钢桥面涂层腐蚀及其对沥青混凝土铺装层界面弱化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全面调研国内外大跨径铺装层体系的使用状况,分析钢桥面铺装层病害类型和主要原因。分析结果表明:推移、裂缝、车辙、粘结层的剪切破坏是沥青混凝土铺装层病害的主要表现形式,其主要原因为钢桥面板刚性不足、沥青混凝土材料强度低、车载过大、铺装工艺和铺装体系设计不合理等。本文首次提出铺装层下界面腐蚀问题,并研究界面腐蚀与铺装层弱化的相关性。
     实验研究不同渗透压和循环渗透周次下水的渗透规律。结果表明随着水渗透压增加、水渗透时间增加、水循环渗透周次增加,均促进铺装层表面或孔隙内水向粘结层与防腐蚀层间界面渗透。当渗透压大于0.3Mpa时,这种倾向明显。
     分别对无机富锌、环氧富锌和电弧喷锌涂层的腐蚀电位、腐蚀速率、极化特性、阻抗、腐蚀现象和产物研究。研究表明:在模拟的桥面雨水环境下,电弧喷锌涂层为均匀腐蚀,无机富锌涂层和环氧富锌涂层为点腐蚀。随着腐蚀时间的推移,电弧喷锌涂层腐蚀速率处于相对稳定,而无机富锌涂层和环氧富锌涂层开始腐蚀速度大,随后腐蚀相对稳定;锌的腐蚀产物主要为锌的氧化物、含CO32-、Cl-、SO42-、OH-等锌盐。
     通过对沥青粘结层--锌涂层结构在粘结层不同破损方式下的腐蚀行为研究,当粘结层遭到刻划破损或剥离破损时,锌涂层的腐蚀被加速,因此沥青粘结层下锌涂层的腐蚀表现为电荷传质电化学腐蚀和扩散腐蚀共同作用机制。
     通过对沥青铺装层+沥青粘结层下锌涂层的腐蚀研究,在无载荷状态下,沥青铺装层+沥青粘结层下锌涂层的腐蚀程度要比单一沥青粘结层下锌涂层腐蚀程度弱,体系下锌涂层腐蚀是锌的活化腐蚀——氧化及其产物堆积——再活化腐蚀的交替进行过程。
     剪切疲劳寿命研究结果表明:锌涂层腐蚀时两种铺装层体系的剪切疲劳寿命均明显下降,铺装层剪切位移明显加大;随着疲劳载荷的增加,这种变化更加明显。并且,喷锌涂层腐蚀时造成铺装层位移最大。
     采用ANSYS有限元计算软件,模拟计算富锌涂层界面腐蚀对动载荷下沥青混凝土铺装层应力和应变变化规律,研究界面腐蚀尺寸对沥青混凝土铺装层界面和表面应力和应变变化特征。结果表明,当铺装层下腐蚀尺寸小于500㎜×500㎜时,铺装层表面应力大于底部应力;当铺装层下腐蚀尺寸大于500㎜×500㎜时,铺装层底部应力大于表面应力,并且横向应力大于纵向应力,甚至出现铺装层底部和表面最大应力方向不一致,使铺装层处于底部纵向位移、表面横向位移的最不利状态。
     实验探索自放热型防腐涂层。结果表明:它与钢板结合力达30~40Mpa以上,与沥青粘结层结合力达到2~3Mpa,在5%NaCl+Na2CO3+Na2SO4中腐蚀电流在50μA以内,在5%NaCl中腐蚀电流在100μA以内,涂层无界面腐蚀。
     该论文有图85幅,表17个,参考文献100篇。
A plenty of application of long-span steel bridge pavement system and its current condition were investigated in this dissertation. The disease type and possible reason of the paved layers were analysed as well. The results indicated that the diseases are mainly shearing, cracking, rutting and breakage of asphalt binding coating, and the reasons for diseases are briefly rigidity shortage of steel bridge deck, poor asphalt concrete materials, overloading, disqualified paved technology and unresonable pavement system. It is proposed firstly and researched in this dissertation that the interface corrosion of asphalt binding and zinc antisepsis coatings under the paved layer on the deck has relevant influence on decline of the layer.
