鼻咽癌免疫编辑相关基因及免疫相关染色体异常区域初步筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌(Nasopharyngeal carcinoma,NPC)是我国南方和东南亚高发的上皮性恶性肿瘤,鼻咽癌患者的治疗方式主要是放疗。流行病学及病因学研究表明:EB病毒(Epstein-Barr virus,EBV)、化学致癌物和遗传易感性与鼻咽癌发生密切相关。
     鼻咽癌的发生发展是一个多阶段、多途径的过程,涉及多个基因的改变,但关于鼻咽癌相关肿瘤免疫机制的研究并不多。2002年Schreiber和Dunn在现代免疫学发展的基础上,根据可靠的实验证据,提出了肿瘤免疫编辑学说(cancer immunoediting)。肿瘤免疫编辑学说又称“3E学说”,主要阐释肿瘤发展过程中免疫系统呈现的3个连续的动力学时相:清除(elimination)、平衡(equilibrium)及逃逸(escape)。该学说在阐明肿瘤的发生发展机制、指导肿瘤的免疫诊断和免疫治疗方面有重要意义。
     本研究小组前期工作曾多次进行鼻咽癌组织及细胞系基因芯片检测,探讨了众多基因与鼻咽癌发生发展的关系;并且结合多个实验室的鼻咽癌比较基因组杂交数据,以染色体区域为基本事件单位构建了鼻咽癌发生发展的树模型;而且对鼻咽癌细胞CNE2与NK细胞之间的相互免疫编辑作用关系进行了深入研究。
     本研究在研究小组前期工作的基础上,采用GenClip软件初步筛选潜在的鼻咽癌免疫编辑相关基因,再采用SYBR Real-time Q-PCR对所得结果进行初步验证,并且分析了鼻咽癌免疫相关基因所分布的染色体区域特点、这些染色体区域与染色体脆性位点及microRNAs的关系。本研究为了解鼻咽癌发生发展过程中相关的肿瘤免疫机制提供了初步实验证据。实验方法和结果如下:
     第一部分鼻咽癌免疫编辑相关基因初步筛选
     对实验室已有的鼻咽癌基因芯片结果设立筛选标准,找到在鼻咽癌细胞系高表达而在鼻咽癌组织中低表达的基因7个;在鼻咽癌细胞系低表达而在鼻咽癌组织中高表达的基因183个。采用GO分类方法从上述基因中筛选鼻咽癌免疫相关基因24个。
     采用文献挖掘软件GenClip 3.2,将参与肿瘤免疫编辑的11个基因与24个在鼻咽癌细胞系和鼻咽癌组织中差异表达的免疫相关基因一起构建共发生网络,网络中相互关联基因20个(IFNG、IFNA1、PRF1、TRAIL、STAT1、NKG2D、RAG2、RAG1、IL23A、IRF1、CXCL10、IFITM3、INDO、IL1B、CXCL9、CCL2、CD14、CCL18、IL2RG和FAS)。进一步结合文献分析,筛选出6个可能参与鼻咽癌肿瘤免疫编辑过程的免疫相关基因(IFNG、STAT1、INDO、CXCL10、CXCL9和IRF1)。
     利用Real-time PCR对6个基因进行初步验证,结果提示:IFNG、STAT1、INDO、CXCL10和IRF1是潜在的鼻咽癌免疫编辑相关基因。
     第二部分鼻咽癌免疫相关染色体异常区域初步筛选
     结合GO分类方法从本实验室已有的鼻咽癌基因芯片数据中筛选异常表达的免疫相关基因,发现处于扩增区域的表达上调鼻咽癌免疫相关基因14个,其中12个位于1q22-32(FCGR3A、FASLG、FCGR2A、FCER1G、CD1D、CD1E、IFI16、FCGR2C、TNFSF4、MR1、RGS1和CD46),2个位于12q 13-15(STAT6和IFNG);处于缺失区域的表达下调鼻咽癌免疫相关基因5个,其中4个位于14q24-32(IGHM、IGHD、IGHG1和IGHA1)而且位置紧密相邻,另外1个位于16q12-24(CHST4)。
     根据基于170例鼻咽癌组织的比较基因组杂交数据构建的鼻咽癌发生发展的树模型提示的三个阶段,探讨了这些基因在鼻咽癌染色体异常区域分布的特点;在鼻咽癌免疫相关基因富集区域(1q22-32和14q24-32)找到3个脆性位点:FRA1G(1q25.1)、FRA1K(1q31)、FRA14C(14q24.1)。
     对鼻咽癌染色体异常区域与鼻咽癌脆性位点进行比对,并筛选与这些区域可能相关的人类microRNAs;在这两个区域发现14个人microRNAs,8个位于1q22-32(miR-009-1、miR-29c/miR-102、miR-213S/miR-181b、miR-214/miR-199a-2、miR-205);6个位于14q24-32(miR-127/miR-136、miR-134/miR-154/miR-299、miR-203):这些microRNAs可能与鼻咽癌的发生密切相关。
     采用文献挖掘软件GenClip 3.2将得到的各阶段鼻咽癌免疫相关基因一起构建共发生的基因关系网络。筛选出潜在的鼻咽癌免疫编辑相关基因13个(IFNG、CD46、FCGR3A、FASLG、CD1D、CD1E、FCGR2C、FCGR2A、STAT6、MR1、TNFSF4、IGHA1和IFI16)。
     本实验采用生物信息学方法从已有的基因芯片数据中筛选鼻咽癌免疫编辑相关基因及鼻咽癌免疫相关染色体异常区域,并进行了初步实验验证。结果提示IFNG、STAT1、INDO、CXCL10和IRF1是潜在的鼻咽癌免疫编辑相关基因;1q22-32和14q24-32是潜在的鼻咽癌免疫相关染色体异常区域。但5个潜在的鼻咽癌免疫编辑相关基因及2个潜在的鼻咽癌免疫相关染色体异常区域在鼻咽癌发生发展过程中的作用机制需更多的体内外实验进行证实。
Nasopharyngeal carcinoma (nasopharyngeal carcinoma, NPC) is a malignancy derived from epithelium with high incidence in Southeast Asia and Southern China. The main treatment modality of NPC patients is radiotherapy. The epidemiological and etiological studies indicate that Epstein-Barr virus (EBV), certain chemical carcinogens and genetic susceptibility are closely associated with its occurrence and development.
