鄂尔多斯盆地塔巴庙地区致密储层地震响应模式研究及预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地塔巴庙区块是中国石化油气勘探的重点区块之一,区内油气勘探于2004年取得突破,2005年建成投产,截止2006年底已建成16.7亿方的天然气产能,是中国石化重点培育的大中型气田,预计到2008年底建成32.4亿方的天然气产能。
     区内发育有二叠系下石盒子组(盒1、盒2、盒3气层)、山西组(山1、山2气层)和石炭系太原组(太1、太2气层)三套储集岩,它们在纵向上互相叠置,平面上互相叠合,构成了气田复合连片的储集体。气田为多层气层叠合的复合气藏,是一套海相-海陆过渡相-内陆河湖相的沉积,其中太原组为滨海相、山西组为三角洲平原亚相,下石盒子组为河流相。储层非均质性强,层间非均质性表现为夹层发育,垂向连续性差,一套砂体纵向上由几个旋回组成,旋回之间往往是粉砂岩或泥岩夹层,导致连通性差。“低孔、低渗、低压”是储层的主要特征,也是制约该地区油气勘探取得重大突破的主要难题。
     尽管经过近50年几代人的努力不断取得新的进展,特别是近几年来由于地质理论和地震技术的快速发展,在地质认识、气藏特点、储层预测技术和钻井工艺技术上取得许多新的成果,也迎来了单井产量和高产富集层位的重大突破,但仍然面临着诸如储层的小层划分对比、多井资料的一致性处理、高精度的储层预测、叠前含气性检测以及气田开发过程中的储层参数建模等一系列的复杂问题,从而严重制约着该地区天然气的大规模商业性开发。
     通过论文研究取得以下研究成果:
     1、建立了研究区储层的测井解释模型和含气性解释标准,确定了储层岩性、物性、含气性参数,进一步制定了含气下限的解释标准。形成了井震结合的小层划分对比技术。建立了储层评价分类标准,并对储层进行了综合评价及分类。不同储层层段测井响应特征分析认为:区内太2段、山2段、盒1段、山1段、盒2段、盒3段和太1段储层一般为含砾中粗砂岩,与泥岩间速度差异不明显,特别是砂岩含气时,声波速度与泥岩一致甚至偏低,导致利用波阻抗属性预测储层有很大的解释难度。
     2、采用储层的地震物理模拟和地震数值模拟相结合的方法,确定了研究区致密储层的地震响应规律和储层地震属性特征,提高了薄储层的地震响应特征的认识,为储层预测和储层参数建模提供了依据。
     3、针对研究区地表复杂、原始资料信噪比差异较大、目的层段反射能量弱的特点,对影响资料处理质量的因素和处理难点(如静校正、去噪、保真处理和一致性处理、反褶积处理)提出了针对性的解决措施。应用层析静校正处理技术,较好地解决了长、短波长静校正问题。针对不同干扰波采用叠前F-X域相噪音去除、地表一致性异常振幅压制、自适应噪音模拟剔除、统计法异常地震道编辑、叠后随机噪音衰减等去噪技术,提高了剖面信噪比。应用地表一致性振幅补偿、球面扩散补偿技术较好地消除了激发、接收因素对振幅的影响。两次地表一致性剩余静校正和速度分析提高了剖面质量。试验表明,地表一致性反褶积与单道预测反褶积组合应用,剖面信噪比较高;多道脉冲反褶积,剖面波阻特征较好。最终处理成果剖面浅、中、深波组齐全,信噪比较高,纵横向剖面特征一致,主要目的层主频为30Hz,优势频带范围为8-70Hz,目的层段反射波特征清晰,特殊地质体反射特征明显,较好地实现了全三维处理的目标,为后续特殊处理和解释提供了数据体资料。
     4、四种AVO属性参数相关分析方法为含气性预测提供了新的途径。除了将角度道集剖面中极性转换点作为含气标志外,在AVO其它属性及相关分析中,又总结出四种含气识别标志(四变原则),即纵波比横波能量降速变快、梯度剖面变亮、远道比近道叠加波能量变强、泊松比差变大。
     5、针对该区砂岩储层致密、波阻抗不能有效区分砂岩、泥岩等特点,提出两步法反演分离技术,第一步应用剖面重构技术反演出能反映岩性变化的数据体,用此区分砂泥岩。第二步在砂岩数据的基础上进一步判别储层的物性及含气性。据此建立砂层及含气砂层的识别标志,形成了针对鄂尔多斯盆地北部上古生界储层横向预测的模式。
     6、对研究区内的储层进行了综合评价研究。认为:盒2和盒3段砂体展布的方向主要为SSE和SSW的条带状或串珠状展布,储层的含气性较差,整体评价储层质量一般:盒1段储层分布广,厚度大,含气性较好,应为工区主力储层之一;山2段储层应为工区的主力气层之一,山1段储层质量稍差,可作为远景储层;太2段应是工区东部的绝对主力气层。
Tabamiao area of Ordos basin is one of the key exploration blocks of SINOPEC. The exploration of the area got breakthrough in 2004. In 2005, the area began producing. Till to the end of 2006, a gas deliverability of 1.67 billion m~3 was built. The area is the mainly developed milled-large size gas field of SINOPEC, which is predicted to get a gas deliverability of 3.24 billion m~3 till to the end of 2008.
