分布式模块化产品系统的演化动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式模块化设计是当今主流的先进设计方法学,广泛应用于工程系统的开发。由此设计的系统被称为分布式模块化系统,由分布成相互关联的基本集中式模块构成。然而,在工程领域,分布式模块化设计方法学在实际系统设计方面都是形式化的语言描述。由此设计的分布式模块化系统在系统结构上究竟有哪些现象与数学规律?这还是一个令人迷惑而有趣的问题。为此,在机械与信息自动化领域,本文选择了有代表性的分布式模块化系统——杭州汽轮机股份有限公司(HTC)的汽轮机系统以及SUN与IBM公司的Java软件系统——为研究对象,以揭示其潜在规律为目标,并将严格遵循普遍的科研方法:从实践中发现现象,根据现象揭示本质数学规律,将数学规律应用到实际。
     基于复杂网络理论,研究复杂系统的演化规律与网络特性,是当今系统科学研究的一个热点。复杂网络理论将图论与概率统计相结合,研究世界上受各种机制控制并动态变化的系统。当前,以分布式模块化系统为专题的复杂性研究成果还很匮乏。本文将基于复杂网络理论,通过对实际系统的小世界特性与度分布特性的研究,试图揭示分布式模块化系统在系统结构上的普遍现象与数学规律,并对其差异性进行分析。本文的研究主要包含以下方面:
     第1章作为绪论,对全文的所有研究工作进行了简单介绍。
     第2章介绍了分布式模块化设计原理、实际分布式模块化产品系统的结构与网络抽象。
     第3章考察了实际分布式模块化产品系统的小世界特性。
     第4章实证了实际分布式模块化产品系统的入度、出度与度分布特性。
     第5章研究了在实际系统中择优机制与随机机制共存的现象。
     第6章研究了实际分布式模块化产品系统的“加速连接”现象。
     第7章研究了实际系统的其它扩展机制。
     第8章探索了无标度网络的“富者愈富”现象。
     第9章讨论了演化模型对多样化设计原则的控制机制与压缩内部多样化的方法。
     第10章总结与展望。
     本文同时对理论结论进行了仿真与应用,并讨论了其与分布式模块化设计学的关系。研究表明,在工程领域确定的设计原理及其规范有助于构建具有特定网络规律的系统。
     本文的研究发现了分布式模块化产品系统的一些新现象与规律:
     ●实证发现,分布式模块化产品系统具有小世界特性与无标度特性。入度与出度分布总是一个服从幂律分布,另一个渐近服从指数分布,而重用与分布式技术分别发挥重要作用。
     ●实际分布式模块化产品系统受到择优与随机机制的共同控制。
     ●在分布式模块化产品系统中存在“加速连接”现象。这是调节系统协作性能的要求,并有助于“以尽可能少的内部多样化,实现尽可能多的外部多样化”的设计原则。
     ●在实际分布式模块化产品系统中存在局部事件、分散式与集中式的混合现象。
     ●理论上,任意具有“富者愈富”现象的无标度网络都具有确定的穷富分界点(区),并且穷富分界点(区)受系统演化机制的控制。
As the current popular design methodology, the advanced distributed modeleddesign methodology is generally applied to the development of engineering systems.A system designed by the methodology is called the distributed modeled systemwhich is composed of many basic centralized models that are distributed andassociated with each other. But in the area of engineering, the distributed modeleddesign methodology makes much more use of the formalized-language description inthe process of the real system design. What phenomena and laws in mathematics dodistributed modeled systems include in their architectures? It is still a puzzling butinteresting problem. Thus, in areas of machine and information automation, theturbine systems provided by Hangzhou Turbine Stock Corporation (HTC) and Javasoftware systems provided by SUN and IBM as typical distributed modeled systemsare selected to study in this paper. This paper will strictly comply with the generalresearch way as follows: Find phenomena from practice, and then reveal essentialmathematical laws according to phenomena, and finally put laws into practice.