     Nasopharyngeal carcinogenesis is a multistage, multifactor and multipathway process involving multiple gene alterations. But research on immunological mechanism of NPC is scarce. Cancer immunoediting was put forward by Schreiber and Dunn in 2002, which based on the development of modern immunology and experimental evidence. It is also called "three E's hypothesis", which explains three continuous immunological kinetic phases (elimination, equilibrium and escape) presented during the process of tumor development. This hypothesis has profound influence on the strategy to elucidate the mechanism of tumor occurrence and development as well as to explore cancer immunodiagno-sis and immunotherapy.
     Through gene chips study on NPC tissues and NPC cell lines, we have revealed the roles of many genes in the development of NPC. Based on comparative genomic hybridization (CGH) results from several laboratories, we have set up a tree model for explaining the pathogenesis of NPC. Furthermore, we have also explored the immunoediting events between CNE2 cells and NK cells recently.
     In this study, potential immunoediting related genes of NPC were screened by GenClip software, and the results were validated by SYBR real-time q-PCR. Moreover, we analyzed the positional feature of immuno-related genes in chromosomal regions of NPC, the relation among these chromosomal regions and fragile sites and microRNAs. This study provides the preliminary experimental evidence for immunological mechanism in the development of NPC. The experimental methods and results are as follows:
     I . Preliminary screening for immunoediting related genes in NPC
     Differential expression criteria were set up for screening NPC gene chip data of our laboratory. 7 genes were found that they were up-regulated in NPC cell lines but down-regulated in NPC tissues, and 183 genes were found to be down-regulated in NPC cell lines but up-regulated in NPC tissues. According to gene ontology classification, 24 immuno-related genes of NPC were screened out from above-mentioned genes.
     A relational network of gene co-occurrences was constructed by using 11 genes that participating in the process of cancer immunoediting and 24 above-mentioned genes with the literature-mining software GenClip 3.2. There are 20 genes (IFNG, IFNA1, PRF1, TRAIL, STAT1, NKG2D, RAG2, RAG1, IL23A, IRF1, CXCL10, IFITM3, INDO, IL1B, CXCL9, CCL2, CDM, CCL18, IL2RG and FAS) in this relational network. Based on detailed analysis of literature, 6 genes were found to probably participated in the process of NPC immunoediting, which included IFNG, STAT1, INDO, CXCL10, CXCL9 and IRF1.
