水稻内生菌及其根系土壤微生物群落多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.水稻品种内生细菌群落结构多样性
     以分离培养方法对野生稻、常规稻及杂交水稻内生细菌的多样性进行了初步研究。结果表明野生、常规及杂交水稻植株内存在大量的内生细菌,共分离到29株内生细菌,29种分离物进行Sherlock MIS微生物全自动鉴定,相似度系数大于0.5的有27个细菌,隶属于11个种, 5个属,分别为芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、寡养单胞菌属(Stenotrophomonas)、金杆菌属(Microbacterium)、不动杆菌属(Acinetobacter)。其中优势属为芽孢杆菌属(Bacillus),对以内生细菌为样本,以品种为变量进行主成分分析可以得到内生细菌可以聚为三类,与品种有关。以汕优63不同部位为材料,并采用0-1聚类分析得到:内生细菌分布与部位有关。
     2.水稻品种内生细菌与根系土壤细菌的相关性
     以航1号,航2号,Ⅱ优航1号,Ⅱ优航2号,汕优63为材料分析内生细菌和根系土壤细菌群落结构。结果显示:内生细菌有13种,根系土壤细菌10种,总共18种,群落多样性指数分析得到,内生细菌群落多样性高于根系土壤细菌;对内生细菌和根系土壤细菌群落结构典型相关分析得到,相关系数有4个,当R=0.9447时,两者呈最高相关;内生细菌和根系土壤细菌与水稻的生物学特性相关分析得到:两者都与穗粒数,结实率,千粒重,理论亩产存在极显著正相关,而与水稻有效穗呈负相关。
     3.水稻内生菌群落总体脂肪酸多样性
     通过磷脂脂肪酸(PLFAs)改良法并分析水稻内生菌PLFA多样性发现:水稻内生菌PLFA丰富,共检测到27种内生菌脂肪酸,其中8种为完全分布,19种为不完全分布。内生菌脂肪酸具有特异性,聚类分析得到内生菌脂肪酸可以聚为两大类,非线性映射分析得到,内生菌脂肪酸在不同品种分布有特征性。
     4.水稻根系微生物群落总体脂肪酸多样性
     采用脂肪酸生物标记(PLFAs)法,分析4个Ⅱ优为母本的水稻品种和3个优制5为父本的水稻品种在同等栽培条件下根系土壤微生物群落结构,从而探讨其与水稻品种特性的内在联系,为水稻育种和品种改良提供科学依据。试验结果表明:水稻根系土壤脂肪酸生物标记丰富,共检测到PLFAs 38条,其中完全分布的生物标记有23条,不完全分布的有15条;水稻根系土壤中细菌的PLFAs含量>真菌>放线菌。不同品种,其根系微生物脂肪酸生物标记组成结构存在差异:对根系土壤特征脂肪酸生物标记16:0(细菌)、18:1ω9с(真菌)、10Me l7:0(放线菌)、10Me 16:0(硫酸盐还原细菌)和16:1ω5с(甲烷氧化菌)比较可知,优制5为父本的品种含量高,最高的为金生优制5,Ⅱ优为母本的低,含量最低的为Ⅱ优797。对PLFAs总量和水稻生育特征进行Pearson相关分析结果表明:PLFAs与植株有效穗和产量呈正相关,但与株高呈负相关。对水稻根系土壤脂肪酸生物量总量进行聚类分析发现:Ⅱ优为母本的品种聚为一类,优制5为父本的聚为一类,表现出水稻遗传特性在其根系微生物脂肪酸生物标记(PLFAs)上的差异性。本研究结果表明:水稻根系土壤微生物群落PLFAs结构丰富,根系土壤微生物群落PLFAs结构与品种生育特性有相关性,同时受水稻遗传亲缘关系远近的影响。
1. Diversity of endophytic bacteria community structure of rice
     The diversity of endophytic bacteria in the wild rice, hybrid rice and cultivated rice was studied. Twenty-nine endophytic bacteria were isolated from the rice and identified by Microbial Identification System (MIS). Among the bacteria, 11 species were classified with Similarity Index more than 0.6, that belonged to 5 genuses such as Bacillus, Pseudomonas, Stenotrophomonas, Microbacterium and Acinetobacter. The genus Bacillus was the abundance one in the endophytic bacteria community. The principal components analysis was introduced into grouping the characteristics of bacteria community structure by using endophytic bacteria as samples and cultivar as variables. The results showed that the 11 species could be classified into 3 groups correlated with the rice cultivars. Moreover, the distribution of endophytic bacteria were found to have relationship with the part of rice by 0-1 cluster analysis
     2. Diversity of endophytic bacteria and rhizosphere bacteria on rice
     The relationship between the diversity of endophytic bacteria and rhizosphere bacteria of rice cultivar was investigated. In total, 18 species of bacteria were collected from both of the plant and the rhizosphere. Among which, the endophytic bacteria were identified and classified into 13 species and rhizosphere bacteria belonged to 10 species. According to the diversity indexes of Simpson index, Shannon-Wiener index, Brillouin index, Pielou index and McIntosh index, the community diversity of endophytic bacteria was found to be greater than that of rhizosphere bacteria. The results of statistics analysis showed that there was canonical correlation between the community structures of endophytic bacteria and rhizosphere bacteria. They had 4 correlational coefficients and reached the greatest correlations, while the correlational coefficient was 0.9447. The relationships were positively correlated between the amount of bacteria and the grain number per spike, seed setting rate, 1000-grain weight and plant production, respectively. However, the bacteria content performed negative correlation with the effective spikes.