     Nowadays, it has been becoming a research hotspot in systems science to studythe evolving dynamics and network features of complex systems based on the theoryof complex networks. The theory of complex networks originated from thecombination of graph theory and probability statistics studies dynamics systemscontrolled by all kinds of mechanisms in the world. Up to now, there have been fewcontributions on distributed modeled product systems. In the process of studying thesmall-world and degree-distribution features of real systems, this paper based on thetheory of complex networks tries to discover the general phenomena andmathematical laws held by distributed modeled product systems on their uchitecturesare discovered, and their othernesses. The contents of this paper are mainly asfollows:
     Chapter 1 simply introduces all research work in this paper.
     Chapter 2 introduces the principles of distributed modeled designs and thearchitecture of real distributed modeled product systems that are abstracted intonetworks.
     Chapter 3 investigates the small-world features of real distributed modeledproduct systems.
     Chapter 4 demonstrates the features of in-degree, out-degree and degreedistributions of real distributed modeled product systems.
     Chapter 5 studies the phenomenon that preferential and random mechanismscoexist in real systems.
     Chapter 6 studies the phenomenon of "accelerating connections" in realdistributed modeled product systems.
     Chapter 7 studies some other extended mechanisms in real systems.
     Chapter 8 studies the "rich gets richer" phenomenon of scale-free networks.
     Chapter 9 discusses the mechanism that evolving models control the diversifieddesign principle and the method of reducing the internal diversification.
     Chapter 10 makes a summary and prospect.
     In this paper, the simulation and application to theory results are made, and therelation between theory in this paper and the distributed modeled design methodologyare also discussed. The study of this paper indicates that certain principles and theircriterion contribute to constructing systems that bear certain network laws inengineering areas.
     In this paper, some new phenomena and laws of distributed modeled productsystems are revealed as follows:
     ●Demonstrations indicate that distributed modeled product systems havesmall-world and scale-free features. For in-degree and out-degreedistributions, it is always that one follows the power distribution but the otherasymptotically follows the exponential distribution, while the reuse anddistributing technology play an important role respectively.
     ●Real distributed modeled product systems are controlled together bypreferential and random mechanisms.
     ●There is the phenomenon of "accelerating connections" in distributedmodeled product systems. It is require of adjusting system's collaborationperformance. It contributes to the design principle of "realizing the externaldiversification as possible as much with the internal diversification aspossible as few".
     ●There are local events and the phenomena of combining decentralization withcentralization in real product systems.
     ●In theory, any scale-free network with the phenomenon of "rich gets richer"has a certain point (area) at the poor and rich interval that is controlled byevolving mechanisms of systems.
引文
[1] P. Erdos and A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., (1960) 517.
    
    [2] B. Bollobas, Random graphs, Academic: London (1985).
    [3] S. Milgram, The small-world problem, Psychol. Today, (1967) 2 60.
    [4] J. Guare, Six degrees of separation: a play, Vintage Books: New York (1990).
    [5] D.J. Watts and S.H. Strogatz, Collective dynamics of 'small-world' networks, Nature, (1998) 393 440.
    [6] A.L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, (1999)286 509.
    [7] A.L. Barabasi, R. Albert and H. Jeong, Mean-field theory for scale-free networks, Physica A, (1999)272173.
    
    [8] L.A.N. Amaral, A. Barrat, A.L. Barabasi, G. Caldarelli, P. De Los Rios, A. Erzan, B. Kahng, R. Mantegna, J.F.F. Mendes, R. Pastor-Satorras and A. Vespignani, Virtual round table on ten leading questions for network research, Eur. Phys. J. B, (2004) 38 143.
    
    [9] S. Valverde, R. Ferrer Canchol and R.V. Sole, Scale-free networks from optimal design, Europhys. Lett., (2002) 60 512.
    
    [10] A.P.S. de Moura, Y.C. Lai and A.E. Motter, Signatures of small-world and scale-free properties in large computer programs, Phys. Rev. E, (2003) 68 017102.
    [11] CR. Myers, Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs, Phys. Rev. E, (2003) 68 046116.
    [12] D.J. Watts, Networks, dynamics, and the small-world phenomenon, AJS, (1999) 105 493.