     Real-time PCR was performed to analyze these 6 genes, the results further suggests that IFNG, STAT1, INDO, CXCL10 and IRF1 are potential immunoediting related genes of NPC.
     II. Preliminary screening of immuno-related abnormal chromosome regions in NPC
     According to gene ontology classification, abnormal expression of immuno-related genes were found from the NPC gene chip data of our laboratory. 14 up-regulated immuno-related genes were discovered in NPC chromosomal amplification regions, in which 12 genes locate at the lq22-32 region (FCGR3A, FCGR2A, FCER1G, CD1D, CD1E, IFI16, FCGR2C, TNFSF4, MR1, RGS1 and CD46) , and 2 others locate at the 12q13-15 region (STAT6 and IFNG) , meanwhile, 5 down-regulated immuno-related genes are discovered in NPC chromosomal deletion regions, among them 4 locate at the 14q24-32 region (IGHM, IGHD, IGHG1 and IGHA1) , they are closely adjacent to each other, CHST4 at the 16q12-24 region.
     The positional features of immuno-related genes in the NPC chromosomal regions were studied according to the three stages suggested by in the tree model for pathogenesis of NPC which was constructed by 170 comparative genomic hybridization (CGH) samples, and related or nearby fragile sites were also searched out. We found 3 fragile sites in the immuno-related gene enriched area (lq22-32 and 14q24-32 region), such as FRA1G (1q25.1), FRA1K (1q31) and FRA14C (14q24.1).
     Human microRNAs probably related with the 1q22-32 and 14q24-32 regions were screened. We found 14 human microRNAs at two above mentioned regions, among which 8 microRNAs locate in 1q22-32 region ( including miR-009-1, miR-29c/miR-102, miR-213S/miR-181b, miR-214/miR-199a-2 and miR-205) , and the other 6 microRNAs locate at 14q24-32 region (including miR-127 / miR-136, miR-134 / miR-154 / miR-299 and miR-203) , We infer that these microRNAs are closely related to NPC.
     A relational network of genes was constructed by NPC immuno-related genes screened from all stages with the literature-mining software GenClip 3.2, and we screened 13 potential genes that are related to NPC immunoediting genes (IFNG, CD46, FCGR3A, FASLG, CD1D, CD1E, FCGR2C, FCGR2A, STAT6, MR1, TNFSF4, IGHA1 and IFI16).
     In summary, based on previous work of our laboratory, potential immunoediting related genes and immuno-related potential abnormal regions of chromosomes in NPC were screened by using bioinformatics method, and these data were validated preliminarily. The results suggest that IFNG, STAT1, INDO, CXCL10 and IRF1 are potential immunoediting related genes of NPC, and lq22-32 and 14q24-32 regions are potential immuno-related abnormal regions of chromosomes in NPC. The role of these genes in the pathogenesis of NPC remains to be elucidated.
引文
[1] Tao Q, Chan AT. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev in Mol Med, 2007, 9: 1-24.
    
    [2] Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell, 2004, 5: 423-425.
    [3] Thomas L. In cellular and humoral aspects of the hypersensitive states. HS, Lawrence ed. New York: Hoeber-Harper, 1959, 529-533.
    [4] Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res, 1970,67: 1-27.
    [5] Rygaard J, Povlsen CO. Is immunological surveillance not a cell-mediated immune function? Transplantation, 1974, 57: 135-136.
    [6] Schreiber H. Tumor immunology. In: Paul W E ed. Fundamental Immunology. New York: Raven Press, 1993: 1143-1178.
    [7] Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 2001, 410(6832): 1107-1111.
    [8] van den Broek ME, Kagi D, Ossendorp F, et al. Decreased tumor surveillance in perforin-deficient mice. J Exp Med, 1996, 184(5): 1781-1790.
    [9] Kaplan DH, Shankaran V, Dighe AS, et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA, 1998, 93(13): 7556-7561.
    [10] Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human Colorectal tumors predict clinical outcome. Science, 2006,313: 1960-1964.
    
    [11] Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting : from immunosurveillance to tumor escape. Nat Immunol, 2002, 3(11): 991-998.
    
    [12] Dunn GP, Old L, Schreiber RD. The three Es of cancer immunoedting. Annu. Rev. Immunol, 2004, 22: 329-60.
    [13] Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Current Opinion in Immunology, 2007, 19: 203-208.
    [14] Germenis AE, Karanikas V. Immunoepigenetics: the unseen side of cancer Immunoediting. Immunol Cell Biol, 2007, 85(1): 55-59.