     The water penetrative mechanism was derived from the study under the conditions of different pressure or pressure cycles. The results showed that the water on the surface or in asphalt layer penetrates to interface between the asphalt binding coating and zinc antiseptic coating. Furthermore, the quantity of penetrated water is increased with process pressure, time and pressure cycles, and this trend is in evidence when the pressure is beyond 0.3Mpa.
     The corrosive performance of zinc coatings was systematically investigated through corrosive electricty potential, corrosion rate, polarization property, electrochemical impedance spectroscopy analysis, corrosion appearance and corrosive products on inorganic rich zinc coating, epoxy rich zinc coating and arc spraying zinc coating. The uniform corrosion mechanism for arc spraying zinc coating and dot corrosion mechanism for inorganic and epoxy rich zinc coatings are summarized. The corrosion rate is comparatively steady with time increasing for arc spraying zinc coating, but the corrosion rate for the other two coatings--inorganic and epoxy zinc coatings is increased initialy and then kept unchanged subsequently with time increasing. Moreover, the zinc corrosive products are mainly zinc oxides and zinc salts including CO32-,Cl-, SO42-,OH- ion.
     The corrosive characteristics of the asphalt binding and zinc coating systems under different breaking modes for binding coating were discussed. Both asphalt binding and zinc coating systems represent composite corrosion mechanism which has synchronously charge transportation and ions diffusion.
     The corrosive degree of the zinc coating inside the system which is composed of the zinc coating and asphalt binding coating and asphalt pavement layer , is poorer than the other zinc coating inside the system which is composed of the zinc coating and asphalt binding coating. The zinc coating corrosion process involves activation-oxidation-reactivation.
     The shear fatigue experiment of the two systems were carried out whether or no corrosion. The results showed that the shear fatigue strength of two systems decreases obviously, and the shear displacement increases apparently when the zinc coating is in corrosion condition, these phenomenon are more remarkable with increasing fatigue load.
     In this research, The distribution pattern of stress and strain of the paved layer was derived from ANSYS analysis. The computation results indicated that surface stress is bigger than interface stress when the zinc coating corrosive area is smaller than 500mm×500mm. Moreover, when zinc coating corrosive area exceeds 500mm×500mm, the paved layer surface stress is smaller than interface stress, and stress in transversal is bigger than longitudinal. Indeed, the surface stress is not consistent with interface with regard to paved layer, such as the longitudinal displacement in interface is converse absolutely to the transversal displacement in surface.
     A new type antisepsis coating was exploited. The results showed that the bond strength of this new coating is more than 30-40Mpa to steel deck, and 2-3Mpa to asphalt binding coating. Moreove, this new coating possesses excellent corrosion resistance, the corrosive current is lower to 50μA in 5%NaCl+Na2CO3+Na2SO4 solution, and is not more than 100μA in 5%NaCl solutin, and no interface corrosion occures.
引文
[1]小西一郎著,朱立冬译.钢桥:第一分册[M].北京:人民铁道出版社.1980.
    [2]罗立蜂,钟鸣,黄成造编译.钢桥面铺装概述[J],国外公路.2004,4:16-19.
    [3]罗立峰,钟鸣,黄成造.桥面铺装设计理论的研究[J].华南理工大学学报(自然科学版).Vo130,No4(2002):92-96
    [4]黄卫,张晓春,胡光伟.大跨径钢桥面铺装理论与设计的研究进展[J].东南大学学报(自然科学版). Vo132,No3(2002).:481-487
    [5]韩道均,张华.厦门海沧大桥钢桥面铺装的设计与实施[J].公路.2001(1):6—10.