    [13] E.M. Jin, M. Girvan and M.E.J. Newman, Structure of growing social networks, Phys. Rev. E, (2001) 64 046132.
    [14] M.E.J. Newman, Coauthorship networks and patterns of scientific collaboration, (2004) 101 5200.
    [15] M.E.J. Newman, Clustering and preferential attachment in growing networks, Phys. Rev. E, (2001) 64 025102.
    [16] M.E.J. Newman, Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, (2001) 64 016132.
    [17] M.E.J. Newman, The structure of scientific collaboration networks, PNAS, (2001) 98 404.
    [18] A.L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert and T. Vicsek, Evolution of the social network of scientific collaborations, Physica A, (2002) 311590.
    [19] J.W. Grossman, The evolution of the mathematical research collaboration graph, Congressus Numerantium, (2002) 158 202.
    [20] S. Redner, How Popular is Your Paper? An Empirical Study of the Citation Distribution, cond-mat/9804163 (1998).
    [21] G.F. Davis, M. Yoo and W.E. Baker, The small world of the American corporate elite, 1982-2001, STRATEGIC ORGANIZATION, (2003) 1 301.
    [22] V.E. Krebs, Mapping Networks of Terrorist Cells, CONNECTIONS, (2001) 24 43.
    [23] J.J. XU and H. CHEN, CrimeNet Explorer: A Framework for Criminal Network Knowledge Discovery, ACM Transactions on Information Systems, (2005) 23 201.
    [24] J. Qin, J.J. Xu, D. Hu, M. Sageman and H. Chen, Analyzing Terrorist Networks: A Case Study of the Global Salafi Jihad Network, Springer: Berlin Heidelberg (2005).
    [25] Y. Matsuo, Y. Ohsawa and M. Ishizuka, KeyWorld: Extracting Keywords from a Document as a Small World, Springer: Berlin Heidelberg (2001).
    [26] M. Steyvers and J.B. Tenenbaum, The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth, (2005) 29 41.
    [27] R.F. i Cancho, A. Capocci and G. Caldarellil, Spectral methods cluster words of the same class in a syntactic dependency network, cond-mat/0504165 (2005).
    [28] P.M. GLEISER and L. DANON, COMMUNITY STRUCTURE IN JAZZ, cond-mat/0307434 (2003).
    [29] L.A.N. Amaral, A. Scala, M. Barthelemy and H.E. Stanley, Classes of small-world networks, PNAS, (2000) 97 11149.
    [30] O. Shefi, I. Golding, R. Segev, E. Ben-Jacob and A. Ayali, Morphological characterization of in vitro neuronal networks, PHYSICAL REVIEW E, (2002) 66 021905.
    [31] B.J. Kim, Performance of networks of artificial neurons: The role of clustering, PHYSICAL REVIEW E, (2004) 69 045101.
    [32] R.V. Sole, R. Pastor-Satorras, E. Smith and T.B. Kepler, A MODEL OF LARGE-SCALE PROTEOME EVOLUTION, (2005) 18 23.
    [33] J.B. Pereira-Leal, A.J. Enright and CA. Ouzounis, Detection of Functional Modules From Protein Interaction Networks, PROTEINS: Structure, Function, and Bioinformatics, (2004) 54 49.
    [34] S. Wuchty, Interaction and Domain Networks of Yeast, PROTEOMICS, (2002) 2 1715.
    [35] S. Wuchty, Scale-Free Behavior in Protein Domain Networks, Mol. Biol. Evol., (2001)18 1694.
    [36] A. Vazquez, A. Flammini, A. Maritan and A. Vespignani, Modeling of protein interaction networks, cond-mat/0108043 (2001).
    [37] A. Wagner, The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes, Mol. Biol. Evol., (2001) 18 1283.
    [38] L.H. Greene and V.A. Higman, Uncovering Network Systems Within Protein Structures, J. Mol. Biol, (2003) 334 781.
    [39] Y.I. Wolf, G. Karev, and E.V. Koonin, Scale-free networks in biology: new insights into the fundamentals of evolution?, BioEssays (2002) 24 105.