     Three reservoirs are developed in the area, including Xiashihezi formation of Permian (gas formation of He1, He2, He3 member), Shanxi formation of Permian (gas formation of Shan1, Shan2 member) and Taiyuan formation (gas formation of Tai1, Tai2 member). The three reservoirs are overriding in longitudinal direction and folding in the plane, and constitutes compound accumulating bodies. The gas field is mainly compound gas pool of multi-folding gas formations. The sedimentary environment is from marine facies to transitional facies and continental river lake facies, with offshore facies in Taiyuan formation, delta plain subfacies in Shanxi formation and fluvial facies in lower Shihezi formation. The reservoir heterogeneity is strong. The interformational heterogeneity displays well-developed interbeds and weak vertical continuity. A series of sand bodies are composed of several cycles. Silt or mud interbedding usually exists between cycles, which cause weak continuity. The reservoirs are characterized by "low porosity, low permeability, and low pressure", which is the key problem for the breakthrough of exploration in the area.
     New progresses were achieved in the last fifty years, such as the fast developments of geological theories and seismic technologies, the new outcomes of geological cognitions, characteristics of gas pool, reservoir prediction technologies and drilling technologies, and the great breakthroughs of producing rate and high production accumulating formations. However, many difficulties rose, including layer classification and comparison, multi-well data conformity processing, high-precision reservoir prediction, pre-stack gas-bearing detection and reservoir parameters modeling during the development of gas field, which seriously restrict large-scale commercial development of natural gas in the area.
     The following results are achieved through the research.
     1. The logging interpretation model and gas-bearing interpretation standard of reservoirs were established, the lithology, physical properties and gas-bearing parameters were identified, the interpretation standard of gas-bearing lower limit. Well-seismic layer classification and comparison technology was proposed. The evaluation and classification criteria of reservoir were built; comprehensive evaluation and classification were carried out to reservoirs. The results of logging response characteristics analysis from different intervals show that the lithology is middle-sized grit with gravel in Tai2 member, Shan2 member, He1 member, Shan1 member, He2 member, He3 member and Tail member. The difference between sand velocity and mud velocity is not obvious, especially for gas-bearing sandstone, the sand velocity is agreed with or lower than mudstone velocity, which caused interpretation difficulty in reservoir prediction by using acoustic impedance properties.
     2. By using the method combined with seismic physical modeling and seismic numerical simulation, the seismic response rules and attribute characteristics of tight reservoirs in the area were identified, the recognition of seismic response characteristics of thin reservoirs were improved, and some criteria were provided for reservoir prediction and reservoir parameters modeling.