    [6]胡光伟.大跨径钢桥桥面铺装体系力学特性研究与优化设计[D].东南大学博士学位论文,2005
    [7]黄彭,任惠清.重交通干道钢桥桥面沥青混合料性能的研究[J].土木工程学报,1994,27(1):67-74.
    [8]张宜洛,郝培文.需要透水性沥青混合料路用性能的研究[J].西安公路交通大学学报,1999,19(3):14-17
    [9]黄卫东,吕伟民.沥青及沥青混合料流变性质与动稳定度的关系[J].同济大学学报,2000,28(4):501-504
    [10]张婧娜.沥青混合料疲劳损伤的研究[J].哈尔滨建筑大学学报,1997,30(5):106-112
    [11]黄卫,Monisimith C.L.沥青混合料疲劳响应新模型研究[J].中国公路学报,1995,8(1):56-62
    [12] Hadly W.O,Hudson W R ,Kennedy T W. Evaluationand prediction of the tensile properties of asphalt-treated materials [C]. In:Highway Research Board Annual Meeting. Washington DC,1971
    [13]石红星,吕伟民.沥青玛蹄脂碎石混合料力学性能的试验评价[J].同济大学学报,2000,28(6):675-678
    [14]茅荃.大跨径钢桥桥面铺装力学特性研究[D].南京:东南大学,2000.3
    [15] Azad AK,Troitsky M S. Experimental investigation of an orthotropic steel bridge deck [C]. Proc.Instn Civ. Engrs. University College Cardiff,1977,15,August:393-490
    [16]沈桂平,曹雪琴.正交异性钢桥面铺装的疲劳承载能力试验研究[J].上海铁路大学学报,1996,17(3):100-108
    [17]吴光蓉等.钢桥面铺装方案环道试验研究[J].公路,2001,(1):20-23
    [18]胡光伟,钱振东,黄卫.正交异性钢桥面第二体系结构优化设计[J]东南大学学报,2001,31(3):76-78
    [19]明图章,胡光伟,黄卫.大跨径钢桥面铺装体系多目标优化设计[J].土木工程学报,2007,40(2):70-73
    [20]刘燕,朱子新,陈永雄等. Zn-Al系列高速电弧喷涂层电化学防腐蚀性能研究[J].中国表面工程. 2004,17(5):23-25
    [21] Kline, Harlan H .Inorganic zinc-rich. Journal of Protective Coatings & Linings,1996, 13(11): 19
    [22] Feliu S ,Bastidas J M , Morcillo M .Effect of the Di-iron phosphide conductive Extender on the protective mechanisms of zinc-rich coatings. Journal of CoatingsTechnology,1991,v 63n 794Mar:p 65-72
    [23]Yukikuza yanaka, Makoto Kitagawa .Maintenance of steel bridges on Honshu Shikoku crossing[J]. Journal of Constructional Steel Research. 2002 (58):131-150
    [24]李新发.钢桥面铺装防水粘结层研究[D].南京:东南大学,2004.4
    [25]陈雄飞,王敬民,朱利明.江阴大桥引桥混凝土连续箱梁典型病害分析[J].桥梁建设. 2005年增刊:115-119
    [26]樊叶华,王敬民,谭志龙等.江阴大桥钢桥面浇注式沥青混凝土铺装车辙破坏分析[J] .公路交通科技. 2005,22(5):108-110
    [27]沈金安,李福善,陈景.高速公路沥青路面早期损坏分析与防治对策[M].人民交通出版社,2004
    [28]沙庆林.高速公路沥青路面早期破坏现象及预防[M].人民交通出版社,2001
    [29]Guniher G H,Bild S,Sedlacek G.Durabilidy of asphaltic.Pavements on orthotropic decks of steel bridges[J].J Construct steel research.1987,7:85~106.