     3. Microbial community diversity of endophytic bacteria of rice
     The microbial community diversity of endophytic bacteria of different rice cultivars was explored by using improved method of phospholipid fatty acid biomarkers detection (PLFA). The PLFAs of endophytic microbial of rice were abundant and different. Twenty-seven PLFAs biomarkers were detected, among which 8 PLFAs distributed completely and 19 PLFAs distributed incompletely in the plant of rice. The PLFAs were collected into 2 groups by cluster analysis. The structure of PLFAs of endophytic bacteria in different rice cultivars were discovered to be characteristic by Non-linear mapped analysis.
     4. Microbial community diversity of rhizosphere bacteria of rice
     Using phospholipid fatty acid biomarkers detection, the genetic relationship between the rhizosphere microbial community structure and the rice variety was studied. The rhizosphere microbial communities of rice varieties were sampled from 7 rice varieties,e.g.Ⅱyou 797,Ⅱyou HK05,Ⅱyou 355,Ⅱyou 455, xinan youzhi 5, jinsheng youzhi 5, tian youzhi 5, with the same cultivating conditions in the experimental plot. The PLFAs was detected by MIDI to get the microbial community diversity. The quantities of PLFAs were clustered to observe the characteristics of rhizosphere microbial community in the rice varieties. The results showed that 38 PLFAs biomarkers were detected out, in which there were 23 PLFAs completely distributed and 15 PLFAs incompletely distributed in the rhizosphere soils of 7 rice varieties respectively. The quantities of PLFAs related to bacteria were higher than either that to fungi or that to actinomycetes. The results also revealed that the roots’microbial community structure represented by PLFAs was closely related to the variety biology, in which the relationship between the PLFA and the effective ear was positive, so did the production, whereas the relationship between the PLFA and the plant height was negatively correlated. Simultaneously, the cluster analysis displayed that the PLFAs were concerned with the rice heredity characteristic. It was concluded that the microbial community based on PLFAs in the rice rhizosphere soil was rich, which sensitively reflected the relation between the PLFAs and the biological and hereditable characteristics of the rice variety.
引文
[1] Vogl A E. Mehl und die anderen mehlprodukte dercerealien and leguminosen[J]. Nahrungsm. Unters. Hyg. Warenk, 1989, 12: 25-29.
    [2] Siegel M R, Latch G C and Jonson M C. Fungal endophytes of grasses[J]. Annu Rev Phytopathol, 1987, 25: 295-325.
    [3] Stolafus J R, So R, Malarvithi P P, Ladha J K and De Bruijn F J. Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen[J]. Plant Soil, 1997, 194: 25-36.
    [4] Perotti R. On the limits of biological enquiry in soil science[J]. Proc Int Soc Soil Sci, 1926, 2: 146-161.
    [5] Henning K and Villforth F. Experimentelle untersuchungenzur frage der backterien-symbiose in hoheren pflanzen undihrer beeinflussung durch leitelemente[J]. Biochem Z, 1940, 305: 299-309.
    [6] Reinhold B and Hurek T. Location of diazotrophs in the root interior with special attention to the kallar grass association[J]. Plant Soil, 1988, 110: 259-268.
