栉孔扇贝免疫系统发生及母源免疫的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栉孔扇贝是我国重要的海水养殖优势品种之一。然而近年来养殖病害频发,特别是扇贝育苗期间苗种的病害问题,严重制约着扇贝养殖业健康持续的发展。从个体发育早期免疫系统入手,深入研究扇贝免疫系统发生与发育的调控过程及母源免疫的作用机制,探讨提高扇贝苗种免疫力的有效方法和途径,创新苗种养殖方式,是保障扇贝养殖业健康持续发展的重要途径。本论文以栉孔扇贝为研究对象,采用分子生物学和免疫学技术,分析了扇贝造血相关转录因子的结构和功能及其与免疫分子在扇贝早期发育中的时空表达模式,初步探讨了扇贝免疫系统发生过程;并研究了母源免疫分子的传递及传代免疫效应,揭示了母源免疫及其传代效应在扇贝发育早期免疫防御中的重要作用。
     1.栉孔扇贝造血相关转录因子结构和功能的鉴定与分析
     克隆获得栉孔扇贝造血相关转录因子CfRunt、CfCBFβ和CfGATA基因的cDNA序列。它们分别含有保守的runt同源结构域、CBF_beta结构域和两个ZnF_GATA锌指结构域,分别属于runx、CBFβ和GATA123家族成员。体外重组蛋白CfRunt和CfGATA均能与特异DNA基序相结合,而CfCBFβ能够显著促进CfRunt的DNA结合活性。鳗弧菌刺激后,栉孔扇贝循环血细胞数量在6h时显著下降至最低值,48h时与对照组差异不显著;而CfRunt和CfCBFβmRNA的表达分别于6-48h和6-96h显著上调,CfGATA mRNA表达于6-12h时显著下调。CfRunt和CfGATA基因干扰能够引起栉孔扇贝血细胞新生率和循环血细胞数量的显著下降。在CfRunt基因干扰后,LPS刺激能够显著诱导CfRunt mRNA表达,并且血细胞新生率及循环血细胞数量均显著升高;而CfGATA基因干扰后,LPS刺激未能引起CfGATA mRNA表达、血细胞新生率及循环血细胞数量的显著变化。以上研究结果表明造血相关转录因子CfRunt、CfCBFβ和CfGATA在扇贝血细胞生成中发挥重要作用。
     2.造血相关转录因子在个体早期发育中的时空表达及对菌刺激的响应模式
     在栉孔扇贝早期个体发育过程中,CfRunt和CfCBFβ mRNA的表达分别在32细胞期、D形幼虫期或面盘幼虫后期显著升高,而CfGATA mRNA表达在原肠期时达到最大值。整体免疫荧光定位研究发现CfRunt蛋白最早表达于32细胞期的整个胚胎中,随后其分布逐渐特化,分别位于桑葚胚的植物极细胞、原肠胚的中胚层和早期担轮幼虫的腹侧原担轮中。在担轮幼虫早期,CfRunt、CfCBFβ和CfGATA均出现于幼虫原担轮基部两侧对称细胞中。在D形幼虫期CfRunt和CfGATA主要分布于面盘基部两侧细胞,CfCBFβ在面盘基部的表达消失,而在幼虫背侧后部出现一个有造血相关转录因子较强表达的囊状区域。在面盘幼虫中期造血相关转录因子在面盘基部的表达均消失,主要表达于幼虫背侧后部的囊状区域中。鳗弧菌刺激后,担轮、D形和面盘后期幼虫中CfRunt和CfGATA mRNA的表达分别于6、12或24h时显著上调;而CfCBFβ在D形和面盘后期幼虫中的表达分别于12h时显著下调和上调。以上研究结果表明在早期个体发育过程中,扇贝可能经历了两次造血过程,分别发生在早期担轮幼虫原担轮基部的两侧对称细胞中和D形幼虫背侧后部的囊状区域。
     3.免疫分子在个体早期发育中的时空表达及对菌刺激的响应模式
     研究发现PRR分子(CfPGRP-S1、CfLGBP、CfLec-1和CfLec-3)和免疫效应分子(CfLYZ和CfLBP/BPI)mRNA分别于担轮幼虫期和D形幼虫期开始大量表达,在随后发育过程中均保持较高表达水平,而CfCu/Zn-SOD和CfCATmRNA表达水平均在面盘幼虫早期时显著升高。整体免疫荧光定位显示PRR和免疫效应分子的表达均最早出现于担轮幼虫原担轮基部的两侧对称细胞或D形幼虫面盘基部两侧细胞中。在面盘幼虫期各分子分布出现差异,PRR分子和CfLBP/BPI主要位于幼虫的面盘、口、食道或胃部,而CfLYZ、CfCAT和CfCu/Zn-SOD主要位于消化腺、胃或面盘中。鳗弧菌刺激后,担轮幼虫后期中免疫效应分子在6或12h时显著上调,在D形幼虫后期,除CfCAT外,其它免疫分子mRNA表达均显著上调或下调;在面盘幼虫后期,除CfLGBP显著下调外,其它免疫分子mRNA表达均在6或12h显著上调。说明在个体发育过程中,扇贝免疫系统最早形成于担轮幼虫原担轮基部的两侧对称细胞中,在D形幼虫时期逐渐发育,到面盘幼虫早期时其发育较为成熟,免疫分子功能性的分布在各个组织中,并具有较完善的免疫应答能力。
     4.母源免疫分子传递及传代免疫效应
     研究发现栉孔扇贝卵细胞中CfCu/Zn-SOD mRNA的表达水平最高,其它免疫分子(CfLBP/BPI、CfLGBP、CfLec-3和CfLYZ)mRNA水平相对较低。相比之下,除CfLec-3外,卵细胞中其它免疫分子的蛋白均有较高表达,其中CfCu/Zn-SOD蛋白含量最高。扇贝卵细胞蛋白提取液对大肠杆菌、鳗弧菌和酵母菌具有较明显的凝集和损伤作用,而对金黄色葡萄球菌无凝集和损伤作用。用灭活的鳗弧菌对亲贝进行免疫刺激后,除CfLGBP外,其它免疫分子的蛋白表达在扇贝子代卵细胞、胚胎或幼虫中均明显升高,且在卵细胞、4细胞和担轮幼虫期,母源免疫刺激组的抗菌活力和Cu/Zn-SOD活力显著高于相应对照组。鳗弧菌感染试验发现在担轮幼虫和D形幼虫期,母源免疫刺激组扇贝子代的死亡率均显著低于对照组。以上结果表明栉孔扇贝中存在母源免疫分子的传递及传代免疫效应,且它们在扇贝发育早期对病原入侵的免疫防御中发挥重要作用。
     综上所述,在个体发生过程中,栉孔扇贝经历两次造血过程,免疫系统在担轮幼虫期开始出现,至面盘幼虫早期发育较为成熟。在免疫系统发育成熟前,母源免疫在免疫防御中发挥重要作用。该研究结果为进一步阐明贝类免疫系统发生的调控机制提供线索,同时也为创新贝类苗种养殖方式提供了理论依据。
The scallop Chlamys farreri is one of the important economic mollusc speciescultured widely in China. However, the frequently occurrence of infectious disease inscallop aquaculture, especially during the larviculture stage has been threatening thesustainable development of the industry seriously. A better understanding of theontogenesis of immune system in scallop C. farreri and the maternal immunity atearly life stage is not only enriching the knowledge of mollusc developmentalimmunology, but also helping us to find available way for disease management duringlarviculture. In the present study, using molecular biological and immunologicalmethods, hematopoietic transcription factors were identified and functional analyzed,and the expression pattern of these transcription factors and immune factor duringscallop ontogenesis was examined to explore the ontogeny of immune system.Moreover, the maternal immunity of scallop and its trans-generational effect wasinvestigated to explore their protective role at early life stage.
     1. Identification and functional analysis of hematopoietic transcription factorsin scallop
     Three hematopoietic transcription factor genes CfRunt, CfCBFβ and CfGATAwere cloned from scallop C. farreri, which contains conserved runt homology domain,core binding factor beta domain and zinc finger GATA domain respectively,belonging to the runx, CBFβ and GATA123family. The recombinant protein ofCfRunt and CfGATA could bind to the DNA motif specifically, while CfCBFβ couldsignificantly increase the DNA binding activity of CfRunt. After Vibrio anguillarumstimulation, the number of circulating hemocytes was significant decreased to thelowest level at6h, and has no significant difference with that of control until48h,whereas the mRNA expression of CfRunt and CfCBFβ was significantly up-regulatedat6-48h or6-96h respectively, and the expression of CfGATA was dramaticallydown-regulated between6-12h. In vivo RNA interference of CfRunt and CfGATAcould induce the remarkable decreases of hemocytes renew rate and circulatinghemocytes number in scallop. Moreover, after the RNA interference of CfRunt, thecontinual LPS stimulation could up-regulate the expression of CfRunt, and induce the increases of hemocytes renew rate and circulating hemocytes number. In contrast,LPS stimulation in CfGATA interference group could not induce significant changesof CfGATA expression, as well as hemocytes renew rate and circulating hemocytesnumber. The results indicated that hematopoietic transcription factor CfRunt, CfCBFβand CfGATA play essential role in regulating hemocyte production.
     2. The expression of hematopoietic transcription factors during ontogenesis ofscallop and its response to bacterial challenge
     During the early developmental stages of scallop, both mRNA expression levelsof CfRunt and CfCBFβ increased significantly at32-cell stage and D-hinged larvaestage, also at late veliger larval stage for CfCBFβ, while CfGATA expression wasreached to the highest level at gastrula. Further whole mount embryoimmunofluorescence assay showed that CfRunt protein was first expressed in thewhole embryo at32-cell stage, then its distribution was specialized with development,locating mainly in the vegetal pole cells of morula, mesoderm of gastrula and ventralprototroch of trochophore subsequently. At early trochophore stage, CfRunt, CfCBFβand CfGATA were all appeared symmetrically on the basal side of ventral prototrochof larvae as the bilateral cells. Since the bilateral cells of CfRunt and CfGATA wereshifted to the basal side of larvae velum at D-hinged larval stage, the expression ofCfCBFβ on velum was disappeared; however a new saccular area appeared in thedorsal posterior of larvae with strong expression of the three hematopoietictranscription factors. Subsequently, in mid-veliger larvae, the expression of CfRuntand CfGATA on velum was also disappeared, and all of the hematopoietictranscription factors were expressed remarkably in the saccular area. In addition, themRNA expression of CfRunt and CfGATA at late trochophore, D-hinged and veligerlarval stages was significantly up-regulated at6,12or24h after V. anguillarumstimulation respectively, while the expression of CfCBFβ was significantly down-regulated and up-regulated at D-hinged and veliger larval stages after12h V.anguillarum stimulation. The results indicated that the scallop might experience twowaves of hematopoiesis during ontogenesis, which occurred at ventral prototroch oftrochophore as the bilateral cells and the saccular area in the dorsal posterior ofveliger larvae resceptively.
     3. The expression of immune factors during ontogenesis of scallop and itsresponse to bacterial challenge
     The mRNA expression of PRR (CfPGRP-S1, CfLGBP, CfLec-1and CfLec-3)and immune effectors (CfLYZ and CfLBP/BPI) was dramatically increased attrochophore or D-hinged larvae respectively, and then kept at a high expression level,whereas the mRNA expression of CfCu/Zn-SOD and CfCAT was significantlyincreased until early veliger larval stage. Consistently, the whole mount embryoimmunofluorescence assay showed that all of the PRR and immune effectors was firstappeared symmetrically in the bilateral cells of prototroch in trochophore or the velumin D-hinged larvae. However, the distribution of these immune factors was differentafter early veliger larvae. PRR and CfLBP/BPI was mainly located in the velum,mouth, esophagus or stomach region of early and mid-veliger larvae, while CfLYZ,CfCAT and CfCu/Zn-SOD mainly located in the digestive gland, stomach or velumregion. After V. anguillarum stimulation, the mRNA expression of immune effectorswas significantly up-regulated at6or12h in trochophore respectively. In D-hingedlarvae, the mRNA expression of immune factors was significantly up-regulated ordown-regulated after stimulation except CfCAT, while all expression of the immunefactors was up-regulated at6or12h at late veliger larval stage. The results suggestedthat the immune system might firstly formed in the bilateral cells of ventral prototrochof trochophore, developed gradually at D-hinged larvae, and then matured at earlyveliger larvae when it possessed functional immune response.
