动机节能途径[J].石油机械.1992,20(5):27-29.
    [58]陈丕章.电动机节能技术[M].北京:科学出版社,1989.
    [59]崔振华,余国安,安锦高等.有杆抽油系统[M].北京:石油工业出版社,1994.
    [60]B.A.阿瓦利夫著,李继康等译.钻井设备计算[M].北京:石油工业出版社,1982.
    [61]张连山.我国有杆抽油机技术发展前景[J].石油机械.1992(8).
    [62]郭东,张玉斌.异型抽油机与常规抽油机的性能对比分析[J].石油机械.1996(24).
    [63]邬亦炯,刘卓钧,赵贵祥.抽油机[M].北京:石油工业出版社,1994.
    [64]王守民.油田在役常规游梁式抽油机的增程与节能改造研究[D].杭州:浙江大学学位论文,2001.
    [65]萧南平.对游梁式抽油机节能问题的探讨[J].石油机械.1997,3(25):41-43.
    [66]陈国成,黄秀杰,王喜忠.机采系统高功率因数节电技术[J].油气田地面工程.2004,23(7):1-2.
    [67]徐中文.抽油机设计软件开发及优化设计[D].大庆:大庆石油学院学位论文,2006.
    [68]房玉明.游梁式抽油机调速控制系统节能方法研究[D].青岛:青岛科技大学学位论文,2007.
    [69]李治典等.游梁式抽油机高效节能控制系统[J].测控技术.2001,(2):30-33.
    [70]张自学,兆文清,王钢.国内外新型抽油机[M].北京:石油工业出版社,1994.
    [71]曹昌勇,杨贵荣.基于PIC单片机的交流伺服电机控制系统研究[J].机械工程与自动化.2007,6:39-41.
    [72]刘竞成主编.交流调速系统[M]上海:上海交通大学出版社,1984.
    [73]赵敏.矢量控制异步电动机变频调速系统效率优化控制[D].济南:山东大学学位论文,2004.
    [74]冯朵生,曾岳南.无速度传感器矢量控制原理与实践[M].北京:机械工业出版社,2006.
    [75]梁艳,李永东.无传感器永磁同步电机矢量控制系统概述[J].电气传动.2003,33(4):4-9.
    [76]王家军,赵光宙,齐冬莲.无速度传感器永磁同步电动机反推控制[J].控制理论与应用.2005,22(4):658-660.
    [77]李家荣.无速度传感器异步电机矢量控制系统的研究[J].机械与电子.2005,(7):25-30.
    [78]许强,贾正春,李朗如.永磁同步电动机的模型参考自适应速度控制[J].电气传动.1998,28(5):3-7.
    [79] Lazhar B B,Atsuo K. A fully digitized field oriented controlled induction motor driveusing only current sensors[J]. IEEE Trans. IE,1992,39(3):241-249.
    [80]杨文强,蔡旭,姜建国.矢量控制系统的积分型滑模变结构速度控制[J].上海交通大学学报.2005,39(3):426-432
    [81]黄进,张伟.基于神经网络的异步电机无速度传感器矢量控制[J].模式识别与人工智能.2000,13(4):478-482.
    [82]陈小安.高速电主轴矢量控制机械特性分析与仿真[J].现代科学仪器.2012,(5):46-49.
    [83]檀朝琴.抽油机井生产优化设计方法综述[J].中国石油和化工.2012,(8):37-39.
    [84]张琪.采油工程原理与设计[M].北京:中国石油大学出版社.2006.170-180.
    [85]李根,邓少波,付长江.抽油机抽汲参数优化中的双层综合模糊评价方法[J].油气田地面工程.2011.30(7):6-7.
    [86]吕瑞典,张元生,董世民.抽油机井系统的优化设计[J].西南石油学报.1993.15(3):91-96.
    [87]张胜利,郭吉民,陈伟兰.基于抽油机井参数敏感性分析的优化设计及应用[J].石油天然气学报.2008.30(5):321-323.