    [40] J.A. Dunne, R.J. Williams and N.D. Martinez, Food-web structure and network theory: The role of connectance and size, PNAS, (2002) 99 12917.
    [41] J. Camacho, R. Guimera, and L.A.N. Amaral, Robust Patterns in Food Web Structure, cond-mat/0103114 (2002).
    [42] J.M. Montoya and R.V. Sole, Small World Patterns in Food Webs, cond-mat/0011195 (2000).
    [43] L. A. Adamic, Zipf, Power-laws, and Pareto - a ranking tutorial, http://www.parc.xerox.com/istl/groups/iea/papers/ranking/ranking.html.
    [44] L.A. Adamic, The Small World Web, Lect. Notes Comput. Sci, (1999) 1696 443.
    
    [45] L.A. Adamic, E. Adar, Friends and Neighbors on the Web, Social Networks, (2003)25 211.
    [46] A. Iamnitchi, M. Ripeanu and I. Foster, Small-World File-Sharing Communities, cs.DC/0307036 (2003).
    [47] R. Pastor-Satorras, A. Vazquez and A. Vespignani, Dynamical and correlation properties of the Internet, cond-mat/0105161 (2002).
    [48] A. Vazquez, R. PastorSatorras and A. Vespignani, Internet topology at the router and autonomous system level, cond-mat/0206084 (2002).
    [49] A. Vazquez, R. Pastor-Satorras and A. Vespignani, Large-scale topological and dynamical properties of the Internet, PHYSICAL REVIEW E, (2002) 65 066130.
    [50] T. Bu and D. Towsley, On Distinguishing between Internet Power Law Topology Generators, in Proc. IEEE INFOCOM: New York, (June 2002) 638.
    [51] H. Ebel, L.I. Mielsch and S. Bornholdt, Scale-free topology of e-mail networks, PHYSICAL REVIEW E, (2002) 66 035103.
    [52] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt and A. Arenas, Self-similar community structure in a network of human interactions, PHYSICAL REVIEW E, (2003) 68 065103.
    [53] M.E.J. Newman, S. Forrest and J. Balthrop, Email networks and the spread of computer viruses, Phys. Rev. E, (2002) 66 035101.
    [54] D. Heesch and S. Riiger, NN~k Networks for Content-Based Image Retrieval, In 26~(th) European Conference on Information Retrieval: Springer-Verlag, (April 2004) p253.
    [55] R.F. i Cancho, C. Janssen and R.V. Sole, The Topology of Technology Graphs: Small World Patterns in Electronic Circuits, Phys. Rev. E, (2001)64 046119.
    [56] A. Helmy, Small Worlds in Wireless Networks, IEEE COMMUNICATIONS LETTERS, (2003) 7 490.
    [57] D.A. Batallas and A.A. Yassine, Information Leaders in Product Development Organizational Networks: Social Network Analysis of the Design Structure Matrix, in Proceedings for Understanding Complex Systems Symposium: University of Illinios at Urbana-Champaign (2004).
    [58] V. Latora and M. Marchiori, Is the Boston Subway a Small-World Network?, cond-mat/0202299 (2002).
    [59] R. Guimera, S. Mossa, A. Turtschi and L.A.N. Amaral, The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles, PNAS, (2005) 102 7794.
    [60] A. Turner, M. Doxa, D. O'Sullivan and A. Penn, From isovists to visibility graphs: a methodology for the analysis of architectural space, Environment and Planning B: Planning and Design, (2001) 28 103.
    [61] N. Mathias and V. Gopal, Small worlds: How and why, Phys. Rev. E, (2001) 63 021117.
    [62] M.E.J. Newman, The structure and function of complex networks, SIAM Rev., (2003) 45 167.
    
    [63] D.J. Price, Networks of scientific papers, Science, (1965) 149 150.
    [64] R. Albert and A.L. Barabasi, Topology of Evolving Networks: Local Events and Universality, PHYSICAL REVIEW LETTERS, (2000) 85 5234.
    [65] X. Li and G.R. Chen, A local-world evolving network model, Physica A, (2003) 328 274.