    [30]黄卫,刘振清.大跨径钢桥面铺装设计理论与方法研究[J].土木工程学报.2005(38),1:51-59
    [31]关永胜,迟占华,宗海.大跨径钢桥桥面铺装早期病害分析及对策[J].中外公路2005,25(12):99-102
    [32]黄继成,叶奋.钢桥面沥青铺装出现问题及其防治[C].上海公路学会第六届年会.上海:上海公路学会.2003.128-130
    [33]林伍湖.海沧大桥钢桥面铺装层损坏原因及维修探讨[J].公路2004,10:77-80
    [34]张磊.江阴大桥钢桥面铺装病害研究[D].南京:东南大学交通学院,2004.
    [35]Cheng Gang ,Chen Xianhua,Wang Xiao. Analysis on Cracking of Deck Pavement on J iangy in Bridge[J]. Journal of Southeast University (English Edition). Vol21, No4(2005).490 -494.
    [36]邓学均,顾兴宇,周世忠,周建林.钢桥面沥青铺装层裂缝破坏趋势研究[ J] .公路交通科技, 2002, 19 ( 4):1-5
    [37]宗海.环氧沥青混凝土钢桥面铺装病害修复技术研究[ D] .南京:东南大学, 2005.
    [38]Huangxiong Hua,Michael J. Chajes, Dennis R . Mertz,Harry W. Shenton, Victor N. Kaliakin.Behavior of open steel grid decks for bridges[J]. Journal of Constructional Steel Research. 2002 (58):819-842
    [39]Gerard G. .Litvan. Waterproofing of Parking Garage Structure with Sealers and Membranes: the Canadian Experience[J]. Construction and Building Materials. 1996 (1):94-100
    [40]Z. X. Li, T. H. T. Chan, J. M. Ko. Evaluation of typhoon induced fatigue damage for Tsing Ma Bridge[J]. Engineering Structures. 2002(24):1034-1047
    [41]吕伟民.钢桥桥面沥青铺装的现状与发展[J].中外公路.2002,2:5-9.
    [42]黄卫,李凇泉.南京长江第二大桥钢桥面铺装技术研究[J].公路.2001,1:35-41.
    [43] P. Jayaweera,D. M. Lowe,Asanjurjo,K. H. Lau, L. Jiang.Corrosion-resistant Metallic Coating on Low Carbon Steel[J].Surface and Coatings Technology.1996,84-237:522-525. [44 ]韩道均,陈仕周.钢桥面铺装技术的研究、实践与总结[J].公路. 2001,1:76-79.
    [45]李铁强,李兵.长江上的几座新建特大桥[J].辽宁省交通高等专科学校报. 2002, 4(1):1-4
    [46]王迎军,朱桂新,陈旭东.虎门大桥钢桥面铺装的使用和维护[J].公路交通科技.Vol21, No8 (2004):64-67
    [47]谢晓君.厦门海沧大桥路面铺装层的维护[J].材料开发与应用. Vol19,No5 (2004):39-41
    [48]唐智伦,杨忠.重庆长江鹅公岩大桥钢桥面及引道桥路面铺装的设计[J].公路.2001,1:16-20
    [49]韩道均,李玉龙,汪宏.安徽安庆长江大桥钢桥面铺装设计与研究[J].公路交通技术Vol22(2005),7增刊:67-70
    [50]倪小军,陈仕周.上海卢浦大桥钢桥面铺装技术[J].中外公路. Vol23, No6(2003):5-6
    [51]李洪涛,黄卫,吉林.润扬大桥钢桥面铺装设计公路[J].2006,4:90-93
    [52]樊叶华,杨军,钱振东.国外浇注式沥青混凝土钢桥面铺装综述[J].中外公路. Vol 23,No6(2003):1-4
    [53]Yukikazu Yanaka and Makoto Kitagawa.Maintenance of Steel Bridges on Hunshu-shikoku Crossing.Journal of Constructional Steel Research.Vol58(2002):131-150
    [54]Tatsuo Nishizawa; Kenji Himeno. Longitudinal Surface Cracking in Asphalt Pavements on Steel Bridge Decks. RILEM Proceedings PRO 37:International RILEM Conference on Cracking in Pavements: Mitigation, Risk Assessment and Prevention. Limoges(FR),2004: 537-544
    [55] R.Walter,H.Stang etc.High Performance Composite Decks Using SCSFRC.Forth International Workshop on High Performance Fiber Reinforced CementCpmposites.USA.2003:15-18
    [56]De Beer,C.Fisher and F.Jooste.Determination of Pneumatic Type/Pavement Interface Contact Surfacing Layer . Proceeding of the Eighth International Conference on Asphalt Pavemrnts.Seattle,Washington,1997:179-226
    [57]Mertz. D. R.; Gillespie.J. W. Highway Pavements and Structures Matintenance and Security;Transportation research record. Transportation Research Board. Washington, DC. 2003
    [58] AASHTO制订,辛济平,万国朝,张文,鲍卫刚译.美国公路桥梁设计规范.人民交通出版社,1994
    [59]L. Fryba , L Gajdosv. Fatigue Properties of Orthotropic Deckson Railway Bridges [J ] .Engineering Structures ,1999 , 21 :639 - 652.