     4.Maternal transfer of immune factors and its trans-generational effect inscallop
     In the eggs of scallop, the mRNA transcript of CfCu/Zn-SOD was higher thanother immune factors, such as CfLBP/BPI, CfLGBP, CfLec-3and CfLYZ, which wasextremely lower in eggs. In contrast, the protein level of those immune factors wasdectected highly except CfLec-3, while the protein level of CfCu/Zn-SOD was alsothe highest. The protein extract of scallop eggs exhibited remarkable agglutinationactivity and bactericidal effect against gram-negative bacteria Escherichia coli and V.anguillarum, and fungi P. pastoris, but gram-positive bacteria Staphyloccocus aureus.Furthermore, the protein contents of LBP/BPI, LYZ and Cu/Zn-SOD increasedsignificantly in the offspring when female scallop was stimulated with heat-killed V.anguillarum, also a significant enhancement of the Cu/Zn-SOD and antibacterialactivity was observed in the offspring from maternal immune stimulated mother scallops at eggs,4-cell and trochophore stages. Moreover, the mortality of offspringfrom the maternal immune stimulated mother scallops was significantly lower thanthat of control in trochophore and D-hinged larvae after bacterial challenge. Theresults suggested that the maternal factors could be transferred to offspring in scallop,and the maternal immunity have the trans-generational effect which played importantrole in protecting the offspring against pathogens.
     In summary, it could be considered that with two waves of hematopoiesis, theimmune system of scallop was formed firstly at trochophore stage, and functionalmatured after early veliger larval stage. Maternal immunity was available to protectthe offspring from invading pathogens before the maturation of immune system.These data provided useful evidences for the further study on the regulationmechanism of immune system ontogenesis, as well as enriched our knowledge todevelop new strategy for scallop aquaculture.
引文
1. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology.Cell.2008,132:631-644.
    2. Sabin FR. Studies on the origin of blood vessels and of red corpuscles as seen inthe living blastoderm of the chick during the second day of incubation.Contributions to embryology.1920,9:213-262.
    3. Moore MA, Metcalf D. Ontogeny of the Haemopoietic System: Yolk Sac Originof In Vivo and In Vitro Colony Forming Cells in the Developing Mouse Embryo.British journal of haematology.2008,18:279-296.
    4. Palis J, McGrath KE, Kingsley PD. Initiation of hematopoiesis andvasculogenesis in murine yolk sac explants. Blood.1995,86:156-163.
    5. Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroidand myeloid progenitors in the yolk sac and embryo proper of the mouse.Development.1999,126:5073-5084.
    6. Haar JL, Ackerman GA. A phase and electron microscopic study ofvasculogenesis and erythropoiesis in the yolk sac of the mouse. The AnatomicalRecord.1971,170:199-223.
    7. Barker JE. Development of the mouse hematopoietic system. I. Types ofhemoglobin produced in embryonic yolk sac and liver. Developmental Biology.1968,18:14-29.
    8. Kaimakis P, Crisan M, Dzierzak E. The biochemistry of hematopoietic stem celldevelopment. Biochimica et Biophysica Acta (BBA)-General Subjects.2012.
    9. Cumano A, Godin I. Ontogeny of the hematopoietic system. Annu Rev Immunol.2007,25:745-785.
    10. Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stemcells within the vascular labyrinth region. Developmental cell.2005,8:377-387.
    11. Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HK. The placenta is a niche forhematopoietic stem cells. Developmental cell.2005,8:365-375.
    12. Li Z, Lan Y, He W, Chen D, Wang J, Zhou F, Wang Y, Sun H, Chen X, Xu C.Mouse Embryonic Head as a Site for Hematopoietic Stem Cell Development.Cell stem cell.2012,11:663-675.
    13. Paik EJ, Zon LI. Hematopoietic development in the zebrafish. InternationalJournal of Developmental Biology.2010,54:1127-1137.
    14. Detrich Hr, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S,Ransom D, Zon LI. Intraembryonic hematopoietic cell migration duringvertebrate development. Proceedings of the National Academy of Sciences.1995,92:10713-10717.
    15. Kalev-Zylinska ML, Horsfield JA, Flores MVC, Postlethwait JH, Vitas MR,Baas AM, Crosier PS, Crosier KE. Runx1is required for zebrafish blood andvessel development and expression of a human RUNX1-CBF2T1transgeneadvances a model for studies of leukemogenesis. Development.2002,129:2015-2030.
    16. Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, Detrich HW,Vail B, Huber TL, Paw B, Brownlie AJ. The cloche and spadetail GenesDifferentially Affect Hematopoiesis and Vasculogenesis. Developmental biology.1998,197:248-269.
    17. Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin H-F, Handin RI,Herbomel P. Tracing hematopoietic precursor migration to successivehematopoietic organs during zebrafish development. Immunity.2006,25:963-975.
    18. Jin H, Xu J, Wen Z. Migratory path of definitive hematopoietic stem/progenitorcells during zebrafish development. Blood.2007,109:5208-5214.
    19. Makhijani K, Brückner K. Of blood cells and the nervous system: Hematopoiesisin the Drosophila larva. Fly.2012,6:254-260.
    20. Crozatier M, Meister M. Drosophila haematopoiesis. Cellular microbiology.2007,9:1117-1126.
    21. Tepass U, Fessler LI, Aziz A, Hartenstein V. Embryonic origin of hemocytes andtheir relationship to cell death in Drosophila. Development.1994,120:1829-1837.
    22. Lebestky T, Chang T, Hartenstein V, Banerjee U. Specification of Drosophilahematopoietic lineage by conserved transcription factors. Science.2000,288:146.
    23. Wood W, Jacinto A. Drosophila melanogaster embryonic haemocytes: mastersof multitasking. Nature Reviews Molecular Cell Biology.2007,8:542-551.
    24. Jung SH, Evans CJ, Uemura C, Banerjee U. The Drosophila lymph gland as adevelopmental model of hematopoiesis. Development.2005,132:2521-2533.
    25. Lanot R, Zachary D, Holder F, Meister M. Postembryonic hematopoiesis inDrosophila. Developmental biology.2001,230:243-257.
    26. Costa G, Kouskoff V, Lacaud G. Origin of blood cells and HSC production inthe embryo. Trends in immunology.2012,33:215-223.
    27. Vogeli KM, Jin SW, Martin GR, Stainier DYR. A common progenitor forhaematopoietic and endothelial lineages in the zebrafish gastrula. Nature.2006,443:337-339.
    28. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G. Haemangioblastcommitment is initiated in the primitive streak of the mouse embryo. Nature.2004,432:625-630.
    29. Ema M, Faloon P, Zhang WJ, Hirashima M, Reid T, Stanford WL, Orkin S, ChoiK, Rossant J. Combinatorial effects of Flk1and Tal1on vascular andhematopoietic development in the mouse. Genes&development.2003,17:380-393.
    30. Shalaby F, Ho J, Stanford WL, Fischer K-D, Schuh AC, Schwartz L, BernsteinA, Rossant J. A requirement for Flk1in primitive and definitive hematopoiesisand vasculogenesis. Cell.1997,89:981-990.
    31. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu X-F, Breitman ML,Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature.1995,376:62-66.
    32. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A commonprecursor for hematopoietic and endothelial cells. Development.1998,125:725-732.
    33. Liao EC, Paw BH, Oates AC, Pratt SJ, Postlethwait JH, Zon LI. SCL/Tal-1transcription factor acts downstream of cloche to specify hematopoietic andvascular progenitors in zebrafish. Genes&development.1998,12:621-626.
    34. Sumanas S, Jorniak T, Lin S. Identification of novel vascular endothelial–specific genes by the microarray analysis of the zebrafish cloche mutants. Blood.2005,106:534-541.
    35. Pham VN, Lawson ND, Mugford JW, Dye L, Castranova D, Lo B, WeinsteinBM. Combinatorial function of ETS transcription factors in the developingvasculature. Developmental biology.2007,303:772-783.
    36. Stainier D, Weinstein BM, Detrich H, Zon LI, Fishman MC. Cloche, an earlyacting zebrafish gene, is required by both the endothelial and hematopoieticlineages. Development.1995,121:3141-3150.
    37. Jordan H. Aortic cell clusters in vertebrate embryos. Proceedings of the NationalAcademy of Sciences of the United States of America.1917,3:149-156.
    38. de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez M-J, Dzierzak E.Hematopoietic stem cells localize to the endothelial cell layer in the midgestationmouse aorta. Immunity.2002,16:673-683.
    39. Eilken HM, Nishikawa S-I, Schroeder T. Continuous single-cell imaging ofblood generation from haemogenic endothelium. Nature.2009,457:896-900.
    40. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D.Haematopoietic stem cells derive directly from aortic endothelium duringdevelopment. Nature.2010,464:108-111.
    41. Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by anovel type of cell transition. Nature.2010,464:112-115.
    42. Mandal L, Banerjee U, Hartenstein V. Evidence for a fruit fly hemangioblast andsimilarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nature genetics.2004,36:1019-1023.
    43. Nishikawa S-I, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H,Katsura Y. In vitro generation of lymphohematopoietic cells from endothelialcells purified from murine embryos. Immunity.1998,8:761-769.
    44. Boisset JC, Van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C.In vivo imaging of haematopoietic cells emerging from the mouse aorticendothelium. Nature.2010,464:116-120.
    45. Lam EYN, Hall CJ, Crosier PS, Crosier KE, Flores MV. Live imaging of Runx1expression in the dorsal aorta tracks the emergence of blood progenitors fromendothelial cells. Blood.2010,116:909-914.
    46. Loose M, Swiers G, Patient R. Transcriptional networks regulatinghematopoietic cell fate decisions. Current opinion in hematology.2007,14:307-314.
    47. Kim PG, Albacker CE, Lu Y-f, Jang I-h, Lim Y, Heffner GC, Arora N, BowmanTV, Lin MI, Lensch MW. Signaling axis involving Hedgehog, Notch, and Sclpromotes the embryonic endothelial-to-hematopoietic transition. Proceedings ofthe National Academy of Sciences.2013,110: E141-E150.
    48. Zhang C, Patient R, Liu F. Hematopoietic stem cell development and regulatorysignaling in zebrafish. Biochimica et Biophysica Acta (BBA)-General Subjects.2013,1830:2370-2374.
    49. Marks-Bluth J, Pimanda JE. Cell signalling pathways that mediatehaematopoietic stem cell specification. The International Journal ofBiochemistry&Cell Biology.2012,44:2175-2184.
    50. Bigas A, D’Altri T, Espinosa L. The Notch Pathway in Hematopoietic StemCells.. Notch Regulation of the Immune System: Current Topics inMicrobiology and Immunology.2012,360:1-18.
    51. Minakhina S, Tan W, Steward R. JAK/STAT and the GATA factor Panniercontrol hemocyte maturation and differentiation in Drosophila. Developmentalbiology.2011,352:308-316.
    52. Munier AI, Doucet D, Perrodou E, Zachary D, Meister M, Hoffmann JA,Janeway CA, Lagueux M. PVF2, a PDGF/VEGF-like growth factor, induceshemocyte proliferation in Drosophila larvae. EMBO reports.2002,3:1195-1200.
    53. Hassan H, Zander A. Stem cell factor as a survival and growth factor in humannormal and malignant hematopoiesis. Acta haematologica.2009,95:257-262.
    54. Yang Y-C, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS,Leary AC, Kriz R, Donahue RE, Wong GG. Human IL-3(multi-CSF):identification by expression cloning of a novel hematopoietic growth factorrelated to murine IL-3. Cell.1986,47:3-10.
    55. Grigorian M, Hartenstein V. Hematopoiesis and hematopoietic organs inarthropods. Development Genes and Evolution.2013,223:103-115.