    [7] Hallmann J A, Mahaffee W F, Quadt-Hallmann A, Kloepper J W. Bacteria endophytes in agricultural crops[J]. Can J Microbiol, 43: 895-914.
    [8]刘云霞,张青文.水稻体内生细菌的动态研究[J ].应用生态学报, 1999, 10 (6): 735-738.
    [9]沈德龙,宋未,东秀珠,蔡妙英.水稻内生优势菌-成团肠杆菌的鉴定及其系统发育学分析[J].自然科学进展, 2000, 10: 949-953.
    [10] Mukhopadhyay K, Garrison N K, Honton D M, Charles W B, Gurdev S K, Harry D P and Neeraj D. Identification and characterization of bacterial endophytic of rice [J]. Mycopathologia, 1996, 134: 151.
    [11]朱凤,陈夕军,童蕴慧,纪兆林,徐敬友.水稻内生细菌的分离及拮抗性与潜在致病性测定[J].中国生物防治, 2007, 23(1): 68-72.
    [12] Elbeltagy A K, Nishioka H, Suzuki T, Sato Y, Morisaki H, Mitsui H and Minamisawa K. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varidties[J]. Soil Sci Plant Nutr, 2000, 46: 617-629.
    [13] Hironbu M, Fumiko T, Asuka W, Hiroko K, Suguru O and Hisao M. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field[J]. Microbes environ, 2006, 21: 86-100.
    [14] Suguru O, Kentaro S, Hirononbu M, Ayumi I and Hisao M. Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa)[J]. Microbes Environ, 2005, 20: 168-177.
    [15] Verma S C, Ladha J K and Tripathi A K. Evaluation of plant growth romoting and colonization ability of endophytic diazotrophs from deep water rice[J]. J Biotechnol, 2001, 91: 127-141.
    [16] Hironobu M, Fumiko T, Chizuru N, Hiroko K and Hisao M. Curturable endopytic bacterial folora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field[J]. Microbes Environ, 2007, 22: 175-185.
    [17] Stolzfus J R, So R, Malarvithi P P, Ladha J K and De bruijn F J. Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen[J]. Plant Soil, 2004, 194: 25-36.
    [18] Fabio L O, Vera L D B, Veronica M R, Jose I B and Johanna D. Occurrence of the endophytic diazotrophs Herbaspirillum spp. In roots, stems, and leaves, predoninatly of Gremineae[J]. Biol Fertil Soils, 1996, 21: 197-200.
    [19] Gyaneshwar P, James E K, Mathan N, Pallavolu M R, Barbara R H and Jagdish K L. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens[J]. J Bacteriol, 2001, 183: 2634-2645.
    [20] Engelhard M T and Van V. Natural incidence of endophytic bacteria in pea cultivars under field conditions[J]. Can J Microbiol, 2000, 46: 1036-1041.
    [21] Peter V, Johan G, Chen W M, Paul D V and Anne W. Burkholderia tuberum sp, nov, and Burkholderia phymatum sp. nov., Nodulate the Roots of Tropical Legumes[J]. Systematic and Applied Microbiology, 2002, 25(4): 507-512.
    [22] Ramesh K S, Ravi P N M, Hemant K J, Vinod K, Shree P P, Sadi B R and Kannapali A. Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L) through rDNA PCR-RFLP and sequence analysis[J]. Curr Microbiol, 2006, 52: 117-122.
    [23] Yanni C H and Crowley D E. Rhizpshere microbial community structure in relation to root location and plant iron nutritional status[J]. Appl Environ Microbiol, 2000, 66: 345-351.
    [24] Huang J S. Ultrastructure of bacterial penetration in plants[J]. Annu Rev Phytopathol, 1986, 24: 141-157.
    [25] Marilley L and Aragno M. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne andTrifolium repens roots[J]. Appl Soil Ecol, 1999, 13:127-136.
    [26] Hironobu M and Hisao M. Minireview Endophytic bacteria of rice[J]. Microbes Environ, 2008, 2(23): 109-117.
    [27] Sato M. The nitrogen-fixing endophyte in wild rice. In H. Morishima(ed.), The natural history of wild rice Evolution ecology of crop. 2003, P.91-106 Hokkaido University Press, Sapporo, Japan.
    [28] Adams D P and Kloepper J W. Seed-borne bacterial endophytes in different cotton cultivars[J]. Phytopathology, 1996, 86: S97.