    [66] Z. Liu, Y.C. Lai, and N. Ye, Statistical properties and attack tolerance of growing networks with algebraic preferential attachment, PHYSICAL REVIEW E, (2002) 66 036112.
    [67] Z. Liu, Y.C. Lai, N. Ye and P. Dasgupta, Connectivity distribution and attack tolerance of general networks with both preferential and random attachments, Physics Letters A, (2002) 303 337.
    [68] M. Barthelemy, Crossover from Scale-Free to Spatial Networks, cond-mat/0212086 (2003).
    [69] J. Jost and M.P. Joy, Evolving networks with distance preferences, Phys. Rev. E, (2002) 66 036126.
    
    [70] M.E.J. Newman and J. Park, Why social networks are different from other types of networks, PHYSICAL REVIEW E, (2003) 68 036122.
    [71] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, cond-mat/0102028 (2001).
    [72] P. Holme and B.J. Kim, Growing Scale-Free Networks with Tunable Clustering, Phys. Rev. E, (2002) 65 026107.
    [73] G. Caldarelli, A. Capocci, P.D.L. Rios and M.A. Mufioz, Scale-Free Networks from VaryingVertex Intrinsic Fitness, PHYSICAL REVIEW LETTERS, (2002) 89 25.
    [74] G. Caldarelli, A. Capocci, P.D.L. Rios and M.A. Mufioz, Scale-free Networks without Growth or Preferential Attachment: Good get Richer, cond-mat/0207366 (2002).
    [75] C. M. Ghima, E. Oh, K. I. Goh, B. Kahng and D. Kim, Packet transport along the shortest pathways in scale-free networks, Eur. Phys. J. B, (2004) 38 193.
    [76] A. Vazquez, Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations, PHYSICAL REVIEW E, (2003) 67 056104.
    [77] M. C. Gonzalez, A. O. Sousa and H.J. Herrmann, Opinion Formation on a Deterministic Pseudo-fractal Network, cond-mat/0307537 (2003).
    [78] M. E. J. Newman, Ego-centered networks and the ripple effect-or-Why all your friends are weird, cond-mat/0111070 (2001).
    [79] E. Ravasz and A. L. Barabasi, Hierarchical organization in complex networks, cond-mat/0206130 (2002).
    [80] A. L. Barabasi, E. Ravasz and T. Vicsek, Deterministic Scale-Free Networks, cond-mat/0107419 (2002).
    [81] J. C. Nacher, N. Ueda, T. Yamada, M. Kanehisa and T. Akutsu, Clustering under the line graph transformation: application to reaction network, BMC Bioinformatics, (2004) 5 207.
    [82] M. Kaiser and C. C. Hilgetag, Spatial Growth of Real-world Networks, cond-mat/0312037 (2003).
    [83] M. Baiesi and S.S. Manna, Scale free networks from a Hamiltonian dynamics, cond-mat/0305054 (2003).
    [84] K. I. Goh, G. Salvi, B. Kahng and D. Kim, Skeleton and fractal scaling in complex networks, cond-mat/0508332 (2005).
    [85] L. Laura, S. Leonardi, G Caldarelli and P. D. L. Rios, A multi-layer model for the webgraph, in On-line proceedings of the 2nd International Workshop on Web Dynamics (2002).
    [86] M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera and A. Arenas, Emergence of clustering, correlations, and communities in a social network model, cond-mat/0309263 (2003).
    [87] D. Garlaschelli and M.I. Loffredo, Patterns of Link Reciprocity in Directed Networks, PHYSICAL REVIEW LETTERS, (2004) 93 268701.
    [88] K. Klemm and V. M. Eguiluz, Growing scale-free networks with small-world behavior, PHYSICAL REVIEW E, (2002) 65 057102.
    [89] A. Fronczak, P. Fronczak and J.A. Holyst, Mean-field theory for clustering coefficients in Barabasi-Albert networks, PHYSICAL REVIEW E, (2003) 68 046126.
    [90] M. A. Serrano and M. Boguna, Tuning clustering in random networks with arbitrary degree distributions, cond-mat/0507535 (2005).