    56. McKinney-Freeman S, Cahan P, Li H, Lacadie SA, Huang H-T, Curran M,Loewer S, Naveiras O, Kathrein KL, Konantz M. The transcriptional landscapeof hematopoietic stem cell ontogeny. Cell stem cell.2012,11:701-714.
    57. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkeyME, Habib N, Yosef N, Chang CY, Shay T. Densely interconnectedtranscriptional circuits control cell states in human hematopoiesis. Cell.2011,144:296-309.
    58. Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, ChilarskaPM, Kinston S, Ouwehand WH, Dzierzak E. Combinatorial transcriptionalcontrol in blood stem/progenitor cells: genome-wide analysis of ten majortranscriptional regulators. Cell stem cell.2010,7:532-544.
    59. O'Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D.MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proceedings of the National Academy of Sciences.2010,107:14235-14240.
    60. Chen Q, Cheng J-T, Tasi L, Schneider N, Buchanan G, Carroll A, Crist W,Ozanne B, Siciliano M, Baer R. The tal gene undergoes chromosometranslocation in T cell leukemia and potentially encodes a helix-loop-helixprotein. The EMBO Journal.1990,9:415-424.
    61. Brown L, Cheng J-T, Chen Q, Siciliano M, Crist W, Buchanan G, Baer R. Site-specific recombination of the tal-1gene is a common occurrence in human T cellleukemia. The EMBO Journal.1990,9:3343-3351.
    62. Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A,Rabbitts TH. The LIM-only protein Lmo2is a bridging molecule assembling anerythroid, DNA-binding complex which includes the TAL1, E47, GATA-1andLdb1/NLI proteins. The EMBO Journal.1997,16:3145-3157.
    63. Anguita E, Hughes J, Heyworth C, Blobel GA, Wood WG, Higgs DR. Globingene activation during haemopoiesis is driven by protein complexes nucleated byGATA-1and GATA-2. The EMBO Journal.2004,23:2841-2852.
    64. Kallianpur AR, Jordan JE, Brandt SJ. The SCL/TAL-1gene is expressed inprogenitors of both the hematopoietic and vascular systems duringembryogenesis. Blood.1994,83:1200-1208.
    65. Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in micelacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature.1995,373:432-434.
    66. Robb L, Lyons I, Li R, Hartley L, K ntgen F, Harvey RP, Metcalf D, Begley CG.Absence of yolk sac hematopoiesis from mice with a targeted disruption of thescl gene. Proceedings of the National Academy of Sciences.1995,92:7075-7079.
    67. Vyas P, McDevitt MA, Cantor AB, Katz SG, Fujiwara Y, Orkin SH. Differentsequence requirements for expression in erythroid and megakaryocytic cellswithin a regulatory element upstream of the GATA-1gene. Development.1999,126:2799-2811.
    68. Anderson KP, Crable SC, Lingrel JB. Multiple proteins binding to a GATA-Ebox-GATA motif regulate the erythroid Krüppel-like factor (EKLF) gene.Journal of Biological Chemistry.1998,273:14347-14354.
    69. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G. Thehaemangioblast generates haematopoietic cells through a haemogenicendothelium stage. Nature.2009,457:892-895.
    70. D'Souza SL, Elefanty AG, Keller G. SCL/Tal-1is essential for hematopoieticcommitment of the hemangioblast but not for its development. Blood.2005,105:3862-3870.
    71. Endoh M, Ogawa M, Orkin S, Nishikawa S-i. SCL/tal-1-dependent processdetermines a competence to select the definitive hematopoietic lineage prior toendothelial differentiation. The EMBO Journal.2002,21:6700-6708.
    72. Van Handel B, Montel-Hagen A, Sasidharan R, Nakano H, Ferrari R, BoogerdCJ, Schredelseker J, Wang Y, Hunter S, Zhou J. Scl RepressesCardiomyogenesis in Prospective Hemogenic Endothelium and Endocardium.Cell.2012,150:590-605.
    73. Pimanda JE, Donaldson IJ, de Bruijn MFTR, Kinston S, Knezevic K, Huckle L,Piltz S, Landry JR, Green AR, Tannahill D. The SCL transcriptional network andBMP signaling pathway interact to regulate RUNX1activity. Proceedings of theNational Academy of Sciences.2007,104:840-845.
    74. Dooley KA, Davidson AJ, Zon LI. Zebrafish scl functions independently inhematopoietic and endothelial development. Developmental biology.2005,277:522-536.
    75. Patterson LJ, Gering M, Patient R. Scl is required for dorsal aorta as well asblood formation in zebrafish embryos. Blood.2005,105:3502-3511.
    76. G ttgens B, Nastos A, Kinston S, Piltz S, Delabesse EC, Stanley M, Sanchez M-J, Ciau-Uitz A, Patient R, Green AR. Establishing the transcriptional programmefor blood: the SCL stem cell enhancer is regulated by a multiprotein complexcontaining Ets and GATA factors. The EMBO Journal.2002,21:3039-3050.
    77. Wilson NK, Miranda-Saavedra D, Kinston S, Bonadies N, Foster SD, Calero-Nieto F, Dawson MA, Donaldson IJ, Dumon S, Frampton J. The transcriptionalprogram controlled by the stem cell leukemia gene Scl/Tal1during earlyembryonic hematopoietic development. Blood.2009,113:5456-5465.
    78. Kagoshima H, Shigesada K, Satake M, Ito Y, Miyoshi H, Ohki M, Pepling M,Gergen P. The Runt domain identifies a new family of heteromerictranscriptional regulators. Trends in genetics: TIG.1993,9:338-341.
    79. Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, ShigesadaK, Ito Y. PEBP2/PEA2represents a family of transcription factors homologousto the products of the Drosophila runt gene and the human AML1gene.Proceedings of the National Academy of Sciences.1993,90:6859-6863.
    80. Braun T, Woollard A. RUNX factors in development: lessons from invertebratemodel systems. Blood Cells, Molecules, and Diseases.2009,43:43-48.
    81. Gergen JP, Butler BA. Isolation of the Drosophila segmentation gene runt andanalysis of its expression during embryogenesis. Genes&development.1988,2:1179-1193.
    82. Duffy J, Kania M, Gergen J. Expression and function of the Drosophila gene runtin early stages of neural development. Development.1991,113:1223-1230.
    83. Kania M, Bonner A, Duffy J, Gergen J. The Drosophila segmentation gene runtencodes a novel nuclear regulatory protein that is also expressed in thedeveloping nervous system. Genes&development.1990,4:1701-1713.
    84. Rennert J, Coffman JA, Mushegian AR, Robertson AJ. The evolution of Runxgenes I. A comparative study of sequences from phylogenetically diverse modelorganisms. BMC Evolutionary Biology.2003,3:4.
    85. Sullivan JC, Sher D, Eisenstein M, Shigesada K, Reitzel AM, Marlow H,Levanon D, Groner Y, Finnerty JR, Gat U. The evolutionary origin of theRunx/CBFbeta transcription factors-Studies of the most basal metazoans. BmcEvolutionary Biology.2008,8.
    86. Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, Downing JR, Dzierzak E.Haploinsufficiency of AML1affects the temporal and spatial generation ofhematopoietic stem cells in the mouse embryo. Immunity.2000,13:423-431.
    87. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J, Shibata Y,Yazaki Y, Hirai H. An acute myeloid leukemia gene, AML1, regulateshemopoietic myeloid cell differentiation and transcriptional activationantagonistically by two alternative spliced forms. The EMBO Journal.1995,14:341-350.
    88. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y,Bronson R, Gao YH, Inada M. Targeted Disruption of Cbfa1Results in aComplete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts.Cell.1997,89:755-764.
    89. Inoue K-i, Ozaki S, Shiga T, Ito K, Masuda T, Okado N, Iseda T, Kawaguchi S,Ogawa M, Bae S-C. Runx3controls the axonal projection of proprioceptivedorsal root ganglion neurons. Nature neuroscience.2002,5:946-954.
    90. Li Q-L, Ito K, Sakakura C, Fukamachi H, Inoue K-i, Chi X-Z, Lee K-Y, NomuraS, Lee C-W, Han S-B. Causal relationship between the loss of RUNX3expression and gastric cancer. Cell.2002,109:113-124.
    91. Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K,Soceda E, Ohkl M. Alternative splicing and genomic structure of the AML1geneinvolved in acute myeloid leukemia. Nucleic acids research.1995,23:2762-2769.
    92. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. t (8;21)breakpoints on chromosome21in acute myeloid leukemia are clustered within alimited region of a single gene, AML1. Proceedings of the National Academy ofSciences.1991,88:10431-10434.
    93. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, thetarget of multiple chromosomal translocations in human leukemia, is essentialfor normal fetal liver hematopoiesis. Cell.1996,84:321-330.
    94. Lacaud G, Gore L, Kennedy M, Kouskoff V, Kingsley P, Hogan C, Carlsson L,Speck N, Palis J, Keller G. Runx1is essential for hematopoietic commitment atthe hemangioblast stage of development in vitro. Blood.2002,100:458-466.
    95. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA.Disruption of the Cbfa2gene causes necrosis and hemorrhaging in the centralnervous system and blocks definitive hematopoiesis. Proceedings of the NationalAcademy of Sciences.1996,93:3444-3449.
    96. North T, Gu T-L, Stacy T, Wang Q, Howard L, Binder M, Marin-Padilla M,Speck NA. Cbfa2is required for the formation of intra-aortic hematopoieticclusters. Development.1999,126:2563-2575.
    97. Yokomizo T, Ogawa M, Osato M, Kanno T, Yoshida H, Fujimoto T, Fraser S,Nishikawa S, Okada H, Satake M. Requirement of Runx1/AML1/PEBP2αB forthe generation of haematopoietic cells from endothelial cells. Genes to Cells.2001,6:13-23.
    98. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1is requiredfor the endothelial to haematopoietic cell transition but not thereafter. Nature.2009,457:887-891.
    99. North TE, Stacy T, Matheny CJ, Speck NA, de Bruijn MF. Runx1is expressedin adult mouse hematopoietic stem cells and differentiating myeloid andlymphoid cells, but not in maturing erythroid cells. Stem Cells.2004,22:158-168.
    100. Lorsbach RB, Moore J, Ang SO, Sun W, Lenny N, Downing JR. Role ofRUNX1in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in micereveals differential lineage expression. Blood.2004,103:2522-2529.
    101. Gering M, Patient R. Hedgehog signaling is required for adult blood stem cellformation in zebrafish embryos. Developmental cell.2005,8:389-400.
    102. Burns CE, DeBlasio T, Zhou Y, Zhang J, Zon L, Nimer SD. Isolation andcharacterization of runxa and runxb, zebrafish members of the runt family oftranscriptional regulators. Experimental hematology.2002,30:1381-1389.
    103. Canon J, Banerjee U. Runt and Lozenge function in Drosophila development.Seminars in cell&developmental biology.2000,11:327-336.
    104. BatailléL, AugéB, Ferjoux G, Haenlin M, Waltzer L. Resolving embryonicblood cell fate choice in Drosophila: interplay of GCM and RUNX factors.Development.2005,132:4635-4644.
    105. Rehorn KP, Thelen H, Michelson AM, Reuter R. A molecular aspect ofhematopoiesis and endoderm development common to vertebrates andDrosophila. Development.1996,122:4023-4031.
    106. Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, ShiinaM, Sato K, Kumasaka T, Yamamoto M. Structural analyses of DNA recognitionby the AML1/Runx-1Runt domain and its allosteric control by CBFβ. Cell.2001,104:755-767.
    107. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH,Bories JC, Alt FW, Ryan G. The CBFβ subunit is essential for CBFα2(AML1)function in vivo. Cell.1996,87:697-708.
    108. Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K, Tani Y,Kishimoto T, Komori T. Absence of fetal liver hematopoiesis in mice deficientin transcriptional coactivator core binding factor beta. Proceedings of theNational Academy of Sciences.1996,93:12359-12363.