    [29] Mclnroy J A and Kloepper J W. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton[J]. Can J Microbiol, 1995, 41: 895-901.
    [30] James E K, Gyaneshwar P, Mathan N, Wilfredo L B, Pallavlu M R, Pietro P M I, Fabio L O and Jagdish K L. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67[J]. Mol Plant-Microbe Interact, 2002, 15: 894-906.
    [31]何红,蔡学清.内生菌BS-2菌株的抗菌蛋白质其防病作用[J].植物病理学报, 2003, 33(4): 373-378.
    [32]扬海莲,孙晓璐,宋未,王云山.水稻内生阴沟肠杆菌MR12的鉴定及其固氮和防病作用研究[J].植物病理学报, 2001, 31(1): 92-93.
    [33]邱思鑫,何红,阮宏椿,关雄,胡方平.具有抑菌促生作用的植物内生细菌的筛选[J].应用与环境生物学报, 2004, 10(5): 655-659.
    [34] You M T, Nishiguchi A, Satio T, Isawa T, Mitsui H and Minamisawa K. Expression of the nifH gene of a Herbaspirillum endophyte in wild rice species; daily thythm during the light-dark cycle[J]. App Envion Microbiol, 2005, 71: 8183-8190.
    [35] Baldani V L and Baldani J I, Dobereiner J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp[J]. Biol Fertil Soils, 2000, 30: 485-491.
    [36] Feng Y D and Song W. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates[J]. J Appl Microbiol, 2006, 100: 938-945.
    [37] De Bruijn F J, Jing Y and Dazzo F B. Ecology of the methylotrophic bacteria on living leaf surfaces[J]. FEMS Microbiol. Ecol, 1989, 62: 243-250.
    [38] Tai Y L, Han L Z, Yin P, Hui L, Xue L F, Zhi G G and Chu F Z. Construction of a stable expression vetor for Leifsoniaxyli subsp. Cynodontis and its application in studying the effect of the bacterium as an endophytic bacterium in rice[J]. FEMS Microbiol Lett, 2007, 267: 176-183.
    [39] Hallmann A, Hallmann J and Kloepper J W. Bacterial endophytes in cotton: location and interaction with other plant-associciated bacteria[J]. Can J Microbiol, 1997, 43: 254-259.
    [40] Mukhopadhyay K, Garrison N K, Dorothy M H, Charles W B, Gurdev S K, Harry D K and Neeraj D. Identification and characterization of bacteria endophytes of rice[J]. Mycopathologia, 1996, 134: 151-159.
    [41] Choong M R, Mohamed A F, Chia H H, Munagala S R, Han X W, Paul W P and Joseph W K. Bacterial Volatiles Promote Growth in Arabidopsis[J]. Proc Nat Acad Sci, 2003, 100: 4927-4932.
    [42] Sarwar M and Kremerr J. Determination of Bacterially Derived Auxins Using amicroplate Method[J]. Lett Appl Microbiol, 1995, 20: 282-285.
    [43] Gustafssona S and Gerhardon B. Characteristics of a Plant Deleterious Rhizosphere Pseudomona dandits Inhibitory Metabolite(s)[J]. Appl Bacteriol, 1993, 74: 20-28.
    [44]何红.辣椒内生枯草芽孢杆菌(Bacillus subtilis)防病促生作用的研究.福建农林大学博士学位论文, 2003
    [45] Surette M A and Sturz A V. Bacterial endophytes in processing carrots (Daucus carota L.var.sativus): their localization, population density, biodiversity and their effects on plant growth[J]. Plant and Soil, 2003, 253: 381-390.
    [46] Nejad P and Johnson P A. Endophytic bacteria induce growth promotion and wilt disease suppression in oil seed rape and tomato[J]. Biological Control, 2000, 18: 208-215.
    [47] Alam M S, Cui Z J, Yamagishi T, et al. Grain Yield and Related Physiological Characteristics of Rice Plants(Oryza sativa L.) Inoculated with Free-Living Rhizobacteria[J]. Plant Prod Sci, 2001, 4: 125-130.
    [48] Zhang H M, Kim M S, Krishnamachari V, Payton P, Yan S, Mark G, Mohamed A F, Choong M R, Randy A, Itamar S M and Paul W P. Rhizobacterial Volatile Emissions Regulate Auxin Homeostasis and Cell Expansion in Arabidopsis[J]. Planta, 2007, 226: 839-851.