    [15]Girardi M,Oppenheim D,Glusac EJ,et al.Characterizing the protective component of the αβT cell response to transplantable squamous cell carcinoma.J Invest Dermatol 2004,122:699-706.
    [16]Huang Z,Desper R,Schaffer AA,et al.Construction of tree models for pathogenesis of nasopharyngeal carcinoma.Gene Chromosomes Canc,2004,40:307-315.
    [17]Glover TW,Arlt MF,Casper AM,et al.Mechanisms of common fragile site instability.Hum Mol Genet,2005,14:197-205.
    [18]Richards RI.Fragile and unstable chromosomes in cancer:causes and consequences.Trends Genet,2001,17:339-345.
    [19]Arlt MF,Durkin SG,Ragland RL,et al.Common fragile sites as targets for chromosome rearrangements.DNA Repair.2006,5:1126-1135.
    [20]Calin GA,Sevignani C,Dumitru CD,et al.Human microRNAs genes are frequently located at fragile sites and genomic regions involved in cancers.P Natl Acad Sci USA,2004,101:2999-3004.
    [21]郭坤元,梅家转,姚开泰.人鼻咽癌细胞株CNE2对NK细胞KIR/NKG2D受体的免疫编辑作用及其对NK细胞杀伤功能的影响.南方医科大学学报,27(3):247-249.
    [22]Smyth MJ,Dunn GP,Schreiber RD.Cancer immunosurveillance and immunoediting:the roles of immunity in suppressingtumor development and shaping tumor immunogenicity.Adv Immunol,2006,90:1-50.
    [23]Hayakawa Y,Rovero S,Forni G,et al.α~galactosylceramide(KRN7000)suppression of chemical-and oncogene-dependent carcinogenesis.Blood,2003,100(16):9464-9469.
    [24]Hayashi T,Faustman DL.Development of spontaneous uterine tumors in low molecular mass polypeptide-2 knockout mice.Cancer Res,2002,62(1):24-27.
    [25]Nishikawa H,Kato T,Tawara I,et al.Accelerated chemically induced tumor development mediated by CD4~+CD25~+ regulatory T cells in wild-type hosts.Proc.Natl Acad.Sci.USA,102:9253-9257.
    [26]Dunn GP,Koebel CM,Schreiber RD:Interferons,immunity and cancer immunoediting.Nat Rev Immunol,2006,6:836-848.
    [27]Smyth MJ,Swann J,Cretney E,et al.NKG2D function protects the host from tumor initiation.J Exp Med 2005,202:583-588.
    [28]Langowski JL,Zhang X,et al.IL-23 promotes tumour incidence and growth.Nature,2006,442:461-465.
    [29]Willimsky G,Blankenstein T.Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance.Nature,2005,437:141-146.
    [30]Luo JL,Maeda S,Hsu LC,et al.Inhibition of NF-kB in cancer cells converts inflammation-induced tumor growth mediated by TNFa to TRAIL-mediated tumor regression.Cancer Cell 2004,6:297-305.
    [31]Carter SL,Muller M,Manders PM,et al.Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro.Glia,2007,55(16):1728-39.
    [32]Muller AJ,Malachowski WP,Prendergast GC.Indoleamine 2,3-dioxygenase in cancer:targeting pathological immune tolerance with small-molecule inhibitors.Expert Opin Ther Targets.2005,9(4):831-49.
    [33]Andersen P,Pedersen MW,Woetmann A,et al.EGFR induces expression of IRF-1 via STAT1 and STAT3 activation leading to growth arrest of human cancer cells.Int J Cancer.2008,122(2):342-9.
    [34]Yuan JS,Reed A,Chen F,et al.Statistical analysis of real-time PCR data.BMC Bioinformatics.2006,22(7):85.
    [35]Dunn GP,Dunn IF,Curry WT.Focus on TILs:Prognostic significance of tumor infiltrating lymphocytes in human glioma.Cancer Immun.2007,7:12.
    [36]郭坤元,梅家转,姚开泰.NK细胞免疫编辑后的人鼻咽癌细胞株CNE2 HLA Ⅰ类分子和MICA/MICB的表达及其对NK细胞杀伤活性的影响.第四军医大学学报,2007,28(11):1005-1007.
    [37]Kim R,Emi M,Tanabe K.Cancer immunoediting from immune surveillance to immune escape.Journal of Immunology,2007,121(1):1-14.