    109. Liu H, Carlsson L, Grundstr m T. Identification of an N-terminal transactivationdomain of Runx1that separates molecular function from global differentiationfunction. Journal of Biological Chemistry.2006,281:25659-25669.
    110. Kitabayashi I, Yokoyama A, Shimizu K, Ohki M. Interaction and functionalcooperation of the leukemia-associated factors AML1and p300in myeloid celldifferentiation. The EMBO Journal.1998,17:2994-3004.
    111. Kanno T, Kanno Y, Chen L-F, Ogawa E, Kim W-Y, Ito Y. Intrinsictranscriptional activation-inhibition domains of the polyomavirus enhancerbinding protein2/core binding factor α subunit revealed in the presence of the βsubunit. Molecular and cellular biology.1998,18:2444-2454.
    112. Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M. Activation ofAML1-mediated transcription by MOZ and inhibition by the MOZ–CBP fusionprotein. The EMBO Journal.2001,20:7184-7196.
    113. Imai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K, Yazaki Y,Hirai H. TLE, the human homolog of groucho, interacts with AML1and acts asa repressor of AML1-induced transactivation. Biochemical and biophysicalresearch communications.1998,252:582-589.
    114. Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S,Paroush Ze, Groner Y. Transcriptional repression by AML1and LEF-1ismediated by the TLE/Groucho corepressors. Proceedings of the NationalAcademy of Sciences.1998,95:11590-11595.
    115. Yu M, Mazor T, Huang H, Huang H-T, Kathrein KL, Woo AJ, Chouinard CR,Labadorf A, Akie TE, Moran TB. Direct recruitment of polycomb repressivecomplex1to chromatin by core binding transcription factors. Molecular cell.2012,45:330-343.
    116. Bae SC, Lee YH. Phosphorylation, acetylation and ubiquitination: the molecularbasis of RUNX regulation. Gene.2006,366:58-66.
    117. Nottingham WT, Jarratt A, Burgess M, Speck CL, Cheng JF, Prabhakar S, RubinEM, Li PS, Sloane-Stanley J, Kong-a-San J. Runx1-mediated hematopoieticstem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood.2007,110:4188-4197.
    118. Pimanda JE, Donaldson IJ, de Bruijn MF, Kinston S, Knezevic K, Huckle L,Piltz S, Landry J-R, Green AR, Tannahill D. The SCL transcriptional networkand BMP signaling pathway interact to regulate RUNX1activity. Proceedings ofthe National Academy of Sciences.2007,104:840-845.
    119. Huang G, Zhang P, Hirai H, Elf S, Yan X, Chen Z, Koschmieder S, Okuno Y,Dayaram T, Growney JD. PU.1is a major downstream target of AML1(RUNX1) in adult mouse hematopoiesis. Nature genetics.2007,40:51-60.
    120. Guo H, Ma O, Speck NA, Friedman AD. Runx1deletion or dominant inhibitionreduces Cebpa transcription via conserved promoter and distal enhancer sites tofavor monopoiesis over granulopoiesis. Blood.2012,119:4408-4418.
    121. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD.PEBP2/CBF, the murine homolog of the human myeloid AML1and PEBP2beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase andneutrophil elastase genes in immature myeloid cells. Molecular and cellularbiology.1994,14:5558-5568.
    122. Zhang D-E, Fujioka K-i, Hetherington CJ, Shapiro LH, Chen H-M, Look AT,Tenen DG. Identification of a region which directs the monocytic activity of thecolony-stimulating factor1(macrophage colony-stimulating factor) receptorpromoter and binds PEBP2/CBF (AML1). Molecular and cellular biology.1994,14:8085-8095.
    123. Takahashi A, Satake M, Yamaguchi-Iwai Y, Bae S-C, Lu J, Maruyama M,Zhang YW, Oka H, Arai N, Arai K-i. Positive and negative regulation ofgranulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood.1995,86:607-616.
    124. Cameron S, Taylor D, TePas E, Speck N, Mathey-Prevot B. Identification of acritical regulatory site in the human interleukin-3promoter by in vivofootprinting. Blood.1994,83:2851-2859.
    125.Lichtinger M, Ingram R, Hannah R, Müller D, Clarke D, Assi SA, Lie-A-Ling M,Noailles L, Vijayabaskar M, Wu M. RUNX1reshapes the epigenetic landscapeat the onset of haematopoiesis. The EMBO Journal.2012,31:4318-4333.
    126. Rossetti S, Sacchi N. RUNX1: A MicroRNA Hub in Normal and MalignantHematopoiesis. International Journal of Molecular Sciences.2013,14:1566-1588.
    127. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F, Croce CM,Brunetti E, Grignani F, Peschle C. MicroRNAs17-5p–20a–106a controlmonocytopoiesis through AML1targeting and M-CSF receptor upregulation.Nature cell biology.2007,9:775-787.
    128. Ben-Ami O, Pencovich N, Lotem J, Levanon D, Groner Y. A regulatoryinterplay between miR-27a and Runx1during megakaryopoiesis. Proceedings ofthe National Academy of Sciences.2009,106:238-243.
    129. Feng J, Iwama A, Satake M, Kohu K. MicroRNA-27enhances differentiation ofmyeloblasts into granulocytes by post-transcriptionally downregulating Runx1.British journal of haematology.2009,145:412-423.
    130. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD. MicroRNAs:new regulators of immune cell development and function. Nature immunology.2008,9:839-845.
    131. Merika M, Orkin SH. DNA-binding specificity of GATA family transcriptionfactors. Molecular and cellular biology.1993,13:3999-4010.
    132. Gillis WQ, Bowerman BA, Schneider SQ. The evolution of protostome GATAfactors: molecular phylogenetics, synteny, and intron/exon structure revealorthologous relationships. BMC Evolutionary Biology.2008,8:112.
    133. Weiss M, Orkin S. GATA transcription factors: key regulators of hematopoiesis.Experimental hematology.1995,23:99-107.
    134. Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch J, Evans T. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heartand gut. Journal of Biological Chemistry.1994,269:23177-23184.
    135. Molkentin JD. The zinc finger-containing transcription factors GATA-4,-5, and-6. Ubiquitously expressed regulators of tissue-specific gene expression. Journalof Biological Chemistry.2000,275:38949-38952.
    136. Vicente C, Conchillo A, García-Sánchez MA, Odero MD. The role of theGATA2transcription factor in normal and malignant hematopoiesis. Criticalreviews in oncologyhematology.2012,82:1-17.
    137. Evans CJ, Hartenstein V, Banerjee U. Thicker than blood: conservedmechanisms in Drosophila and vertebrate hematopoiesis. Developmental cell.2003,5:673-690.
    138. Pevny L, Simon MC, Robertson E, Klein WH, Tsai S-F, D'Agati V, Orkin SH,Costantini F. Erythroid differentiation in chimaeric mice blocked by a targetedmutation in the gene for transcription factor GATA-1. Nature.1991,349:257-260.
    139. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selectiveknockout establishes the critical role of transcription factor GATA-1inmegakaryocyte growth and platelet development. The EMBO Journal.1997,16:3965-3973.
    140. Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, Orkin SH.Targeted deletion of a high-affinity GATA-binding site in the GATA-1promoterleads to selective loss of the eosinophil lineage in vivo. The Journal ofexperimental medicine.2002,195:1387-1395.
    141. Migliaccio AR, Rana RA, Sanchez M, Lorenzini R, Centurione L, Bianchi L,Vannucchi AM, Migliaccio G, Orkin SH. GATA-1as a regulator of mast celldifferentiation revealed by the phenotype of the GATA-1low mouse mutant. TheJournal of experimental medicine.2003,197:281-296.
    142. Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. Arrested developmentof embryonic red cell precursors in mouse embryos lacking transcription factorGATA-1. Proceedings of the National Academy of Sciences.1996,93:12355-12358.
    143. Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1function, a paradigmfor transcription factors in hematopoiesis. Molecular and cellular biology.2005,25:1215-1227.
    144. Takahashi S, Onodera K, Motohashi H, Suwabe N, Hayashi N, Yanai N,Nabesima Y, Yamamoto M. Arrest in primitive erythroid cell developmentcaused by promoter-specific disruption of the GATA-1gene. Journal ofBiological Chemistry.1997,272:12611-12615.
    145. Pan X, Ohneda O, Ohneda K, Lindeboom F, Iwata F, Shimizu R, Nagano M,Suwabe N, Philipsen S, Lim K-C. Graded levels of GATA-1expressionmodulate survival, proliferation, and differentiation of erythroid progenitors.Journal of Biological Chemistry.2005,280:22385-22394.
    146. Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid developmentrevealed through in vitro differentiation of GATA-1embryonic stem cells. Genes&development.1994,8:1184-1197.
    147. Fox AH, Kowalski K, King GF, Mackay JP, Crossley M. Key residuescharacteristic of GATA N-fingers are recognized by FOG. Journal of BiologicalChemistry.1998,273:33595-33603.
    148. Tsang AP, Fujiwara Y, Hom DB, Orkin SH. Failure of megakaryopoiesis andarrested erythropoiesis in mice lacking the GATA-1transcriptional cofactorFOG. Genes&development.1998,12:1176-1188.
    149. Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G,Briand P, Vainchenker W, Tavitian A. Spi-1/PU.1transgenic mice developmultistep erythroleukemias. Molecular and cellular biology.1996,16:2453-2463.
    150. Lahlil R, Lécuyer E, Herblot S, Hoang T. SCL assembles a multifactorialcomplex that determines glycophorin A expression. Molecular and cellularbiology.2004,24:1439-1452.
    151. Song S-H, Hou C, Dean A. A positive role for NLI/Ldb1in long-range β-globinlocus control region function. Molecular cell.2007,28:810-822.
    152. Collavin L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, Del Sal G.Modification of the erythroid transcription factor GATA-1by SUMO-1.Proceedings of the National Academy of Sciences of the United States ofAmerica.2004,101:8870-8875.
    153. Crossley M, Orkin SH. Phosphorylation of the erythroid transcription factorGATA-1. Journal of Biological Chemistry.1994,269:16589-16596.
    154. Boyes J, Byfield P, Nakatani Y, Ogryzko V. Regulation of activity of thetranscription factor GATA-1by acetylation. Nature.1998,396:594-598.
    155. Hung H-L, Lau J, Kim AY, Weiss MJ, Blobel GA. CREB-binding proteinacetylates hematopoietic transcription factor GATA-1at functionally importantsites. Molecular and cellular biology.1999,19:3496-3505.
    156. Moriguchi T, Suzuki M, Engel JD, Yamamoto M. GATA1and GATA2Functionin Hematopoietic Differentiation. Hematopoietic Stem Cell Biology.2010:117-142.
    157. Rodrigues NP, Tipping AJ, Wang Z, Enver T. GATA-2mediated regulation ofnormal hematopoietic stem/progenitor cell function, myelodysplasia and myeloidleukemia. The International Journal of Biochemistry&Cell Biology.2012,44:457-460.
    158.Tsai F-Y, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH.An early haematopoietic defect in mice lacking the transcription factor GATA-2.Nature.1994,371:221.
    159. Tsai F-Y, Orkin SH. Transcription factor GATA-2is required forproliferation/survival of early hematopoietic cells and mast cell formation, butnot for erythroid and myeloid terminal differentiation. Blood.1997,89:3636-3643.
    160. Kaneko H, Shimizu R, Yamamoto M. GATA factor switching during erythroiddifferentiation. Current opinion in hematology.2010,17:163-168.
    161. Lugus JJ, Chung YS, Mills JC, Kim S-I, Grass JA, Kyba M, Doherty JM,Bresnick EH, Choi K. GATA2functions at multiple steps in hemangioblastdevelopment and differentiation. Development.2007,134:393-405.
    162. Robert-Moreno à, Espinosa L, de la Pompa JL, Bigas A. RBPjκ-dependentNotch function regulates Gata2and is essential for the formation of intra-embryonic hematopoietic cells. Development.2005,132:1117-1126.
    163. Imagawa S, Yamamoto M, Miura Y. Negative regulation of the erythropoietingene expression by the GATA transcription factors. Blood.1997,89:1430-1439.