     3. Aiming at the characteristics of complex surface condition, large difference of S/N between original data and weak reflection energy of targets in the area, some measures were proposed to solve the processing difficulties (statics, de-noise, amplitude preservation processing, conformity processing and deconvolution processing). The chromatography statics processing technology was applied to solve the statics problem of long and short wavelength. Some de-noise technologies were used to attenuate noise and improve S/N of profiles, including pre-stack coherent noise attenuation in F-X domain, surface conformity anomalous amplitude pressing, self-adapt noise simulating rejection, anomalous seismic traces editing by statistics method and post-stack random noise attenuation. Surface conformity amplitude compensation and sphere diffusing compensation could well remove the impact of shooting and receiving factors on amplitude. Two times of surface conformity residual statics and velocity analysis improved the profile quality. The testing shows that combined application of surface conformity deconvolution and single- trace prediction deconvolution leads to high S/N profiles, and multi-traces impulse deconvolution leads to well wave group characteristics. The final processing result profiles have shallow, middle and deep wave groups with high S/N. characteristics of vertical and horizontal profiles are consistent. The main frequency of key targets is 30 Hz, and the optimal frequency zone is 8-70 Hz. The reflection characteristics of targets and special geologic bodies are clear. The aim of entire three-dimensional processing has been well realized, which provides data for following purpose processing and interpretation.
     4. Four types of AVO attributes parameters relevant analysis methods provide new approaches for gas-bearing prediction. Except for taking polarity inversion points in angle gather profile as gas-bearing marks, four types of gas-bearing recognition marks (four changing rules) are summarized, including faster decreasing energy of S-wave than P-wave, brighter gradient profile, stronger stacking wave energy of far trace than near trace, and larger Poisson ratio.
     5. Aiming at the characteristics of tight sand reservoir, ineffective recognition of sandstone and mudstone through wave impedance, two-step inversion separation technology was proposed. In the first step, profile reconstruction technology is applied to inverse the data reflecting the changes of lithology to distinguish sandstone and mudstone. In the second step, the properties and gas-bearing zone are discriminated based on the data. The recognition mark of sand formation and gas-bearing sand formation is established. The horizontal prediction pattern for Neopaleozoic reservoir in the north of Ordos basin was formed.
     6. Comprehensive evaluation and research were carried out in the area. The results show that the sand bodies of He2 member and He3 member are banding or moniliform distributed in SSE and SSW. The gas-bearing is poor, and the evaluation of the whole reservoirs is ordinary. Reservoirs in He1 member are widely distributed with large thickness and good gas-bearing zone, which can be regarded as one of the main reservoirs, as well as Shan2 member.Shan1 member is not as good the former two reservoirs and can be regarded as potential reservoir. Tai2 member absolutely is the main gas formation.
引文