    [60]R. Walter; H. Stang; N.J. Gimsing; J.F. Olesen. HIGH PERFORMANCE COMPOSITE BRIDGE DECKS USING SCSFRC. Fourth International Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC4)[C] .2003 ,Arbor, USA: 495-504
    [61]T. H. T. Chan; J. M. Ko; Z. X. Li. Fatigue Analysis for Steel Bridge-deck under Blocked Cycles of Traffic Loading. SPIE vol.3995; Conference on Nondestructive Evaluation of Highways, Utilities, and Pipelines IV; 20000307-09; Newport Beach,CA(US) 2000:358-369
    [62]Zhang Xiaochun; Huang Wei; Wei Qifen. A Fatigue Damage Analysis of Composite Construction Composed Asphalt Concrete Pavement and Steel-Box Beam Deck of Steel Bridge[J]. Key Engineering Materials: Vol.274/276, No.Pt1:223-228
    [63]Tatsuo Nishizawa; Kenji Himeno; Kitaro Uchida. LONGITUDINAL SURFACE CRACKING IN ASPHALT PAVEMENTS ON STEEL BRIDGE DECKS[C]. RILEM Proceedings PRO 37; International RILEM Conference on Cracking in Pavements: Mitigation, Risk Assessment and Prevention; Limoges(FR):.2004:537-544
    [64] Shen Chengjin.The Application and Performance of Zinc Coating on Highway Steel Bridge Deck[C].16th International Corrosion Congress.paper number 18-C-2,2005.
    [65]叶觉民.防水胶材料在钢桥面上的应用[J].现代涂料和涂装.2004,2:24-28.
    [66]Qing Qu, Chuanwei Yana, Ye Wan. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc[J]. Corrosion Science .Vol44 (2002) :2789–2803
    [67]L. Szira′ki ,E. Szocs,Zs. Pilba′th. Study of the initial stage of white rust formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques[J]. Electrochimica Acta . Vol 46 (2001) :3743–3754
    [68]G. Vourlias, N. Pistofidis, D. Chaliampalias. A comparative study of the structure and the corrosion behavior of zinc coatings deposited with various methods[J]. Surface & Coatings Technology Vol 200 (2006) :6594–6600
    [69] Hare, Clive H .Zinc-rich primers I :Design principles. Journa lof Protective Coatings & Linings.1998,15 (7):17 -38
    [70]Lindquist S A , Meszaros L ,Svenson L .Aspects of galvanic caction of zinc rich paints ,Journal Oil Color Chem. Association,1985,January:10
    [71] Vomagnolt R ,Vetere V F. The mechanism of anticorrosive action of zinc ethyl silicate paints, Journal Oil Color Chem. Association,1993,May:208
    [72]方初良.电导式分析仪表.水利电力出版社,1984.
    [73]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004.