    164. Huang Z, Dore LC, Li Z, Orkin SH, Feng G, Lin S, Crispino JD. GATA-2reinforces megakaryocyte development in the absence of GATA-1. Molecularand cellular biology.2009,29:5168-5180.
    165. Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E,Yamaguchi T, Masuda S, Shimizu K, Takahashi T. Notch1but not Notch2isessential for generating hematopoietic stem cells from endothelial cells.Immunity.2003,18:699-711.
    166. Ghatpande S, Ghatpande A, Sher J, Zile MH, Evans T. Retinoid signalingregulates primitive (yolk sac) hematopoiesis. Blood.2002,99:2379-2386.
    167. Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WY, Wilson NK,Landry J-R, Wood AD, Kolb-Kokocinski A, Green AR. Gata2, Fli1, and Sclform a recursively wired gene-regulatory circuit during early hematopoieticdevelopment. Proceedings of the National Academy of Sciences.2007,104:17692-17697.
    168. Lulli V, Romania P, Morsilli O, Gabbianelli M, Pagliuca A, Mazzeo S, Testa U,Peschle C, Marziali G. Overexpression of Ets-1in human hematopoieticprogenitor cells blocks erythroid and promotes megakaryocytic differentiation.Cell Death&Differentiation.2005,13:1064-1074.
    169. Kamesaki H, Michaud G, Irving S, Suwabe N, Kamesaki S, Okuma M, CossmanJ. TPA-induced arrest of erythroid differentiation is coupled with downregulationof GATA-1and upregulation of GATA-2in an erythroid cell line SAM-1. Blood.1996,87:999-1005.
    170. Ohneda K, Yamamoto M. Roles of hematopoietic transcription factors GATA-1and GATA-2in the development of red blood cell lineage. Acta haematologica.2002,108:237-245.
    171.Imagawa S, Suzuki N, Ohmine K, Obara N, Mukai HY, Ozawa K, Yamamoto M,Nagasawa T. GATA suppresses erythropoietin gene expression through GATAsite in mouse erythropoietin gene promoter. International journal of hematology.2002,75:376-381.
    172. Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC, Blobel GA,Chodosh LA, Weiss MJ. Global regulation of erythroid gene expression bytranscription factor GATA-1. Blood.2004,104:3136-3147.
    173. Hayakawa F, Towatari M, Ozawa Y, Tomita A, Privalsky ML, Saito H.Functional regulation of GATA-2by acetylation. Journal of leukocyte biology.2004,75:529-540.
    174. Chun T-H, Itoh H, Subramanian L, I iguez-LluhíJA, Nakao K. Modification ofGATA-2transcriptional activity in endothelial cells by the SUMO E3ligasePIASy. Circulation research.2003,92:1201-1208.
    175. Minegishi N, Suzuki N, Kawatani Y, Shimizu R, Yamamoto M. Rapid turnoverof GATA‐2via ubiquitin‐proteasome protein degradation pathway. Genes toCells.2005,10:693-704.
    176.Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, Lieschke GJ.miR-451regulates zebrafish erythroid maturation in vivo via its target gata2.Blood.2009,113:1794-1804.
    177.Hosoya T, Kuroha T, Moriguchi T, Cummings D, Maillard I, Lim K-C, Engel JD.GATA-3is required for early T lineage progenitor development. The Journal ofexperimental medicine.2009,206:2987-3000.
    178. Pai S-Y, Truitt ML, Ho I. GATA-3deficiency abrogates the development andmaintenance of T helper type2cells. Proceedings of the National Academy ofSciences of the United States of America.2004,101:1993-1998.
    179. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q, Killeen N, Urban JF,Guo L, Paul WE. Conditional deletion of Gata3shows its essential function inTH1-TH2responses. Nature immunology.2004,5:1157-1165.
    180. Lee HJ, Takemoto N, Kurata H, Kamogawa Y, Miyatake S, O'Garra A, Arai N.GATA-3induces T helper cell type2(Th2) cytokine expression and chromatinremodeling in committed Th1cells. The Journal of experimental medicine.2000,192:105-116.
    181. Ouyang W, L hning M, Gao Z, Assenmacher M, Ranganath S, Radbruch A,Murphy KM. Stat6-independent GATA-3autoactivation directs IL-4-independent Th2development and commitment. Immunity.2000,12:27-37.
    182. Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC,Murphy KM. Inhibition of Th1development mediated by GATA-3through anIL-4-independent mechanism. Immunity.1998,9:745-755.
    183. Yagi R, Zhu JF, Paul WE. An updated view on transcription factor GATA3-mediated regulation of T(h)1and T(h)2cell differentiation. Int Immunol.2011,23:415-420.
    184. Wei G, Abraham BJ, Yagi R, Jothi R, Cui KR, Sharma S, Narlikar L, NorthrupDL, Tang QS, Paul WE, Zhu JF, Zhao KJ. Genome-wide Analyses ofTranscription Factor GATA3-Mediated Gene Regulation in Distinct T CellTypes. Immunity.2011,35:299-311.
    185. Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates).Current opinion in genetics&development.2002,12:416-422.
    186. Lebestky T, Jung S-H, Banerjee U. A Serrate-expressing signaling centercontrols Drosophila hematopoiesis. Genes&development.2003,17:348-353.
    187. Meister M, Lagueux M. Drosophila blood cells. Cellular microbiology.2003,5:573-580.
    188. Enzan H. Electron microscopic studies of macrophages in early human yolk sacs.Pathology International.1986,36:49-64.
    189. Takahashi K, Yamamura F, Naito M. Differentiation, maturation, andproliferation of macrophages in the mouse yolk sac: a light-microscopic,enzyme-cytochemical, immunohistochemical, and ultrastructural study. Journalof leukocyte biology.1989,45:87-96.
    190. Naito M, Takahashi K, Nishikawa S-l. Development, differentiation, andmaturation of macrophages in the fetal mouse liver. Journal of leukocyte biology.1990,48:27-37.
    191. Wu L, D'Amico A, Hochrein H, O'Keeffe M, Shortman K, Lucas K.Development of thymic and splenic dendritic cell populations from differenthemopoietic precursors. Blood.2001,98:3376-3382.
    192. Dakic A, Shao Q-x, D’Amico A, O’Keeffe M, Chen W-f, Shortman K, Wu L.Development of the dendritic cell system during mouse ontogeny. The journal ofimmunology.2004,172:1018-1027.
    193. Sun C-M, Fiette L, Tanguy M, Leclerc C, Lo-Man R. Ontogeny and innateproperties of neonatal dendritic cells. Blood.2003,102:585-591.
    194. Janossy G, Bofill M, Poulter L, Rawlings E, Burford G, Navarrete C, Ziegler A,Kelemen E. Separate ontogeny of two macrophage-like accessory cellpopulations in the human fetus. The journal of immunology.1986,136:4354-4361.
    195. Hofman FM, Danilovs JA, Taylor CR. HLA-DR (Ia)-positive dendritic-like cellsin human fetal nonlymphoid tissues. Transplantation.1984,37:590-594.
    196. Phillips J, Hori T, Nagler A, Bhat N, Spits H, Lanier L. Ontogeny of humannatural killer (NK) cells: fetal NK cells mediate cytolytic function and expresscytoplasmic CD3epsilon, delta proteins. The Journal of experimental medicine.1992,175:1055-1066.
    197. Haynes B, Martin ME, Kay HH, Kurtzberg J. Early events in human T cellontogeny. Phenotypic characterization and immunohistologic localization of Tcell precursors in early human fetal tissues. The Journal of experimentalmedicine.1988,168:1061-1080.
    198. Lobach DF, Haynes BF. Ontogeny of the human thymus during fetaldevelopment. Journal of clinical immunology.1987,7:81-97.
    199. Gupta S, Pahwa R, O'Reilly R, Good RA, Siegal FP. Ontogeny of lymphocytesubpopulations in human fetal liver. Proceedings of the National Academy ofSciences.1976,73:919-922.
    200.Bofill M, Janossy G, Janossa M, Burford GD, Seymour G, Wernet P, Kelemen E.Human B cell development. II. Subpopulations in the human fetus. The journalof immunology.1985,134:1531-1538.
    201. Timens W, Rozeboom T, Poppema S. Fetal and neonatal development of humanspleen: an immunohistological study. Immunology.1987,60:603-609.
    202. Ygberg S, Nilsson A. The developing immune system–from foetus to toddler.Acta Paediatrica.2012,101:120-127.
    203. Levy O. Innate immunity of the newborn: basic mechanisms and clinicalcorrelates. Nat Rev Immunol.2007,7:379-390.
    204. Hodgins DC, Shewen PE. Vaccination of neonates: Problem and issues. Vaccine.2012,30:1541-1559.
    205. Jones CA, Holloway JA, Warner JO. Phenotype of fetal monocytes and Blymphocytes during the third trimester of pregnancy. Journal of reproductiveimmunology.2002,56:45-60.
    206. Strunk T, Temming P, Gembruch U, Reiss I, Bucsky P, Schultz C. Differentialmaturation of the innate immune response in human fetuses. Pediatric research.2004,56:219-226.
    207. Yerkovich ST, Wikstr m ME, Suriyaarachchi D, Prescott SL, Upham JW, HoltPG. Postnatal development of monocyte cytokine responses to bacteriallipopolysaccharide. Pediatric research.2007,62:547-552.
    208. Mouzinho A, Rosenfeld CR, Sánchez PJ, Risser R. Revised reference ranges forcirculating neutrophils in very-low-birth-weight neonates. Pediatrics.1994,94:76-82.
    209. Davies N, Buggins A, Snijders R, Jenkins E, Layton D, Nicolaides K. Bloodleucocyte count in the human fetus. Archives of disease in childhood.1992,67:399-403.
    210. Carr R. Neutrophil production and function in newborn infants. British journal ofhaematology.2000,110:18-28.
    211.Urlichs F, Speer C. Neutrophil function in preterm and term infants. NeoReviews.2004,5: e417-e430.
    212. Henneke P, Berner R. Interaction of neonatal phagocytes with group Bstreptococcus: recognition and response. Infection and immunity.2006,74:3085-3095.
    213. Reddy R, Xia Y, Hanikyrova M, Ross G. A mixed population of immature andmature leucocytes in umbilical cord blood results in a reduced expression andfunction of CR3(CD11b/CD18). Clinical and Experimental Immunology.1998,114:462-467.
    214. Rebuck N, Gibson A, Finn A. Neutrophil adhesion molecules in term andpremature infants: normal or enhanced leucocyte integrins but defective L‐selectin expression and shedding. Clinical&Experimental Immunology.1995,101:183-189.
    215. Schultz C, Rott C, Temming P, Schlenke P, M ller JC, Bucsky P. Enhancedinterleukin-6and interleukin-8synthesis in term and preterm infants. Pediatricresearch.2002,51:317-322.
    216. Ambruso DR, Bentwood B, Henson PM, Johnston RB. Oxidative metabolism ofcord blood neutrophils: relationship to content and degranulation of cytoplasmicgranules. Pediatric research.1984,18:1148-1153.
    217. Levy O, Martin S, Eichenwald E, Ganz T, Valore E, Carroll SF, Lee K,Goldmann D, Thorne GM. Impaired innate immunity in the newborn: newbornneutrophils are deficient in bactericidal/permeability-increasing protein.Pediatrics.1999,104:1327-1333.
    218. De Wit D, Olislagers V, Goriely S, Vermeulen F, Wagner H, Goldman M,Willems F. Blood plasmacytoid dendritic cell responses to CpGoligodeoxynucleotides are impaired in human newborns. Blood.2004,103:1030-1032.
    219. Upham JW, Zhang G, Rate A, Yerkovich ST, Kusel M, Sly PD, Holt PG.Plasmacytoid dendritic cells during infancy are inversely associated withchildhood respiratory tract infections and wheezing. Journal of Allergy andClinical Immunology.2009,124:707-713. e702.
    220. Wong OH, Huang FP, Chiang AK. Differential responses of cord and adultblood‐derived dendritic cells to dying cells. Immunology.2005,116:13-20.