    [38]Schoenborn JR,Wilson CB.Regulation of Interferon-γ During Innate and Adaptive Immune Responses.Adv Immunol.2007,96:41-101.
    [39]Li ZY,Zhang LH,Ji JE IFNγ regulates Fas/FasL expression in cholangio carcinoma cells.Chin Jou Can Res,2005,17(1):40-43.
    [40]Duker DF,Meij P,Vervoort MB,et al.Direct immunosuppressive effects of EBV-encoded latent membrane proteinl.J Immunology,2000,165:663-670.
    [41]陈艳,王熙才,伍治平等.鼻咽癌患者EBV感染与细胞免疫水平关系研究。肿瘤防治研究,2005,32(10):608-9.
    [42] Brierley MM, Fish EN. Stats: multifaceted regulators of trans-cription. J Interferon Cytokine Res. 2005,25(12): 733-44.
    [43] Bromberg J. Stat proteins and oncogenesis. J Clin Invest, 2002, 109: 1139-1142.
    [44] Chen H, Hutt-Fletcher L, Cao L, et al. A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein-Barr virus. J Virol, 2003, 77(7): 4139-4148.
    [45] Townsend PA, Scarabelli TM, Davidson SM, et al. STAT1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem. 2004, 279: 5811-5820.
    [46] Adámková L, Soucková K, Kovarik J. Transcription protein STAT1: biology and relation to cancer. Folia Biol. 2007: 53(1): 1-6.
    [47] Buettner R, Mora LB, Jove R. Activated STAT signaling in human umors provides novel molecular targets for therapeutic intervention.Clin Cancer Res, 2002, 8(4): 945-954.
    [48] Bromberg J. Stat proteins and oncogenesis. J Clin Invest, 2002, 109(9): 1139-1142.
    [49] Andersen P, Pedersen MW, Woetmann A, et al. EGFR induces expression of IRF-1 via STAT1 and STAT3 activation leading to growth arrest of human cancer cells. Int J Cancer. 2008, 122(2): 342-9.
    [50] Wirleitner B, Neurauter G, Schrocksnadel K, et al. Interferon- gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Che, 2003,10 (16): 1581 -91.
    [51] Tsukahara T, Kimb S, Taylor MW. A search framework for the identifica-tion of interferon-responsive elements in DNA sequences-a case study with ISRE and GAS. Comput Biol Chem, 2006, 30 (2): 134-147.
    [52] Cory M, Robinson, Phillip T, et al. The role of IFNγ and TNF-α-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. Interferon Cytokine Res, 2005, 25 (1): 20-30.
    [53] Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nature Med, 2003, 9 (7): 1269 - 1274.
    [54] Munn DH. Expression of indoleamine 2, 3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest, 2004, 114: 280-290.
    [55] Andrew M. Indoleamine 2, 3-dioxygenase and regulation of T cell immunity. Biochem Biophys Res Commun, 2005, 338(1): 20-24.
    [56] Zheng XF, J ames K, Mu L, et al. Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interferencel. J Immunol, 2006,177: 5639-5646.
    [57] Friberg M, J ennings R, Alsarraj M, et al. Indoleamine2, 3-dioxygenase contributes to tumor cell evasion of Tcell-mediated rejection. Int J Cancer, 2002, 101(2): 151-155.
    [58] MullerA J, DuHadaway JB, Donover PS, et al. Inhibition of indoleamine 2, 3-dioxygenase, an immunoregulatory target of the cancer suppression gene Binl, potentiates cancer chemotherapy. Nat Med, 2005, 11(3): 312-9.
    [59] Harada H, Kitagawa M, Tanaka N, et al. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and 2. Science, 1993, 259(5097): 971-974.
    [60] Wang Y, Liu DP, Chen PP, et al. Involvement of IFN regulatory factor(IRF)-1 and IRF-2 in the formation and progression of human esophageal cancers. Cancer Res. 2007, 67(6): 2535-43.
    [61] Stang MT, Armstrong M, Liu Y, et al. IRF-1 suppresses tumor formation and protects against tumor rechallenge in a murine model of breast carcinoma: The role of tumor specific immunity. J Surg Res, 2004, 121(2): 300-301.
    [62] Remoli ME, Giacomini E, Lutfalla G, et al. Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J Immunol, 2002,169(1): 366-374.
    [63] Ogasawara K, Hida S, Azimi N, et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature, 1998, 391:700-703.