[1]李良.鄂北塔巴庙地区山西组层序地层研究与圈闭识别[J].天然气工业.2001,21(增刊):10-13
    [2]李振铎,胡义军,谭芳.鄂尔多斯盆地上古生界深盆气研究[J].勘探与开发.1998,18(3):10-15
    [3]李克明.鄂尔多斯盆地北部古生代的深盆气气藏[J].石油与天然气地质.2002,23(2):190-1193
    [4]高青松,刘忠群,郭耀华.塔巴庙区块下石盒子组盒一段沉积相分析[J].天然气工业.2001,21(增刊):27-29
    [5]贾会冲,张哨楠.鄂北塔巴庙地区上古生界储层发育的控制因素[J].天然气工业.2001,21(增刊):18-23
    [6]潘存焕,郭忠铭,王大兴等.鄂尔多斯盆地上古生界含气砂岩体综合预测目标处理解释技术[J].天然气工业.1998,18(5):5-10
    [7]秦锐.鄂北塔巴庙地区上古生界低孔渗储层地震预测技术及应用[J].天然气工业.2002,21(增刊):75-78
    [8]苑书金,董宁,于常青.地震波衰减技术在鄂尔多斯盆地储层预测中的应用[J].石油物探.2006,45(2):182-185
    [9]苑书金,董宁,于常青.叠前联合反演P波阻抗和S波阻抗的研究和应用[J].石油地球物理勘探.2005,40(3):339-342
    [10]苑书金.鄂尔多斯盆地大牛地气田下石盒子组地震储层预测技术的研究和应用[J].石油地球物理勘探.2008,43(1):48-52
    [11]刘宝国.提高大牛地气田三维地震储层预测精度的思考[J].石油物探.2008,47(1):95-102
    [12]张卫华.提高DND气田井位部署成功率的对策[J].勘探地球物理进展.2006,29(3):153-156
    [13]吴志强,丁国栋,李俊华等.鄂尔多斯盆地上古生界地层AVO技术的应用[J].海洋地质与第四纪地质.2001,21(3):81-85
    [14]关达,张卫华,管路平等.相控储层预测技术及其在大牛地气田D井区的应用[J].石油物探.2006,45(3):230-233
    [15]李剑峰,董宁,关达.虚拟现实技术在鄂尔多斯东北部低渗透气藏勘探开发中的应用[J].石油物探.2005,44(5):471-473
    [16]李庆忠.走向精确勘探的道路--高分辨率地震勘探系统工程剖析[M].北京:石油工业出版社,1994
    [17]Kyle Spikes and Jack Dvorkin,Forward-modeling methodology application to reduce AVO analysis uncertainty using well and 3D seismic data from Ibhubesi Field, Orange River Basin, RSA .Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [18] Xin-Gong Li, De-Hua Han, and Jiajin Liu. Inversion of Sw and porosity from seismic AVO.Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [19] P. Nivlet, N. Lucet, T. Tonellot,et al. Pre-stack stratigraphic inversion in a deep offshore turbiditic environment, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [20] P. Nivlet, N. Lucet, T. Tonellot,et al.Facies analysis from pre-stack inversion results in a deep offshore turbidite environment, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [21] Leon Barens, Aline Franchet. Mapping Seismic Inversion Uncertainties with an Application to Time Lapse Data, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [22] Michael E. Glinsky, and Bruce Asher et al. Integration of uncertain subsurface information into multiple reservoir simulation models, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [23] Arturo Contreras and Carlos Torres-Verdin, et al. Joint stochastic inversion of 3D pre-stack seismic data and well logs for high-resolution reservoir characterization and petrophysical modeling: application to deepwater hydrocarbon reservoirs in the central Gulf of Mexico, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [24] Richard Salter, Dianna Shelander, Marc Beller, et al. The impact of high-resolution seismic data on carbonate reservoir description, offshore Mexico, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [25] Thierry Coleou, Fabien Allo and Raphael Bornard, Petrophysical Seismic Inversion, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [26] Gene Monson and Diane Bustamante, Integrated geologic model and statistical reservoir simulation: Triton Field, Gulf of Mexico, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [27] Daniel Tetzlaff, Roy Davies, David McCormick, et al. Application of multipoint geostatistics to honor multiple attribute constraints applied to a deepwater outcrop analog, Tanqua Karoo Basin, South Africa, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [28] Aline Bourgeois, Karine Labat, Tristan Euzen, et al. How to build a geological and geophysical realistic synthetic seismic data set for benchmarking reservoirs studies? Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [29] H. Endres, TEEC,RWTH, R. Samiee, TEEC, T. Lohr, et al. Sub-seismic deformation processes in clastic reservoirs derived from dip and azimuth steered coherency processing, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [30] Rebecca Saltzer and Chris Finn, Predicting vshale and porosity using cascaded seismic and rock physics inversion, Expanded Abstracts of 75th Annual International SEG Meeting