    221. Walker J, Smolders M, Gemen E, Antonius T, Leuvenink J, De Vries E.Development of lymphocyte subpopulations in preterm infants. ScandinavianJournal of Immunology.2011,73:53-58.
    222. Guilmot A, Hermann E, Braud VM, Carlier Y, Truyens C. Natural killer cellresponses to infections in early life. Journal of Innate Immunity.2011,3:280-288.
    223. Satwani P, Morris E, van de Ven C, Cairo MS. Dysregulation of expression ofimmunoregulatory and cytokine genes and its association with the immaturity inneonatal phagocytic and cellular immunity. Neonatology.2005,88:214-227.
    224. Van Der Graaf CA, Netea MG, Verschueren I, van der Meer JW, Kullberg BJ.Differential cytokine production and Toll-like receptor signaling pathways byCandida albicans blastoconidia and hyphae. Infection and immunity.2005,73:7458-7464.
    225. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, WalshEE, Freeman MW, Golenbock DT, Anderson LJ. Pattern recognition receptorsTLR4and CD14mediate response to respiratory syncytial virus. Natureimmunology.2000,1:398-401.
    226. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS,Hieny S, Sutterwala FS, Flavell RA, Ghosh S. TLR11activation of dendriticcells by a protozoan profilin-like protein. Science Signalling.2005,308:1626-1629.
    227. Cohen L, Haziot A, Shen DR, Lin X, Sia C, Harper R, Silver J, Goyert SM.CD14-independent responses to LPS require a serum factor that is absent fromneonates. The journal of immunology.1995,155:5337-5342.
    228. Aksoy E, Albarani V, Nguyen M, Laes J-F, Ruelle J-L, De Wit D, Willems F,Goldman M, Goriely S. Interferon regulatory factor3-dependent responses tolipopolysaccharide are selectively blunted in cord blood cells. Blood.2007,109:2887-2893.
    229. Angelone DF, Wessels MR, Coughlin M, Suter EE, Valentini P, Kalish LA,Levy O. Innate immunity of the human newborn is polarized toward a high ratioof IL-6/TNF-α production in vitro and in vivo. Pediatric research.2006,60:205-209.
    230. Vanden Eijnden S, Goriely S, De Wit D, Goldman M, Willems F. Preferentialproduction of the IL‐12(p40)/IL‐23(p19) heterodimer by dendritic cells fromhuman newborns. European journal of immunology.2005,36:21-26.
    231. Chelvarajan R, Collins S, Doubinskaia I, Goes S, Van Willigen J, Flanagan D, deVilliers W, Bryson J, Bondada S. Defective macrophage function in neonatesand its impact on unresponsiveness of neonates to polysaccharide antigens.Journal of leukocyte biology.2004,75:982-994.
    232. Karlsson H, Hessle C, Rudin A. Innate immune responses of human neonatalcells to bacteria from the normal gastrointestinal flora. Infection and immunity.2002,70:6688-6696.
    233. Kurt-Jones EA, Belko J, Yu C, Newburger PE, Wang J, Chan M, Knipe DM,Finberg RW. The role of toll-like receptors in herpes simplex infection inneonates. Journal of Infectious Diseases.2005,191:746-748.
    234. Wynn JL, Scumpia PO, Delano MJ, O'Malley KA, Ungaro R, Abouhamze A,Moldawer LL. Increased mortality and altered immunity in neonatal sepsisproduced by generalized peritonitis. Shock.2007,28:675-683.
    235. Aittoniemi J, Miettinen A, Laippala P, Isolauri E, Viikari J, Ruuska T, Soppi E.Age‐dependent variation in the serum concentration of mannan‐bindingprotein. Acta Paediatrica.1996,85:906-909.
    236. Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR.Selective impairment of TLR-mediated innate immunity in human newborns:neonatal blood plasma reduces monocyte TNF-α induction by bacteriallipopeptides, lipopolysaccharide, and imiquimod, but preserves the response toR-848. The journal of immunology.2004,173:4627-4634.
    237. Firth MA, Shewen PE, Hodgins DC. Passive and active components of neonatalinnate immune defenses. Animal Health Research Reviews.2005,6:143.
    238. Carroll MC. The complement system in B cell regulation. MolecularImmunology.2004,41:141-146.
    239. Levy O, Sisson RB, Kenyon J, Eichenwald E, Macone AB, Goldmann D.Enhancement of neonatal innate defense: effects of adding an N-terminalrecombinant fragment of bactericidal/permeability-increasing protein on growthand tumor necrosis factor-inducing activity of gram-negative bacteria tested inneonatal cord blood ex vivo. Infection and immunity.2000,68:5120-5125.
    240. Pihlgren M, Fulurija A, Villiers M-B, Tougne C, Lambert P-H, Villiers CL,Siegrist C-A. Influence of complement C3amount on IgG responses in early life:immunization with C3b-conjugated antigen increases murine neonatal antibodyresponses. Vaccine.2004,23:329-335.
    241. Chattha KS, Firth MA, Hodgins DC, Shewen PE. Variation in expression ofmembrane IgM, CD21(CR2) and CD32(Fcγ RIIB) on bovine lymphocytes withage: A longitudinal study. Developmental&Comparative Immunology.2010,34:510-517.
    242. de Vries E, de Bruin-Versteeg S, Comans-Bitter WM, de Groot R, Hop WC,Boerma GJ, Lotgering FK, van Dongen JJ. Longitudinal survey of lymphocytesubpopulations in the first year of life. Pediatric research.2000,47:528-537.
    243. Comans-Bitter WM, de Groot R, van den Beemd R, Neijens HJ, Hop W,Groeneveld K, Hooijkaas H, Van Dongen J. Immunophenotyping of bloodlymphocytes in childhood. Reference values for lymphocyte subpopulations. TheJournal of pediatrics.1997,130:388.
    244. Sautois B, Fillet G, Beguin Y. Comparative cytokine production by in vitrostimulated mononucleated cells from cord blood and adult blood. Experimentalhematology.1997,25:103-108.
    245. Adkins B. T-cell function in newborn mice and humans. Immunology today.1999,20:330-335.
    246. Forsthuber T, Yip HC, Lehmann PV. Induction of TH1and TH2immunity inneonatal mice. Science (New York, NY).1996,271:1728-1730.
    247. Schurmans S, Heusser CH, Qin H, Merino J, Brighouse G, Lambert P. In vivoeffects of anti-IL-4monoclonal antibody on neonatal induction of tolerance andon an associated autoimmune syndrome. The journal of immunology.1990,145:2465-2473.
    248. Singh RR, Hahn BH, Sercarz EE. Neonatal peptide exposure can prime T cellsand, upon subsequent immunization, induce their immune deviation:implications for antibody vs. T cell-mediated autoimmunity. The Journal ofexperimental medicine.1996,183:1613-1621.
    249. Risdon G, Gaddy J, Horie M, Broxmeyer HE. Alloantigen priming induces astate of unresponsiveness in human umbilical cord blood T cells. Proceedings ofthe National Academy of Sciences.1995,92:2413-2417.
    250. Siegrist C-A, Aspinall R. B-cell responses to vaccination at the extremes of age.Nat Rev Immunol.2009,9:185-194.
    251. Pollard AJ, Perrett KP, Beverley PC. Maintaining protection against invasivebacteria with protein–polysaccharide conjugate vaccines. Nat Rev Immunol.2009,9:213-220.
    252. Kaur K, Chowdhury S, Greenspan NS, Schreiber JR. Decreased expression oftumor necrosis factor family receptors involved in humoral immune responses inpreterm neonates. Blood.2007,110:2948-2954.
    253. Pihlgren M, Schallert N, Tougne C, Bozzotti P, Kovarik J, Fulurija A, Kosco‐Vilbois M, Lambert PH, Siegrist CA. Delayed and deficient establishment of thelong‐term bone marrow plasma cell pool during early life. European journal ofimmunology.2001,31:939-946.
    254. Rijkers G, Sanders E, Breukels M, Zegers B. Infant B cell responses topolysaccharide determinants. Vaccine.1998,16:1396-1400.
    255. Macardle P, Weedon H, Fusco M, Nobbs S, Ridings J, Flego L, Roberton DM,Zola H. The antigen receptor complex on cord B lymphocytes. Immunology.2004,90:376-382.
    256. Chucri TM, Monteiro J, Lima A, Salvadori M, Junior J, Miglino MA. A reviewof immune transfer by the placenta. Journal of reproductive immunology.2010,87:14-20.
    257. Swain P, Nayak S. Role of maternally derived immunity in fish. Fish&ShellfishImmunology.2009,27:89-99.
    258. Ehrlich P. Ueber immunit t durch vererbung und s ugung. MedicalMicrobiology and Immunology.1892,12:183-203.
    259. Klemperer F. über natürliche immunit t und ihre verwerthung für dieimmunisierungstherapie. Archiv für Experimentelle Pathologie undPharmakologie.1893,31:356–382.
    260. Appleby P, Catty D. Transmission of immunoglobulin to foetal and neonatalmice. Journal of reproductive immunology.1983,5:203-213.
    261. Hamal K, Burgess S, Pevzner I, Erf G. Maternal antibody transfer from dams totheir egg yolks, egg whites, and chicks in meat lines of chickens. Poultry science.2006,85:1364-1372.
    262. Poorten TJ, Kuhn RE. Maternal transfer of antibodies to eggs in Xenopus laevis.Developmental&Comparative Immunology.2009,33:171-175.
    263. Zhang S, Wang Z, Wang H. Maternal immunity in fish. Developmental&Comparative Immunology.2012,39:72-78.
    264. Sadd BM, Kleinlogel Y, Schmid-Hempel R, Schmid-Hempel P. Trans-generational immune priming in a social insect. Biology letters.2005,1:386-388.
    265. Little TJ, O'Connor B, Colegrave N, Watt K, Read AF. Maternal Transfer ofStrain-Specific Immunity in an Invertebrate. Current Biology.2003,13:489-492.
    266. Huang C, Song Y. Maternal transmission of immunity to white spot syndromeassociated virus (WSSV) in shrimp (Penaeus monodon). Developmental&Comparative Immunology.1999,23:545-552.
    267. Palfi M, Selbing A. Placental transport of maternal immunoglobulin G.American Journal of Reproductive Immunology.2011,39:24-26.
    268. Weaver DM, Tyler JW, VanMetre DC, Hostetler DE, Barrington GM. Passivetransfer of colostral immunoglobulins in calves. Journal of Veterinary InternalMedicine.2008,14:569-577.
    269. Kowalczyk K, Daiss J, Halpern J, Roth T. Quantitation of maternal-fetal IgGtransport in the chicken. Immunology.1985,54:755-762.
    270. L voll M, Kilvik T, Boshra H, B gwald J, Sunyer JO, Dalmo RA. Maternaltransfer of complement components C3-1, C3-3, C3-4, C4, C5, C7, Bf, and Df tooffspring in rainbow trout (Oncorhynchus mykiss). Immunogenetics.2006,58:168-179.
    271. Bly JE, Grimm A, Morris I. Transfer of passive immunity from mother to youngin a teleost fish: Haemagglutinating activity in the serum and eggs of plaice,Pleuronectes platessa L. Comparative Biochemistry and Physiology Part A:Physiology.1986,84:309-313.
    272. Yousif A, Albright L, Evelyn T. Purification and characterization of a galactose-specific lectin from the eggs of coho salmon Oncorhynchus kisutch and itsinteraction with bacterial fish pathogens. Diseases of aquatic organisms.1994,20:127-136.
    273. Magnadottir B, Lange S, Gudmundsdottir S, Bogwald J, Dalmo R. Ontogeny ofhumoral immune parameters in fish. Fish&Shellfish Immunology.2005,19:429-439.
    274. Yousif A, Albright L, Evelyn T. Occurrence of lysozyme in the eggs of cohosalmon Oncorhynchus kisutch. Diseases of aquatic organisms.1991,10:45-49.
    275. Huttenhuis H, Grou C, Tavernethiele A, Taverne N, Rombout J. Carp (Cyprinuscarpio L.) innate immune factors are present before hatching. Fish&ShellfishImmunology.2006,20:586-596.