    [49]高增贵,陈捷,刘军华,冯晶,赵辉.拮抗内生细菌B20-006对玉米主要防御酶系的影响[J].植物病理学报, 2007, 37(1) : 102-104.
    [50] Weger LA, Arenonk J J C M, Recourt K, Van der Hofstad G A, Weisbeek P J and Lugtenberg B. Sidemphore-Mediated Uptake of Fe3 by the Plant Growth-stimulating Pseudomonas Putida Strain WCS358 and by other Rhizosphere Microorganisms[J]. Bacterial, 1988, 170: 4693-469.
    [51]闫孟红,蔡正求,韩继刚,等.植物内生细茵在防治植物病害中的应用研究[J].生物技术通报, 2004, 3: 8-12.
    [52] Ohansen A and Olsson S. Using phospholipid fatty acid technique to study short term effects of the biological control agentPseudornonas Fluorescents DR54 on the microbial microbiota in barley rhizosphere[J]. Microbial Eco1ogy, 2005, 49(2): 272-281.
    [53] Kimura M and Asakawa S. Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis[J]. Biology and Fertility of Soils, 2006, 1(43): 20-29.
    [54] White D C and Davis W M, Nickls J S, King J D, Bobbie R J. Determination of the sedimentary microbial biomass by extractible lipid hosphate[J]. Oecologia, 1979, 40: 51-62.
    [55] Vestal J R and White D C. Lipid analysis in microbial ecology: Quantitative approaches to the study of microbial communities[J]. Bioscience, 1989, 39: 535-541.
    [56] Joergensen R G and Potthoff M. Microbial reaction in activity, biomass and community structure after long-term continuous mixing of a grassland soil[J]. Soil Biology and Biochemistry, 2005, 37(7): 1249-1258.
    [57] Miethling R, Wieland G, Backhaus H, Tebbe C C. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium Meliloti L33[J]. Microbial Ecology, 2000, 41: 43-56.
    [58]周桔,雷霆.土壤微生物多样性影响因素及其研究方法的现状与展望[J].生物多样性, 2007, 15(3): 306-311.
    [59] Innes L, Hobbs P J and Bardgett R D. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility[J]. Biology and Fertility of soils, 2004, 1(40): 7-13.
    [60] Steinberger Y, Zelles L, Bai Q Y, Margit V L and Munch J C. Phospholipid fatty acid profiles as indicators for th microbial community structure in soils along a climatic transect in the Judean Desert[J]. Biol Fertil Soils, 1999, 28: 292-300.
    [61] Frostegfird A and Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biol Fertil Soils, 1996, 22: 59-65.
    [62] Bmtha E and Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA based techniques[J]. Soil Biology and Biochemistry, 2003, 35: 955-963.
    [63] Zelles L, Bai Y Q, Rackwitz R and Beese F. Determination of phosphorlipid and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structure in soils[J]. Biol Fertil Soils, 1995, 19: 115-123.
    [64] Yu S, He Z L, Huang C Y. Advances in their search of soil mi-croorganisms and their mediated processes under heavy metal stress[J]. Chinese Journal of Appllied Ecology, 2003, 14(4): 618-622.
    [65] Xin-Hua Song and Philip K. Hopke. Pattern Recognition of Soil Samples Based on the Microbial Fatty Acid Contents [J]. Environ Sci Technol, 1999, 33(20): 3524-3530.
    [66] Xue-M H, Wang R Q, Liu J, Wang M C, Zhou J and Guo W H. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China[J]. Journal of Environmental Sciences, 2007, 19(10): 1228-1234.
    [67] Arab H G D E, Vlich V and Sikora R A. The use of phospholipids fatty acids (PLFA) in the determination of rhizosphere specific microbial communities of two wheat cultivars[J]. Plant and Soil, 2001, 228: 291-297.
    [68]金剑,王光华,陈雪丽, Herbert S J. Biolog-ECO解析不同大豆基因型R1期根际微生物群落功能多样性特征[J].大豆科学, 2007, 26(4):
    [69]高增贵,庄敬华,陈捷,刘限,唐树戈.玉米根系内生细菌种群及动态分析[J].应用生态学报, 2004, 15(8): 1344-1348.