    [91] G. Szabo, M. Alava and J. Kertesz, Structural transitions in scale-free networks, cond-mat/0208551 (2002).
    [92] A. Fronczak, J.A. Holyst, M. Jedynak and J. Sienkiewicz, Higher order clustering coefficients in Barabasi-Albert networks, cond-mat/0212237 (2002).
    [93] M. E. J. Newman, Models of the Small World, cond-mat/0001118 (2000).
    [94] S. N. Softer and A. Vazquez, Network clustering coefficient without degree-correlation biases, PHYSICAL REVIEW E, (2005) 71 057101.
    [95] M. P. Singh, B. Yu and M. Venkatraman, COMMUNITY-BASED SERVICE LOCATION, COMMUNICATIONS OF THE ACM, (2001) 44 49.
    [96] S. N. Softer and A. Vazquez, Clustering coeffcient without degree correlations biases, cond-mat/0409686 (2004).
    [97] G. Szabo, M. Alava and J. Kertesz, Shortest paths and load scaling in scale-free trees, PHYSICAL REVIEW E, (2002) 66 026101.
    [98] S. Wuchty and P. F. Stadler, Centers of Complex Networks, Journal of theoretical biology, (2003) 223 45.
    [99] I. J. Farkas, I. Derenyi, A. L. Barabasi and T. Vicsek, Spectra of "real-world" graphs: Beyond the semicircle law, PHYSICAL REVIEW E, (2001) 64 026704.
    [100] P. G. Lind, M. C. Gonzalez and H. J. Herrmann, Cycles and clustering in bipartite networks, cond-mat/0504241 (2005).
    [101] G. Bianconi and A. Capocci, Number of Loops of Size h in Growing Scale-Free Networks, PHYSICAL REVIEW LETTERS, (2003) 90 7.
    [102] P. M. Gleiss, P. F. Stadler, A. Wagner and D.A. Fell, Small Cycles in Small Worlds, cond-mat/0009124 (2000).
    [103] M. Girvan and M. E. J. Newman, Community structure in social and biological networks, PNAS, (2002) 99 7821.
    [104] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto and D. Pafisi, Defining and identifying communities in networks, PNAS, (2004) 101 2658.
    [105] M. E. J. Newman, Detecting community structure in networks, Eur. Phys. J. B, (2004) 38 321.
    [106] S. White and P. Smyth, Algorithms for Estimating Relative Importance in Networks, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining: Washington D. C., USA (August, 2003).
    [107] V. Latora and M. Marchiori, Economic small-world behavior in weighted networks, Eur. Phys. J. B, 32 249 (2003).
    [108] A. Barrat, M. Barthelemy and A. Vespignani, Modeling the evolution of weighted networks, cond-mat/0406238 (2004).
    [109] A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks, PNAS, (2004) 101 3747.
    [110] M. E. J. Newman, Analysis of weighted networks, PHYSICAL REVIEW E, (2004) 70056131.
    [111] P. Crucitti, V. Latora, M. Marchiori and A. Rapisarda, Efficiency of Scale-Free Networks: Error and Attack Tolerance, cond-mat/0205601 (2002).
    [112] V. Latora and M. Marchiori, Efficient Behavior of Small-World Networks, PHYSICAL REVIEW LETTERS, (2001) 87 1987011.
    [113] P. Holme, B. J. Kim, C. N. Yoon and S. K. Han, Attack vulnerability of complex networks, PHYSICAL REVIEW E, (2002) 65 056109.
    [114] M. L. Sachtjen, B. A. Carreras and V. E. Lynch, Disturbances in a power transmission system, PHYSICAL REVIEW E, (2000) 61 4877.
    [115] S. Capkun, L. Buttyan and J. P. Hubaux, Small Worlds in Security Systems: an Analysis of the PGP Certificate Graph, In Proceedings of the 2002 workshop on New security paradigms: ACM Press, (2002).
    [116] M. E. J. Newman, S. H. Strogatz and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, cond-mat/0007235 (2001).
    [117] M. E. J. Newman, Properties of highly clustered networks, PHYSICAL REVIEW E, (2003) 68 026121.