    [88]郑海金,邓吉彬,唐东岳.提高机械采油系统效率的理论研究及应用[J].石油学报.2004.25(1):93-96.
    [89]谢朝阳.基于动液面控制的抽油机变频控制系统[J].石油机械.2009.
    [90]孙振华.游梁式抽油机采油系统实时评价方法研究[D].东营:中国石油大学(华东)学位论文,2011.
    [91]S.G. Gibbs. Utility of Motor-Speed Measurements in Pumping-Well Analysis andControl[C]. SPE13198,1987.
    [92]J.F. Lea,and J.F. Bowen. Dynamic Measurements of Beam-Pump Parameters[C].SPE18187,1991. USA: SPE,1991.
    [93]J.N. McCoy,R.E. Ott,A.L. Podio,Forrest Collier,and Dieter Becker. Beam PumpBalancing Based on Motor Power Utilization[C]. SPE29533,1995. USA: SPE,1995.
    [94]柴满州.抽油机井电功率实时监控系统的开发[J].江汉石油学院学报.2003,25(3):120-121.
    [95]J N McCoy,A L Podio. Rotaflex Efficiency and Balancing[C].SPE67275,2001. USA:SPE,2001.
    [96]中华人民共和国石油天然气行业标准SY/T5793-93《机械采油系统效率测试计算方法》[M].北京:石油工业出版社,1994.
    [97]Zadeh L.A. FuzzyAlgorithms[J]. Information and control,1968,(12):28-30.
    [98]Maiers J,Sherif Y. S.Applications of Fuzzy Sets Theory[J] IEEE Trans on system,Manand Cybernetics,1985,(15):170-181.
    [99]Vladifiir N. Vapnik,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [100]Cristianini N,shawe-Taylor J.支持向量机导论[M].李国正.北京:电子工业出版社,2004.
    [101]Leeun Y,Jackel LD,Bottou L.Leaning algorithms for classification. A comparison onhandwritten digit recognition.Neural Networks[M]. The statistical Machines Perspective.World Scientific,1995:261-276.
    [102]OsunaE,Freund R,Girosi F. Training support vector machines. An application to facedetection[C].In: Proceedings of Computer Version and Pattern Recognition97’.PuertoRico,1997:130-136.
    [103]Fujun He,Wengang Shi. WPT-SVMs based approach for fault detection of valves inreciprocating pumps[R].Proceedings of2002American Control Conference. Anchorage,2002:4566-4570.
    [104]李卓.支持向量机及其在机械故障诊断中的应用[J].中南大学学报(自然科学版).2005,36(1).
    [105]王显.有杆泵抽油井工况远程监测与故障诊断系统研究[D].武汉:武汉理工大学学位论文,2006.
    [106]刘炜.基于支持向量机的抽油机示功图工况判别[D].西安:西安理工大学学位论文,2009.
    [107]王凯,刘宏昭,穆安乐.基于最小二乘支持向量机的有杆抽油泵工况多分类研究[J].机械科学与技术.2010,29(12).
    [108]于德亮.基于支持向量机沉没度预测的潜油泵冲次优化研究[J].中国工程机械学报.2011,31(27).
    [109]陈磊.常见抽油机运动与动力分析、评价系统研究[D].北京:中国石油大学学位论文,2007.
    [110]万仁溥.采油工程手册:上册[M].北京:石油工业出版社,2000:422-430.
    [111]冯国强.抽油机井系统动态实时分析模型[J].中国石油大学学报(自然科学版).2010,34(4):84-87.
    [112]汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2004:24-46.
    [113]杨顺昌.电机的矩阵分析[M].重庆:重庆大学出版社,1988:35-100.
    [114]白绪涛,吴凤江,孙立.一种新型异步电动机负载转矩间接检测方法[J].电机与控制应用.2007,34(10):27-29.
    [115]庄磊.基于观测器模型的负载转矩间接测量[J].江苏机械制造与自动化.2000(6):10-11.
    [116]郝世雄.油田新代数字化智能抽油机研究与评价[J].中国科技博览.2012,(4):81-82..