    [74] Morcillo M ,Barajas R , Feliu S ,et al. SEM study on the galvanic protection of zinc-rich paints, Journal of Materials Science.1990,25 (5):2441-2446
    [75] Feliu Sebastian Jr, Barajas Rosa, Bastidas Jose M , et al. Study of protection Mechanisms of zinc-rich paints by electrochemical impedance spectroscopy[M]. ASTM Special Technical Publication,1993. Philadelphia, PA ,USA: 438-449
    [76] Brevoort, Gordon H .Inorganic zinc-rich coatings and galvanizing: a comparison. Journal of Protective Coatings & Linings,1996,13 (9):66 -74
    [77]张鉴清.富锌涂层的电化学阻抗谱特性.中国腐蚀与防护学报,1996: 16(1 ):174-180
    [78] Real S G ,Elias A C,Vilche J R ,et al. Electrochemical impedance spectroscopy study of zinc rich paints on steel sinartificial sea water by a transmission line model. Electrochimica Acta,1993,38(14):2051-2054
    [79] Faidi S E ,Scantlebury J D ,Bullivant P ,et al.Electrochemical study of zinc containing epoxy coatings on mild steel, Corrosion Science, 1993, 35(4-8, pt 2):1319-1328
    [80] Frydrych P J .EIS of zinc-rich organic coatings on steel, Proc.Electrochem. Soc,1987: 240
    [81] Novoa X R, Izquierdo M, Merino P, et al. Electrochemical impedance spectroscopy and zero resistance ammeters (ZRA) as tools for studying the behavior of zinc-rich inorganic coatings. Mater. Sci.Forum.,1989,44 -45:223
    [82] Abreu C M, Izquierdo M, Keddam M, et al. Electrochemical behavior of zinc rich epoxy paints in 3% NaCl solution. Electrochimica Acta, 1996, 41 (15):2404-2415
    [83] R.D.Cook.有限元分析的概念和应用[M].北京:科学出版社,1981
    [84]卓家寿.弹性力学中的有限单元法.高等教育出版社,1987(9)
    [85]谢贻权,何福宝.弹塑性力学有限单元法.机械工业出版社,1981
    [86]徐次达,华伯浩.固体力学有限元理论、方法及程序.水利电力出版社,1983
    [87]朱伯芳.有限单元法原理与应用.中国水利水电出版社,1998
    [88]Zhang Lei,Qian Zhendong ,Cheng Gang ,Liu Zhenqing. Axle-equivalent Method of Steel Deck Pavement[J]. Journal of Southeast University (English Edition). Vol22, No1(2006).96 -100
    [89]胡光伟,黄卫,张晓春.润杨大桥钢桥面铺装层力学分析[J].公路交通科技. Vol19, No4(2002):1-3
    [90]童乐为,沈祖炎.正交异性钢桥面板静电试验和有限元分析[J].同济大学学报. Vol25, No6(1997):617-622
    [91]王伟广.桥面铺装层试验研究与受力分析[D].河北工业大学.2006
    [92]安琳,陈仕周.汕头石大桥钢桥面应变分布测试与分析[J].公路.2001,1: 66-70
    [93]周兵谊,王勇,曹亮.基于静态应变测试系统的应变与位移测试方法研究[J].机械与电子.2005,6:17-19
    [94]王丽明,刘淑娟,王浩.动态应变测试的数据处理[J].机械设计与制造.2003,6:55-56
    [95]刘放,程文明,蒋群华.动态数据采集卡在应变测试中的应用[J].工程机械与维修.2006,6:106-108
    [96]秦树人.机械工程测试原理与技术[M].重庆:重庆大学出版社.2002
    [97]张明,苏小光,王妮.力学测试技术基础[M].北京:国防工业出版社.2008
    [98]美国焊接学会编.热喷涂原理与应用[M].成都:四川科学技术出版社.1988
    [99]吴子健.热喷涂技术与应用[M].北京:机械工业出版社.2006
    [100]武建军.现代金属热喷涂技术[M].北京:化学工业出版社.2007