    [70]罗明,芦云,张祥林.棉花内生细菌的分离及生防益菌的筛选[J].新疆农业科学, 2004, 41(5): 277-282.
    [71]鲁素芸,陈延熙.棉花维管束中主要微生物类群初步分析[J].北京农业大学学报, 1989, 15(3): 387-392.
    [72] Fisher P J, Pertini O and Scott H M L. The distribution of some fungal and bacterial endophytes in maize[J]. New Phytologist, 1992, 122(2): 299-305.
    [73]刘志辉,蔡杏珊,竺澎波.应用气相色谱技术分子全细胞脂肪酸快速鉴定分枝杆菌[J].中华结核和呼吸杂志, 2005, 28(6): 403-406.
    [74]朱育菁,王秋红,陈璐.龙眼内生菌的分离与脂肪酸鉴定[J].亚热带植物科学, 2008, 37(4): 22-25.
    [75]朱育菁,陈璐,蓝江林.茶叶内生菌的分离鉴定及其生防功能初探[J].福建农林大学学报:自然科学版, 2009, 38(2): 129-134.
    [76]蓝江林,刘波,朱育菁,唐秋榕,林抗美,苏明星,史怀.茄子植物内生细菌群落结构与多样性[J].生态环境学报, 2009, 18(4): 1433-1442.
    [77]吴愉萍,徐建明,汪海珍. Sherlock MIS系统应用于土壤细菌鉴定的研究[J].土壤学报, 2006, 43(4): 642-647.
    [78] Ozbek A and Aktas O. Identification of three strains of Mycobacterium species isolated from clinical samples using fatty acid methyl ester profiling[J], J Int Med Res, 2003, 31: 133-140.
    [79]蓝江林,朱育菁,苏明星,葛慈斌,刘芸,刘波.水葫芦内生细菌的分离与鉴定[J].农业环境科学学报, 2008, 27(6): 2423-2429.
    [80]杨海莲,孙晓璐,宋未,王云山.植物促生细菌主秀导水稻对白叶枯病抗性的初步研究[J].植物病理学报, 1999,31: 91-92.
    [81]孟颂东,关桂兰.根际微生物产生的植物激素对小麦生长的作用[J].植物生理学通讯, 1998, 34(6): 427-429.
    [82] Mclnory J A and Kleopper J W. In Molecular Ecology of Rhizosphere Microorganisms[J]. 1994, F O Gara, D. N Dowling, B. Boesten (eds), 19-28.
    [83] Zou W X and Tan R X. Biological and chemical diversity of endophytes and their potential applications[C]. Li C S. Advances in Plant Sciences. 1999, Vol.2. pp 183-190, China Higher Education Press, Beijing.
    [84] Laheurte F and Bcrtherin J. Effect of a Phospbate Solubilizing Bacteriaon Maize Growth and Root Exudation Over four Levels of Labile Phosphorus [J]. Plant and Soil, 1988, 105: 11-17.
    [85] David C W and Robert H F. Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms[J]. Hydrobiologia, 1988, 159 (1): 119-132.
    [86] Garbeva P, van Overbeek L S, Van Vuurde J W L and Van Elsas J D. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments[J]. Microbial Ecology, 2001, 41 (4): 369-383.
    [87] Shimizu M, Nakajima Y, Matsuya K and Kimura M. Comparison of phospholipid fatty acid composition in percolating water, floodwater, and the plow layer soil during the rice cultivation period in a Japanese paddy field[J]. Japanese Society of Soil Science and Plant Nutrition, 2002, 48: 595-600.
    [88] Angela S, Birgit R, Ulrike P and Eva W. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes[J]. FEMS Microbiology Ecology, 2006, 39 (1): 23-32.
    [89]刘建军,陈海滨,田呈明.秦岭火地塘林区主要树种根际微生态系统土壤性状研究[J].土壤侵蚀与水土保持学报, 1998, 4(3): 52-56.
    [90]张淑香,高子勤.连作障碍与根际微生态研究Ⅱ-根系分泌物与酚酸物质[J].应用生态学报, 2000, 11(1): 152-156.
    [91]张淑香,高子勤,刘海玲.连作障碍与根际微生态研究Ⅲ-土壤酚酸物质及其生物学效应[J].应用生态学报, 2000, 11(5): 741-744.
    [92]刘涛,刁治民,祁永青,高晓杰.根际微生物及对植物生长效应地初步研究[J].青海草业, 2008, 17(4): 41-44.