    [64] Pizzoferrato E, Liu Y, Gambotto A, et al. Ectopic expression of interferon regulatory factor-1 promotes human breast cancer cell death and results in reduced expression of surviving. Cancer Res, 2004, 64(22): 8381-8388.
    [65] Wiley R, Palmer K, Gajewska BU, et al. Expression of the Th1 chemokine IFN-γ-inducible protein 10 in the airway alters mucosal allergic sensitization in mice. Immunol, 2001, 166(4): 2750-9.
    [66] LusterA D, Leder P. IP10, a CXC-chemokine, elicits a potent thymus- dependent antitumor response in vivo.J Exp med,1993,178(3):1057-1065.
    [67]Huang H,Liu Y,Xiang J.Synergistic effect of adop tive T-cell therapy and intratumoral interferon gamma-inducible protein-10 transgene expression in treatment of established tumors.Cell Immunol,2002,217(1):12-22.
    [68]Regulier E,Paul S,Marigliano M,et al.Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach.Cancer Gene Ther,2001,8(1):45-54.
    [69]Teichmann M,Meyer B,Beck A,et al.Expression of the interferon-inducible chemokine IP-10(CXCL10),a chemokine with proposed antineoplastic functions,in Hodgkin lymphoma and nasopharyngeal carcinoma.J Pathol,2005,206(1):68-75.
    [70]Kameoka Y,Tagawa H,Tsuzuki S,et al.Contig array CGH at 3p14.2 points to the FRA3B/FHIT common fragile regionas the target gene in diffuse large B-cell lymphoma.Oncogene,2004,23(56):9148-9154.
    [71]Deng YF,Tian F,Lu YD,et al.Mutation and abnormal expression of the fragile histidine triad gene in nasopharyngeal carcinoma.Laryngoscope,2001,111(9):1589-1592.
    [72]张世良,王立东.肿瘤分子细胞遗传学.郑州:郑州大学出版社,2002.201-221.
    [73]Dong JT,Boyd JC,Frierson HF,et al.Loss of heterozygosity at 13q14 and 13q21 in high grade,high stage prostate cancer.Prostate,2001,49(3):166-171.
    [74]Calin GA,Dumitru CD,Shimizu M,et al.Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.P Natl Acad Sci USA,2002,99(24):15524-29.
    [75]Ota A,Tagawa H,Karnan S,et al.Identification and haracteri-zation of a novel gene,C13orf25,as a target for 13q31-q32 amplification in malignant lymphoma.Cancer Res,2004,64(9):3087-95.
    [76]He L,Thomson JM,Hemann MT,et al.A microRNA polycistron as a potential human oncogene.Nature,2005,435(7043):828-833.
    [77]Pfeffer S,Zavolan M,Grasser FA,et al.Identification of Virus-Encoded MicroRNAs.Science,2004,304:734-736.
    [78]Cai X,Sehafer A,Lu S,et al.Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed.Plos Pathog,2006,2(3):e23.
    [79]Grundhoff A,Sullivan CS,Ganem D.A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-erpesviruses.RNA,2006,12:733-750.
    [80]Motsch N,Pfuhl T,Mrazek J,et al.Epstein-Barr Virus-encoded latent membrane protein I(LMP1)induces the expression of the cellular microRNA miR-146a.RNA Biol.2007,4(3):131-7.
    [1]Ehrlich P.Uber den jetzigen Stand der Karzinomforschung.Ned Tijdschr Geneeskd,1909,5:273-290.
    [2]Thomas L.In Cellular and Humoral Aspects of the Hypersensitive States.HS,Lawrence ed.New York:Hoeber-Harper,1959:529-533.
    [3]Burnet FM.The concept of immunological surveillance.Prog Exp Tumor Res,1970,67:1-27.
    [4]Rygaard J,Povlsen CO.Is immunological surveillance not a Cell-mediated immune function? Transplantation,1974,57:135-136.
    [5]Schreiber H.Tumor immunology.In:Paul W E ed.Fundamental Immunology.New York:Raven Press,1993,1143-1178.
    [6]Shankaran V,Ikeda H,Bruce AT,et al.IFN gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity.Nature,2001,410(6832):1107-1111.
    [7]Van den Broek ME,Kagi D,Ossendorp F,et al.Decreased tumor surveillance in perforin-deficient mice.J Exp Med,1996,184(5):1781-1790.