    [31] Larry Lines, Ying Zou, Albert Zhang, et al. VP/VS Characterization of a Heavy-Oil Reservoir, Expanded Abstracts of 75th Annual International SEG Meeting, 2005
    [32] Eugenia Rojas, Thomas L. Davis, Michael Batzle, et al. Vp-Vs ratio sensitivity to pressure. fluid,and lithology changes in tight gas sandstones,Expanded Abstracts of 75th Annual International SEG Meeting,2005
    [33]Rama Raol,Mark Willis,Dan Bums,et al.Fracture Spacing and Orientation Estimation from Spectral Analyses of Azimuth Stacks,Expanded Abstracts of 75th Annual International SEG Meeting,2005
    [34]Ahmed Jaber Al-Eidan,Nikhil C.Banik,et al.Improved fracture and matrix porosity characterization within Jurassic reservoir using seismic attributes,Expanded Abstracts of 75th Annual International SEG Meeting,2005
    [35]Gennady Goloshubin,and Dmitry Silin,Using frequency-dependent seismic attributes in imaging of a fractured reservoir zone,Expanded Abstracts of 75th Annual International SEG Meeting,2005
    [36]Frank Gomez,John Castagna,Reservoir seismic characterization using rock physics,seismic attributes and spectral decomposition in Puerto Colon oil field,Colombia,Expanded Abstracts of 75th Annual International SEG Meeting,2005
    [37]杨勤勇.油气地球物理技术发展新动向[J].勘探地球物理进展,2007,30(2):77-84
    [38]袁志云等.频谱分解技术在储层预测中的应用[J].石油地球物理勘探,2006,41(增刊):11-15
    [39]张亚中等.频谱分解技术在塔里木盆地北部TH地区碳酸盐岩缝洞型储层预测中的应用[J].石油地球物理勘探,2006,41(增刊):16-20
    [40]崔凤林,管叶君.时频分析--薄互层结构研究的新途径[J].石油物探,1992,31(2):1-15
    [41]董臣强,王军,张金伟.时频分析技术在三角洲层序分析中的应用[J].断块油气藏,2002,9(2):18-20
    [42]张奎凤,蓝晖.短时窗地震信号谱分析方法[J].石油物探,1995,34(2):94-98
    [43]Lopez,J.A.,Partyka,G.A.,Haskell,N.L.,and Nissen,S.E.Identification of Deltaic Facies with 3-D Seismic Coherency and Spectral Decomposition Cube,Abstract,Istanbul '97International Geophysical Conference and Exposition,July 7-10,1997
    [44]Greg Partyka,James Gridley,and John Lopez Interpretational Applications of Spectral Decomposition in Reservoir Characterization[J].The Leading Edge,1999,18(3)353-360
    [45]邹文,陈爱萍,顾汉明.联合时频分析技术在地震勘探中的应用[J].勘探地球物理进展,2004,8(4):246-250
    [46]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998年
    [47]徐伯勋,白旭滨等.地震勘探信息技术.北京:地质出版社,2001年
    [48]贾健谊,顾惠荣主编.东海西湖凹陷含油气系统与油气资源评价.北京:地质出版社,2002年.
    [49]Mike Bahorich,Arlon Motsch,Kenny Laughlin Amplitude responses image reservoir SEISMIC ADVANCES pp.59-61,January 2002
    [50]徐伯勋,白旭滨等.地震勘探信息技术.北京:地质出版社,2001
    [51]俊风,刘书会等.分频解释技术在桩106地区馆上段河道砂体描述中的应用[J].油气地质与采收率,2003,10(5):38-40
    [52]朱庆荣等.分频解释技术在表征储层中的应用.矿物岩石,2003,23(3):104-108
    [53]曹正林,赵应成,刘全新等.勘探阶段岩性气藏描述与预测技术思路及技术体系,天然气工业,2001,21(6):42-45
    [54]杨飞,彭大钧,沈守文等.综合利用三维地震资料研究岩性圈闭[J].天然气工业,1999,19(6):25-29
    [55]张奎凤,蓝晖.短时窗地震信号谱分析方法[J].石油物探,1995,34(2):94-98
    [56]董臣强,王军,张金伟.时频分析技术在三角洲层序分析中的应用[J].断块油气田,2002,9(2):18-20
    [57]王喜双等.油藏地球物理技术进展[J].石油地球物理勘探,2006,41(5):606-613
    [58]Permington W D.The rapid rise of reservoir geophysics[J].The Leading Edge,2005,24(S):86-S91
    [59]姚逢昌,甘利灯.地震反演的应用与限制[J].石油勘探与开发,2000,27(2):53-56
    [60]唐建仁,崔凤林.高分辨率三维地震技术在油田开发中的应用[J].石油物探,2000,39(1):50-56