    276. Malek A, Sager R, Kuhn P, Nicolaides KH, Schneider H. Evolution ofmaternofetal transport of immunoglobulins during human pregnancy. AmericanJournal of Reproductive Immunology.2011,36:248-255.
    277. Rose ME, Orlans E, Buttress N. Immunoglobulin classes in the hen's egg: theirsegregation in yolk and white. European journal of immunology.1974,4:521-523.
    278. Gasparini JGJ, McCoy KDMK, Staszewski VSV, Haussy CHC, Boulinier TBT.Dynamics of anti-Borrelia antibodies in Black-legged Kittiwake (Rissa tridactyla)chicks suggest a maternal educational effect. Canadian journal of zoology.2006,84:623-627.
    279. Grindstaff JL, Hasselquist D, Nilsson J, Sandell M, Smith HG, Stjernman M.Transgenerational priming of immunity: maternal exposure to a bacterial antigenenhances offspring humoral immunity. Proceedings of the Royal Society B:Biological Sciences.2006,273:2551-2557.
    280. Staszewski V, Gasparini J, McCoy K, Tveraa T, Boulinier T. Evidence of aninterannual effect of maternal immunization on the immune response of juvenilesin a long‐lived colonial bird. Journal of Animal Ecology.2007,76:1215-1223.
    281. Kallio ER, Poikonen A, Vaheri A, Vapalahti O, Henttonen H, Koskela E,Mappes T. Maternal antibodies postpone hantavirus infection and enhanceindividual breeding success. Proceedings of the Royal Society B: BiologicalSciences.2006,273:2771-2776.
    282. Grindstaff JL, Brodie ED, Ketterson ED. Immune function across generations:integrating mechanism and evolutionary process in maternal antibodytransmission. Proceedings of the Royal Society of London Series B: BiologicalSciences.2003,270:2309-2319.
    283. Hasselquist D, Nilsson J. Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Philosophical Transactions of theRoyal Society B: Biological Sciences.2009,364:51-60.
    284. Picchietti S, Taddei AR, Scapigliati G, Buonocore F, Fausto AM, Romano N,Mazzini M, Mastrolia L, Abelli L. Immunoglobulin protein and gene transcriptsin ovarian follicles throughout oogenesis in the teleost Dicentrarchus labrax.Cell and Tissue Research.2004,315:259-270.
    285. Swain P, Dash S, Bal J, Routray P, Sahoo P, Sahoo S, Saurabh S, Gupta S,Meher P. Passive transfer of maternal antibodies and their existence in eggs,larvae and fry of Indian major carp, Labeo rohita (Ham.). Fish&ShellfishImmunology.2006,20:519-527.
    286. Ellingsen T, Strand C, Monsen E, B gwald J, Dalmo RA. The ontogeny ofcomplement component C3in the spotted wolffish (Anarhichas minor Olafsen).Fish&Shellfish Immunology.2005,18:351-358.
    287. Wang Z, Zhang S, Wang G, An Y. Complement activity in the egg cytosol ofzebrafish Danio rerio: evidence for the defense role of maternal complementcomponents. PLoS One.2008,3: e1463.
    288. Liang Y, Zhang S, Wang Z. Alternative Complement Activity in the Egg Cytosolof Amphioxus Branchiostoma belcheri: Evidence for the Defense Role ofMaternal Complement Components. PLoS One.2009,4: e4234.
    289. Wang Z, Zhang S, Tong Z, Li L, Wang G. Maternal transfer and protective roleof the alternative complement components in zebrafish Danio rerio. PLoS One.2009,4: e4498.
    290. Wang Z, Zhang S. The role of lysozyme and complement in the antibacterialactivity of zebrafish (Danio rerio) egg cytosol. Fish&Shellfish Immunology.2010,29:773-777.
    291. Krajhanzl A, Nosek J, Habrova V, Kocourek J. An immunofluorescence studyon the occurrence of endogenous lectins in the differentiating oocytes of silvercarp (Hypophthalmichthys molitrix Valenc.) and tench (Tinca tinca L.). TheHistochemical Journal.1984,16:432-434.
    292. Tateno H, Saneyoshi A, Ogawa T, Muramoto K, Kamiya H, Saneyoshi M.Isolation and characterization of rhamnose-binding lectins from eggs ofsteelhead trout (Oncorhynchus mykiss) homologous to low density lipoproteinreceptor superfamily. Journal of Biological Chemistry.1998,273:19190-19197.
    293. Parisi M, Cammarata M, Benenati G, Salerno G, Mangano V, Vizzini A,Parrinello N. A serum fucose-binding lectin (DlFBL) from adult Dicentrarchuslabrax is expressed in larva and juvenile tissues and contained in eggs. Cell andtissue research.2010,341:279-288.
    294.王红莹,周莉,桂建芳.银鲫卵母细胞特异表达凝集素的抗体制备及其定位分析.水生生物学报.2008,32:295-300.
    295. Cecchini S, Terova G, Caricato G, Saroglia M. Lysozyme Activity in Embryosand Larvae of Sea Bass (Dicentrarchus labrax L.), Spawned by Broodstock Fedwith Vitamin C Enriched Diets. BULLETIN-EUROPEAN ASSOCIATION OFFISH PATHOLOGISTS.2000,20:120-124.
    296. Takemura A, Takano K. Lysozyme in the ovary of tilapia (Oreochromismossambicus): its purification and some biological properties. Fish Physiologyand Biochemistry.1995,14:415-421.
    297. Kudo S. Further investigation on enzyme activities and antifungal action offertilization envelope extract from fsh eggs. Zool Sci.1991,8:1079.
    298. Shi X, Zhang S, Pang Q. Vitellogenin is a novel player in defense reactions. Fish&Shellfish Immunology.2006,20:769-772.
    299. Zhang S, Sun Y, Pang Q, Shi X. Hemagglutinating and antibacterial activities ofvitellogenin. Fish&Shellfish Immunology.2005,19:93-95.
    300. Li Z, Zhang S, Zhang J, Liu M, Liu Z. Vitellogenin is a cidal factor capable ofkilling bacteria via interaction with lipopolysaccharide and lipoteichoic acid.Molecular Immunology.2009,46:3232-3239.
    301.Malek A, Sager R, Schneider H. Transport of proteins across the human placenta.American Journal of Reproductive Immunology.2011,40:347-351.
    302. Picchietti S, Abelli L, Buonocore F, Randelli E, Fausto AM, Scapigliati G,Mazzini M. Immunoglobulin protein and gene transcripts in sea bream (Sparusaurata L.) oocytes. Fish&Shellfish Immunology.2006,20:398-404.
    303. Rose ME, Orlans E. Immunoglobulins in the egg, embryo and young chick.Developmental&Comparative Immunology.1981,5:15-20.
    304. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat RevImmunol.2007,7:715-725.
    305. Pitcher-Wilmott R, Hindocha P, Wood C. The placental transfer of IgGsubclasses in human pregnancy. Clinical and Experimental Immunology.1980,41:303-308.
    306. Simister NE. Placental transport of immunoglobulin G. Vaccine.2003,21:3365-3369.
    307. Simister NE, Story CM. Human placental Fc receptors and the transmission ofantibodies from mother to fetus. Journal of reproductive immunology.1997,37:1-23.
    308. Van de Perre P. Transfer of antibody via mother’s milk. Vaccine.2003,21:3374-3376.
    309. Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ. Analysis of the pHdependence of the neonatal Fc receptor/immunoglobulin G interaction usingantibody and receptor variants. Biochemistry.1995,34:14649-14657.
    310. Rodewald R. pH-dependent binding of immunoglobulins to intestinal cells of theneonatal rat. The Journal of cell biology.1976,71:666-669.
    311. Tressler RL, Roth T. IgG receptors on the embryonic chick yolk sac. Journal ofBiological Chemistry.1987,262:15406-15412.
    312. Mousseau TA, Fox CW. Maternal effects as adaptations: Oxford UniversityPress, USA;1998.
    313. Agrawal AA, Laforsch C, Tollrian R. Transgenerational induction of defences inanimals and plants. Nature.1999,401:60-63.
    314. Ogilvie MM, Santhire Vathenen A, Radford M, Codd J, Key S. Maternalantibody and respiratory syncytial virus infection in infancy. Journal of medicalvirology.1981,7:263-271.
    315. Al-Natour M, Ward L, Saif Y, Stewart-Brown B, Keck L. Effect of differentlevels of maternally derived antibodies on protection against infectious bursaldisease virus. Avian diseases.2004,48:177-182.
    316. Sin Y, Ling K, Lam T. Passive transfer of protective immunity againstichthyophthiriasis from vaccinated mother to fry in tilapias, Oreochromis aureus.Aquaculture.1994,120:229-237.
    317. Oshima S, Hata J, Segawa C, Yamashita S. Mother to fry, successful transfer ofimmunity against infectious haematopoietic necrosis virus infection in rainbowtrout. Journal of General Virology.1996,77:2441-2445.
    318. Sadd BM, Schmid-Hempel P. Facultative but persistent trans-generationalimmunity via the mother's eggs in bumblebees. Current Biology.2007,17:R1046-R1047.
    319. Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid‐Hempel P, Kurtz J.Paternally derived immune priming for offspring in the red flour beetle,Tribolium castaneum. Journal of Animal Ecology.2009,79:403-413.
    320. Dyrynda E, Pipe R, Ratcliffe N. Sub-populations of haemocytes in the adult anddeveloping marine mussel, Mytilus edulis, identified by use of monoclonalantibodies. Cell and Tissue Research.1997,289:527-536.
    321.李子牛,邢婧,林听听,战文斌.栉孔扇贝D形幼虫血细胞发生特点的研究.中国海洋大学学报.2010,40:61-64.
    322.邢靖,战文斌.栉孔扇贝稚贝造血组织的研究.水产学报.2005,29:145-149.
    323. Xue Q, Renault T. Monoclonal antibodies to European flat oyster Ostrea edulishemocytes: characterization and tissue distribution of granulocytes in adult anddeveloping animals. Developmental&Comparative Immunology.2001,25:187-194.
    324. Tirapé A, Bacque C, Brizard R, Vandenbulcke F, Boulo V. Expression ofimmune-related genes in the oyster Crassostrea gigas during ontogenesis.Developmental&Comparative Immunology.2007,31:859-873.
    325. Kamiya H, Muramoto K, Ogata K. Antibacterial activity in the egg mass of a seahare. Cellular and Molecular Life Sciences.1984,40:947-949.
    326. Benkendorff K, Davis AR, Bremner JB. Chemical defense in the egg masses ofbenthic invertebrates: an assessment of antibacterial activity in39mollusks and4polychaetes. Journal of invertebrate pathology.2001,78:109-118.
    327. Ramasamy MS, Murugan A. Fouling deterrent chemical defence in three muricidgastropod egg masses from the Southeast coast of India. Biofouling.2007,23:259-265.
    328. Benkendorff K, Pillai R, Bremner JB.2,4,5-Tribromo-1H-Imidazole in the EggMasses of three Muricid Molluscs. Natural Product Research.2004,18:427-431.
    329. Kamiya H, Shimizu Y. A natural agglutinin inhibitable by D-galacturonic acid inthe sea hare Aplysia eggs: characterization and purification. Bulletin of theJapanese Society of Scientific Fisheries.1981,47:255-259.
    330. Takamatsu N, Shiba T, Muramoto K, Kamiya H. Molecular cloning of thedefense factor in the albumen gland of the sea hare Aplysia kurodai. FEBS letters.1995,377:373-376.
    331. Sanchez J-F, Lescar J, Chazalet V, Audfray A, Gagnon J, Alvarez R, Breton C,Imberty A, Mitchell EP. Biochemical and structural analysis of Helix pomatiaagglutinin. Journal of Biological Chemistry.2006,281:20171-20180.
    332. Patchett R, Kelly AF, Kroll R. The adsorption of bacteria to immobilized lectins.Journal of Applied Microbiology.1991,71:277-284.