    [8]Kaplan DH,Shankaran V,Dighe AS,et al.Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice.Proc Natl Acad Sci USA,1998,93(13):7556-7561.
    [9]Dunn GP,Bruce AT,Ikeda H,et al.Cancer immunoediting:from immunosurveillance to tumor escape.Nat Immunol,2002,3(11):991-998.
    [10]Dunn GP,Old L,Schreiber RD.The three Es of cancer immunoedting.Annu.Rev.Immunol,2004,22:329-60.
    [11]郭坤元,梅家转,姚开泰.人鼻咽癌细胞株CNE2对NK细胞KIR/NKG2D受体的免疫编辑作用及其对NK细胞杀伤功能的影响.南方医科大学学报,27(3):247-249.
    [12]Doubrovina ES,Doubrovin MM,Vider E,et al.Evasion from NK cell immunity by MHC class Ⅰ chain-related molecules expressing colon adenocarcinoma.J Immunol,2003,171(12):6891-6899.
    [13]Moretta L,Bottino C,Pende D,et al.Surface NK receptors and their ligands on tumor cells.Semin Immunol,2006,18(3):151-158.
    [14]Germenis AE and Karanikas V.Immunoepigenetics:the unseen side of cancer Immunoediting.Immunol Cell Biol,2007,85(1):55-59.
    [15]Street SE,Cretney E,Smyth MJ.Perforin and interferon-gamma activities independently control tumor initiation,growth,and metastasis.Blood,2001,97(1):I92-I97.
    [16]Street SE,Trapani JA,MacGregor D,et al.Suppression of lymphoma and epithelial malignancies effected by interferon gamma.Exp Med,2002,196(1):129-134.
    [17] Coudert JD, Held W. The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol, 2006,16(5): 333-43.
    [18] Dunn GP, Ikeda H, Bruce AT. Interferon-y and cancer immunoediting. Immunologic Research, 2005, 32: 231-245.
    [19] Li ZY, Zhang LH, Ji JF. IFN-γ regulates Fas/FasL expression in cholangio carcinoma cell. Chin Jou Can Res, 2005,17(1): 40-43.
    [20] Smyth MJ, Cretney E, Takeda K, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gam ma-dependent natural killer cell protection from tumor metastasis. J Exp Med, 2001, 193(6): 661-670.
    [21] Hayakawa Y, Kely JM, Westwood JA, et al. Cutting edge: tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin. J Immunol. 2002, 169(10): 5377-5381.
    [22] Rincon-Orozco B, Kunzmann V, Wrobel P, et al. Activation of Vy9V82T cells by NKG2D. Immunology, 2005, 175:2144-2151.
    [23] Bonnevillea M, Scoteta E. Human Vy9V52T cells: Promising new leads for immunotherapy of infections and tumors. Cur Opi Immunol, 2006, 18(5): 539-546.
    [24] Dunn GP, Bruce AT, Sheehan KC, et al. A critical function for type I interferons in cancer immunoediting. Nat ImmunoL 2005, 6(7): 722-729.
    [25] Wang Y, Whittall T, McGowan E, et al. Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. Immunology, 2005, 174(6): 3306-3316.
    [26] Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol, 2002, 20: 395-425.
    [27] Girardi M, Oppenheim D, Glusac EJ, et al. Characterizing the protective component of the αβT cell response to transplantable squamous cell carcinoma. J Invest Dermatol, 2004, 122: 699-706.
    [28] Liu K, Caldwell SA, Greenehch KM, et al. CTL adoptive immunotherapy concurrently mediates tumor regression and tumor escape. J mmunolo, 2006, 176:3374-3382.
    [29] Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998,396:643-649.
    [30]MacKie RM,Reid R,Junor B.Fatal melanoma transfefred in a donated kidney 16 years after melanoma surgery.N Engl J Med,2003,348(6):567-568.
    [31]Groh V,Wu J,Yee C,et al.Tumour-derived soluble MIC ligan dsimpair expression of NKG2D and T-cell activation.Nature,2002,419(6908):734-738.
    [32]Takeda K,Smyth MJ,Cretney E,et al.Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development.J Exp Med,2002,195(2):161-169.
    [33]Golgher D,Jones E,Powire F,et al.Depletion of CD25~+ regulation cells uncovers immune responses to shared murine tumor rejection anti-genes.Eur J Immunol,2002,32:3267-3275.
    [34]Weng NP.Aging of the immune system:How much can the adaptive immune system adapt? Immunity,2006,24:495-499.