    [61]曾忠,阎世信.苏里格气田地震预测技术效果分析及对策[J].石油勘探与开发,2003,30(6):63-67
    [62]朱成宏,秦瞳.从SEG年会看油藏描述技术的新进展[J].勘探地球物理进展.2003,26(3):240-246
    [63]申本科,胡永乐,田昌炳.油藏描述技术发展与展望[J].石油勘探与开发,2003,30(4):78-81
    [64]陈蓉,张传宝等.三维可视化技术在吉和油田开发中的应用[J].石油勘探与开发,2001,28(6):87-88
    [65]马丽娟,郑和荣,陈霞.隐蔽油气藏地震预测技术研究新进展[J].地球物理学进展,2007,22(1):294-300
    [66]张荣忠,季玉新,崔凯等.油储地球物理综合描述技术[J].勘探地球物理进展.2002,25(1):11-18
    [67]曹正林,赵应成,刘全新等.勘探阶段岩性气藏描述与预测技术思路及技术体系[J].天然气工业.2001,21(6):42-45
    [68]严又生.地震波数值模拟技术.SEG第68届年会论文概要.石油工业出版社。
    [69]井西礼,杨长春,李幼铭.建立速度模型的层析成像方法研究[J].石油物探.2002,41(1):72-75
    [70]姚姚,奚先.随机介质模型正演模拟及其地震波场反演[J].石油物探,2002,41(1):31-36
    [71]王西文.岩性油气藏的储层预测及评价技术研究[J].石油物探,2005,44(6):1-10
    [72]王西文,苏明军.相控-等时小层对比方法及应用[J].石油勘探与开发,2003,30(6):78-80
    [73]王西文.在相对波阻抗约束下的多井测井参数反演方法和应用[J].石油地球物理勘探,2004,39(3):291-299
    [74]Greg Partyka,James Gridly,John Lopez.Interpretational applications of spectral decomposition in reservoir characterization[J].The Leading Edge,1999,18(3):353-358
    [75]王西文,周嘉玺.滚动勘探开发阶段精细储层预测技术和应用[J].中国海上油气,2002,16(4):260-270
    [76]王西文,刘全新,周嘉玺,等.精细储层预测技术在板南5-3井区的应用[J].石油物探,2003,42(3):390-394
    [77]曹辉.地震属性应用中几个关键问题的探讨[J].石油物探,2004,43(增刊):1-3
    [78]高林,杨勤勇.地震属性技术的新进展[J].石油物探,2004,43(增刊):10-16
    [79]胡中平,孔祥宁,潘宏勋等.叠前深度域地震属性技术研究及展望[J].石油物探,2004,43(增刊):28-30
    [80]Claerbout J.F..Fundamentals of geophysical data processing.1976,McGraw-Hill Inc.
    [81]Berteussen K.A.and Ursin B..Approximate computation of the acoustic impedance from seismic data[J].Geophysics,1983(48):1351-1358
    [82]Foster M..Transmission effects in the continuous one-dimensional seismic model[J].Geophysical Journal of Royal Astronomical Society,1975(42):519-527
    [83]Ghosh S.K..Limitations on impedance inversion of band-limited reflection data[J].Geophysics,2000(65):951-957
    [84]Menke W.Geophysical data analysis:Discrete inverse theory.Academic Press Inc.1984
    [85]Oldenburg D.W.,Scheuer T.and Levy S..Recovery of the acoustic impedance from reflection seismograms[J],Geophysics,1983(48):1318-1337
    [86]Oldenburg D.W.,Levy S.and Whittall K.P..Wavelet estimation and deconvolution[J].Geophysics,1981(46):1528-1542
    [87]Robinson E.A.and Treitel S..Geophysical signal analysis.Englewood Cliffs,1980,N.J.,Prentice-Hall Inc
    [88]Tarantola A.Inversion of seismic reflection data in the acoustic approximation[J].Geophysics,1984(49):1259-1266
    [89]Turner G.Aliasing in the tau-p transform and the removal of spatially aliased coherent noise[J].Geophysics,1990(55):1496-1503
    [90]Velis D.R.and Ulrych T.J.Simulated annealing wavelet estimation via fourth-order cumulant matching[J].Geophysics,1996(61):1939-1948
    [91]Walker C.and Ulrych T.J.Autoregressive recovery of the acoustic impedance[J].Geophysics,1983(48):1338-1350
    [92]Wang Y.Seismic Amplitude inversion in reflection tomography.2003,Elsevier Science Ltd
    [93]Shuey R.T.A simplification of the Zoeppritz equations[J].Geophysics,1985(50):609-614
    [94]Wang Y.Approximations to the Zoeppritz equations and their use in AVO analysis[J].Geophysics,1999(64):1920-1927
    [95]Santos L.T.and Tygel M.Impedance-type approximations of the P-P elastic reflection coefficient:Modeling and AVO inversion[J].Geophysics,2004(69):592-598
    [96]Russell B.H.,Hedlin K.,Hilterman F.J.and Lines L.R.Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J].Geophysics,2003(68):29-39
    [97]贺保卫,潘仁芳,莫午零等.用AVO方法从定性到半定量检测砂岩含气性[J].断块油气田.2005,12(1):19-20
    [98]王永刚,乐友喜,曹丹平.河道砂体含油性判别方法[J].石油地球物理勘探.2005,40(4):459-462