    333. K hler W, Prokop O, Kühnemund O. Routine identification of group-Cstreptococci by means of an agglutinin (protectin) from the albumen gland of theedible snail, Helix pomatia. Journal of medical microbiology.1973,6:127-130.
    334. Slifkin M, Cumbie R. Rapid detection of herpes simplex virus with fluorescein-labeled Helix pomatia lectin. Journal of clinical microbiology.1989,27:1036-1039.
    335. Hathaway JJM, Adema CM, Stout BA, Mobarak CD, Loker ES. Identification ofprotein components of egg masses indicates parental investment inimmunoprotection of offspring by Biomphalaria glabrata (Gastropoda,Mollusca). Developmental&Comparative Immunology.2010,34:425-435.
    336. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data UsingReal-Time Quantitative PCR and the2ΔΔCTMethod. methods.2001,25:402-408.
    337. Dyachuk V, Odintsova N. Development of the larval muscle system in themussel Mytilus trossulus (Mollusca, Bivalvia). Development, growth&differentiation.2009,51:69-79.
    338. Voronezhskaya EE, Nezlin LP, Odintsova NA, Plummer JT, Croll RP. Neuronaldevelopment in larval mussel Mytilus trossulus (Mollusca: Bivalvia).Zoomorphology.2008,127:97-110.
    339. Wang H, Song L, Li C, Zhao J, Zhang H, Ni D, Xu W. Cloning andcharacterization of a novel C-type lectin from Zhikong scallop Chlamys farreri.Molecular Immunology.2007,44:722-731.
    340. Ran D, Shia W-J, Lo M-C, Fan J-B, Knorr DA, Ferrell PI, Ye Z, Yan M, ChengL, Kaufman DS. RUNX1a enhances hematopoietic lineage commitment fromhuman embryonic stem cells and inducible pluripotent stem cells. Blood.2013,121:2882-2890.
    341. Yokomizo T, Hasegawa K, Ishitobi H, Osato M, Ema M, Ito Y, Yamamoto M,Takahashi S. Runx1is involved in primitive erythropoiesis in the mouse. Blood.2008,111:4075-4080.
    342. Ichikawa M, Asai T, Chiba S, Kurokawa M, Ogawa S. Runx1/AML-1ranks as amaster regulator of adult hematopoiesis. Cell Cycle.2004,3:720-722.
    343. Zhou M, Ouyang W. The function role of GATA-3in Th1and Th2differentiation. Immunologic research.2003,28:25-37.
    344. Waltzer L, Ferjoux G, Bataille L, Haenlin M. Cooperation between the GATAand RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. TheEMBO Journal.2003,22:6516-6525.
    345. Tanaka Y, Joshi A, Wilson NK, Kinston S, Nishikawa S, G ttgens B. Thetranscriptional programme controlled by Runx1during early embryonic blooddevelopment. Developmental biology.2012,366:404-419.
    346. Seo W, Tanaka H, Miyamoto C, Levanon D, Groner Y, Taniuchi I. Roles ofVWRPY motif-mediated gene repression by Runx proteins during T-celldevelopment. Immunology and Cell Biology.2012,90:827-830.
    347. Bresnick EH, Katsumura KR, Lee H-Y, Johnson KD, Perkins AS. Masterregulatory GATA transcription factors: mechanistic principles and emerginglinks to hematologic malignancies. Nucleic acids research.2012,40:5819-5831.
    348. Liu W, Yang F, Jia S, Miao X, Huang Y. Cloning and characterization ofBmrunt from the silkworm Bombyx mori during embryonic development.Archives of Insect Biochemistry and Physiology.2008,69:47-59.
    349. Coffman JA, Kirchhamer CV, Harrington MG, Davidson EH. SpRunt-1, a NewMember of the Runt Domain Family of Transcription Factors, Is a PositiveRegulator of the Aboral Ectoderm-SpecificCyIIIAGene in Sea Urchin Embryos.Developmental biology.1996,174:43-54.
    350. Gillis WJ, Bowerman B, Schneider SQ. Ectoderm-and endomesoderm-specificGATA transcription factors in the marine annelid Platynereis dumerilli.Evolution&development.2007,9:39-50.
    351. Crute BE, Lewis AF, Wu Z, Bushweller JH, Speck NA. Biochemical andbiophysical properties of the core-binding factor α2(AML1) DNA-bindingdomain. Journal of Biological Chemistry.1996,271:26251-26260.
    352. Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K, Okazaki K,Sagata N, Yazaki Y, Shibata Y. The extracellular signal-regulated kinasepathway phosphorylates AML1, an acute myeloid leukemia gene product, andpotentially regulates its transactivation ability. Molecular and cellular biology.1996,16:3967-3979.
    353. Lutterbach B, Hiebert S. Role of the transcription factor AML-1in acuteleukemia and hematopoietic differentiation. Gene.2000,245:223-235.
    354. Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP. Groucho-dependentand-independent repression activities of Runt domain proteins. Molecular andcellular biology.1997,17:5581-5587.
    355. Zaidi SK, Sullivan AJ, Van Wijnen AJ, Stein JL, Stein GS, Lian JB. Integrationof Runx and Smad regulatory signals at transcriptionally active subnuclear sites.Proceedings of the National Academy of Sciences.2002,99:8048-8053.
    356. Zeng C, McNeil S, Pockwinse S, Nickerson J, Shopland L, Lawrence JB,Penman S, Hiebert S, Lian JB, Van Wijnen AJ. Intranuclear targeting ofAML/CBFα regulatory factors to nuclear matrix-associated transcriptionaldomains. Proceedings of the National Academy of Sciences.1998,95:1585-1589.
    357. Zeng C, Van Wijnen AJ, Stein JL, Meyers S, Sun W, Shopland L, Lawrence JB,Penman S, Lian JB, Stein GS. Identification of a nuclear matrix targeting signalin the leukemia and bone-related AML/CBF-α transcription factors. Proceedingsof the National Academy of Sciences.1997,94:6746-6751.
    358. Gillis WJ. The evolution of metazoan GATA transcription factors. Eugene:University of Oregon;2008.
    359. S derh ll I. Hemocyte production and maturation in an invertebrate animal;proliferation and gene expression in hematopoietic stem cells of Pacifastacusleniusculus. Developmental&Comparative Immunology.2003,27:661-672.
    360. Katzenback BA, Karpman M, Belosevic M. Distribution and expression analysisof transcription factors in tissues and progenitor cell populations of the goldfish(Carassius auratus L.) in response to growth factors and pathogens. MolecularImmunology.2011,48:1224-1235.
    361. Chi H, Zhang Z, Inami M, B gwald J, Zhan W, Dalmo RA. Molecularcharacterizations and functional assessments of GATA-3and its splice variant inAtlantic cod (Gadus morhua L.). Developmental&Comparative Immunology.2011,36:491-501.
    362. Kumari J, Bogwald J, Dalmo RA. Transcription factor GATA-3in Atlanticsalmon (Salmo salar): Molecular characterization, promoter activity andexpression analysis. Molecular Immunology.2009,46:3099-3107.
    363. Takizawa F, Mizunaga Y, Araki K, Moritomo T, Ototake M, Nakanishi T.GATA3mRNA in ginbuna crucian carp (Carassius auratus langsdorfii): cDNAcloning, splice variants and expression analysis. Developmental&ComparativeImmunology.2008,32:898-907.
    364. Wheeler JC, Shigesada K, Peter Gergen J, Ito Y. Mechanisms of transcriptionalregulation by Runt domain proteins. Seminars in Cell&Developmental Biology.2000,11:369-375.
    365. Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y,Shigesada K. Molecular Cloning and Characterization of PEBP2β, theHeterodimeric Partner of a Novel Drosophila runt-Related DNA Binding ProteinPEBP2α. Virology.1993,194:314-331.
    366. Wang T, Holland JW, Martin SA, Secombes CJ. Sequence and expressionanalysis of two T helper master transcription factors, T-bet and GATA3, inrainbow trout Oncorhynchus mykiss and analysis of their expression duringbacterial and parasitic infection. Fish&Shellfish Immunology.2010,29:705-715.
    367. Gu TL, Goetz TL, Graves BJ, Speck NA. Auto-inhibition and partner proteins,core-binding factor β (CBFβ) and Ets-1, modulate DNA binding by CBFα2(AML1). Molecular and cellular biology.2000,20:91-103.
    368. Robertson AJ, Dickey CE, McCarthy JJ, Coffman JA. The expression of SpRuntduring sea urchin embryogenesis. Mechanisms of Development.2002,117:327-330.
    369. Nam S, Jin Y-H, Li Q-L, Lee K-Y, Jeong G-B, Ito Y, Lee J, Bae S-C. Expressionpattern, regulation, and biological role of Runt domain transcription factor, run,in Caenorhabditis elegans. Molecular and cellular biology.2002,22:547-554.
    370. Nielsen C. Trochophora larvae: Cell‐lineages, ciliary bands, and body regions.1. Annelida and Mollusca. Journal of Experimental Zoology Part B: Molecularand Developmental Evolution.2004,302:35-68.
    371. Page LR. Apical sensory organ in larvae of the patellogastropod Tectura scutum.The Biological Bulletin.2002,202:6-22.
    372. Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalianhematopoietic stem cells. Nature immunology.2008,9:129-136.
    373. Adya N, Castilla L, Liu P. Function of CBFβ/Bro proteins. Seminars in cell&developmental biology.2000,11:361-368.
    374. Haszprunar G, Wanninger A. Molluscs. Current Biology.2012,22:510-514.
    375. Huan P, Wang H, Liu B. Transcriptomic analysis of the clam Meretrix meretrixon different larval stages. Marine Biotechnology.2012,14:69-78.
    376. Elsbach P, Weiss J. The bactericidal/permeability-increasing protein (BPI), apotent element in host-defense against gram-negative bacteria andlipopolysaccharide. Immunobiology.1993,187:417-429.
    377. Thomas CJ, Kapoor M, Sharma S, Bausinger H, Zyilan U, Lipsker D, Hanau D,Surolia A. Evidence of a trimolecular complex involving LPS, LPS bindingprotein and soluble CD14as an effector of LPS response. FEBS Letters.2002,531:184-188.
    378. Gonzalez M, Gueguen Y, Destoumieux-Garzón D, Romestand B, Fievet J,Pugnière M, Roquet F, Escoubas JM, Vandenbulcke F, Levy O. Evidence of abactericidal permeability increasing protein in an invertebrate, the Crassostreagigas Cg-BPI. Proceedings of the National Academy of Sciences, USA.2007,104:17759-17764.
    379. Shiina N, Tateno H, Ogawa T, Muramoto K, Saneyoshi M, Kamiya H. Isolationand characterization of L-rhamnose-binding lectins from chum salmon(Oncorhynchus keta) eggs. Fisheries Science.2008,68:1352-1366.
    380. Yang J, Qiu L, Wang L, Wei X, Zhang H, Zhang Y, Liu L, Song L. CfLGBP, apattern recognition receptor in Chlamys farreri involved in the immune responseagainst various bacteria. Fish&Shellfish Immunology.2010,29:825-831.
    381. Song L, Wang L, Qiu L, Zhang H. Bivalve Immunity. Invertebrate Immunity.2010:44-65.
    382. Valtonen TM, Kangassalo K, P lkki M, Rantala MJ. Transgenerational Effectsof Parental Larval Diet on Offspring Development Time, Adult Body Size andPathogen Resistance in Drosophila melanogaster. PloS one.2012,7: e31611.
    383. P lkki M, Kangassalo K, Rantala MJ. Transgenerational Effects of Heavy MetalPollution on Immune Defense of the Blow Fly Protophormia terraenovae. PloSone.2012,7: e38832.
    384. Boots M, Roberts KE. Maternal effects in disease resistance: poor maternalenvironment increases offspring resistance to an insect virus. Proceedings of theRoyal Society B: Biological Sciences.2012,279:4009-4014.
    385. Marlow FL. Maternal Control of Development in Vertebrates. ColloquiumSeries on Developmental Biology: Morgan&Claypool Life Sciences;2010, p.1-196.
    386. Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternaleffects. Hormones and behavior.2011,59:306-314.