    [93] Gabriele W, Regine N and Horst B. Variation of microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type and crop development[J]. Applied and Environmental Microbiology, 2001, 12(12): 5849-5854.
    [94] Bremer C, Braker G, Matthies D, Andreas R, Christof E and Ralf C. Impact of plant functional group, plant species and sampling time on the composition of nirK-type denitrifier communities in soil[J]. Applied and Environmental Microbiology, 2007, 73: 6876-6884.
    [95] Frosteg?rd A, Tunlid A and BaatI E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J]. Applied and Environment Microbiology, 1993, 59(11): 3605-3617.
    [96] Kourtev P S, Ehrenfeld J G and H?ggelom M. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 2002, 83(11): 3152-3166.
    [97] Tunlid A, Hoitink H A J and White D C. Characterization of bacteria that suppress rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers[J]. Applied and Environment Microbiology, 1991, 55(6): 1367-1374.
    [98]时亚南,张奇春,王光火.不同施肥处理对水稻土微生物生态特性的影响[J].浙江大学学报, 2007, 33(5): 551-556.
    [99]唐莉娜,张秋芳,刘波,林营志,刘丹莹,史怀,杨述省.有机肥与化肥对烤烟土壤微生物群落PLFAs动态的影响[J].土壤肥料科学, 2008, 12(24): 260-266.
    [100] Findlay R H, King G M and Watling L. Efficacy of phospholipid analysis in determining microbial biomass in sediments [J]. Applied and Environmental Microbiology, 1989, 55(11): 2888-2893.
    [101] Poerschmann J, Spijkerman E and Langer U. Fatty acid patterns in Chlamydomonas sp., as a marker for nutritional Regimes and temperature under extremely acidic conditions[J]. Microbial Ecology, 2004, 1(48): 79-89.
    [102]王曙光,侯彦林.尿素肥斑扩散对土壤微生物群落结构的影响[J].生态学报, 2004, 19(23): 2269-22.
    [103]喻曼,曾光明,陈耀宁,郁红艳,黄单莲,陈芙蓉. PLFA法研究稻草固态发酵中的微生物群落结构变化[J].环境科学, 2007, 11(28): 2603-2609.
    [104]刘波,郑雪芳,朱昌雄,蓝江林,林营志,林斌,叶耀辉.脂肪酸生物标记法研究零排放猪舍基质垫层微生物群落多样性[J].生态学报, 2008, 12(28): 1-11.
    [105]刘涛,刁治民,祁永青,高晓杰.根际微生物及对植物生长效应地初步研究[J].青海草业, 2008, 17(4): 41-44.
    [106]张新慧,张恩和.不同植龄啤酒花根际微生物区系的变化及与产量和品质的关系[J].草业学报, 2007, 5(16): 56-60.
    [107]林瑞余,戎红,周军建,于翠平,叶陈英,陈良生,林文雄.苗期化感水稻对根际土壤微生物群落及其功能多样性的影响[J].生态学报, 2007, 9: 3644-3654.
    [108]段红平,张乃明,李进学,杨高群,师常俊.超高产水稻根系微生物类群数目初探[J].中国农学通报, 2007, 23(2):285-289.
    [109] Yahai L, Dirk R, Werner L and Ralf C. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere[J]. Science, 2005, 12: 1088-1090.
    [110] Ibekwe A M and Kennedy A C. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils[J]. Plant and Soil, 1999, 206: 151-161.
    [111] Merry S R, Vaughn S C, Richard E L, Larry J F and Terence L M. Rapid phenotypic change and diversification of a soil bacterium during 1000 generations of experimental evolution[J]. Microbiology, 2001, 147, 995-1006.
    [112]杜宗敏,杨瑞馥.生物标记物在微生物鉴定和检测中的应用[J].微生物学免疫学进展, 2003, 31(3): 67-73.
    [113]吴愉萍,徐建明,汪海珍,等. Sherlock MIS系统应用于土壤细菌鉴定的研究[J].土壤学报, 2006, 43(4): 642-647.
    [114] Oka N, Hartel P G, Finlay M O, Gagliardi J, Zuberer D A, Fuhrmann J J, Angle J S and Skipper H D. Misidentification of soil bacteria by fatty acid methyl ester (FAME) and Biolog analyses[J]. Biology and Fertility of Soils, 2000, 32: 256-258.