    [99]Kenneth P.Bube,John K.,Wave trace:ray tracing for the propagation of band-limited signals:Part 1-theory.71th Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded Abstracts.2001
    [100]Leigh House,Kurt Marfurt,Shawn,Larsen.2D and 3D elastic modeling with shared seismic models.72th Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded Abstracts.2002
    [101]Shawn Larsen,Robert Wiley.Next-generation numerical modeling:incorporating elasticity,anisotropy and attenuation.71th Ann.Internat.Mtg.,Soc.Expl.Geophys.Expanded Abstracts.2001
    [102]G.Ajlani,A.Ebed,O.Suwaina,Visco-Elastic modeling,3D DMO bin simulation and multidisciplinary 2D/3D OB design analyses for reservoir characterization of an offshore carbonate field in Abu Dhabi,UAE.71th Ann.Internat.Mtg.,Soc.Expl.Geophys.Expanded Abstracts.2001
    [103]Connolly P..Elastic impedance[J].The Leading Edge,1999(18):438-452
    [104]Delprat-Jannaud F.and Lailly P.A fundamental limitation for the reconstruction of impedance profiles from seismic data[J].Geophysics,2005(70),R1-R14
    [105]Giannakis G.B.and Delopoulos A.Cumulant-based automation estimates of non-Gaussian linear process[J].Signal Processing,1995(47):1-17
    [106]Lazear G.L.Mixed-phase wavelet estimation using fourth-order cumulants[J].Geophysics,1993(58):1042-1051
    [107]Lu W.Non-minimum-phase wavelet estimation using second- and third-order moments[J].Geophysical Prospecting,2005(53):149-158.
    [108]Maeland E.Sampling,aliasing,and inverting the linear Radon transform[J].Geophysics,2004(69):859-861
    [109]Barrodale I.and Roberts F.D.K.An Efficient Algorithm for Discrete L1 Linear Approximation with Linear Constraints[J].SIAM Journal on Numerical Analysis,1978(15):603-611
    [110]佘德平,管路平,查树贵.复杂构造地区地震波场的数值模拟研究.中国地球物理学会2002年论文集.地震出版社
    [111]朱成宏,胡建国,许雪峰.裂隙介质的运动学特征反演及应用[J].石油物探,2002,41(3):253-258
    [112]Sacchi M.D.and Ulrych T.J.High resolution velocity gathers and offset space reconstruction[J].Geophysics,1995(60):1169-1177
    [113]Sacchi M.D.and Ulrych T.J.Estimation of the discrete Fourier transform a linear inversion approach[J].Geophysics,1996(61):1128-1136
    [114]Sacchi M.D.Re-weighting strategies in seismic deconvolution[J].Geophysical Journal International,1997(129):651-656
    [115]Sacchi M.D.and Ulrych T.J.Non-minimum-phase wavelet estimation using higher order statistics[J].The Leading Edge,2000(19):81-83
    [116]Smith G.C.and Gidlow P.M.Weighted stacking for rock property estimation and detection of gas[J].Geophysical Prospecting,1987(35):993-1014
    [117]Stoffa P.L Buhl P.,Diebold J.B.and Wenzel F.Direct mapping of seismic data to the domain of intercept time and ray parameter:A plane-wave decomposition[J].Geophysics,1981(46):255-267
    [118]Wang Y.Point-source tau-p transform:A review and comparison of computational methods[J].Geophysics,1997(62):325-334
    [120]Biondi B,Palacharla G.3D prestack migration of common-azimuth data[J].Geophysics,1996,61(6):1822-1832
    [121]Mosher C C,Keho T H,Weglein A B,et al.The impact of migration on AVO[J].Geophysics,1996,61(6):1603
    [122]P rucha M,Biondi B,W.Angle-domain common image gathers by wave-equation migration[J]Annual Meeting Abstracts,Society of Exploration Geophysicists,1999,824-827
    [123]Amundsen L.and Ursin B.Frequency-wavenumber inversion of acoustic data[J].Geophysics,1991(56):1027-1039
    [124]Wang Y.Sparseness-constrained least-squares inversion:Application to seismic wave reconstruction[J].Geophysics,2003(68):1633-1638