    [118] R. Albert, A. L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. (2002) 74 47.
    [119] http://www.e-works.net.cn/ewk2004/ewkArticles/409/Article34267.htm.
    [120] http://www.chinaengine.com.cn/Article/ShowArticle.asp?ArticleID=3653&Page=2.
    [121] (联邦德国)G.帕尔(Gerhard Pahl)与W·拜茨(Wolfang Beitz)著,张直明,毛谦德,张子瞬,黄靖远与冯培恩译,工程设计学学习与实践手册,北京:机械工业出版社(1992).
    [122] 祁国宁,(德)J.萧塔纳,顾新建与韩永生,图解产品数据管理,北京:机械工业出版社(2005).
    [123] 祁国宁,顾新建与谭建荣,大批量定制技术及其应用,北京:机械工业出版社(2003).
    [124] OMG, Unified Modeling Language Specification, http://www.omg.org/technology/documents/formal/uml.htm.
    [125] J. Rumbaugh, I. Jacobson and G. Booch, The unified modeling language reference manual, Beijing: Science Press (2004).
    [126] 萧蕴诗与严隽薇,集成化系统开发的技术基础,北京:清华大学出版社(2002).
    [127] 杨文龙,姚淑珍与吴芸,软件工程,北京:电子工业出版社(1997).
    [128] (美)布雷恩.奥弗兰与迈克尔·莫里森著,刘伟与朱诗兵等译,Java2精要:语言详解与编程指南,北京:清华大学出版社(2002).
    [129] (美)H.Schildt著,张玉清,吴溥峰与尚勇等译,Java 2参考大全,北京:清 华大学出版社(2002).
    [130] http://tech.china.com/zh_cn/science/lishi/11025917/20051125/12886536_ 1.html.
    [131] M. E. J. Newman and D. J. Watts, Scaling and percolation in the small-world network model, PHYSICAL REVIEW E, (1999) 60 7332.
    [132] M. E. J. Newman, C. Moore and D. J. Watts, Mean-Field Solution of the Small-World Network Model, PHYSICAL REVIEW LETTERS, (2000) 84 3.
    [133] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Structure of Growing Networks with Preferential Linking, Phys. Rev. Lett., (2000) 85 4633.
    [134] D. Yan, G. N. Qi and X. J. Gu, The Complexity Nature of Large-scale Software Systems, Chinese Physics, (2006) 15 2489.
    [135] S. N. Dorogovtsev and J. F. F. Mendes, Effect of the accelerating growth of communications networks on their structure, PHYSICAL REVIEW E, (2001) 63 025101.
    [136] J. S. Mattick and M. J. Gagen, MATHEMATICS/COMPUTATION: Accelerating Networks, Science, (2005) 307 856.
    [137] M. J. Gagen and J. S. Mattick, Accelerating, hyperaccelerating, and decelerating networks, PHYSICAL REVIEW E, (2005) 72 016123.
    [138] A. P. Masucci and G. J. Rodgers, Network properties of written human language, physics/0605071 (2006).
    [139] K. Klemm, V. M. Eguiluz, Highly clustered scale-free networks, Phys. Rev. E, (2002) 65 036123.
    [140] S. H. Wildstrom, A Shorter Longhom for Microsoft, Business Week Online (August 30 2004), http://www.businessweek.com/technology/content/aug2004/tc 20040830_5934_tc024.htm.
    [141] http://www.cbt.com.cn/cbt/xwshow.asp?id=15162&ml=国际&bt=世界最大客机“难产”。
    [142] S. N. Dorogovtsev and J. F. F. Mendes, Scaling behavior of developing and decaying networks, EuroPhys. Lett., (2000) 52 33.
    [143] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks with aging of sites, PHYSICAL REVIEW E, (2000) 62 1842.
    [144] 闫栋,祁国宁,大规模软件系统的无标度特性与演化模型,物理学报,(2006)55 3799.
    [145] 闫栋,祁国宁,基于网格的虚拟组织协同模型及其任务调度,中国机械工程,(2005)16 784。
    [146] 李仁旺,大批量定制的若干理论与方法问题研究,浙江大学博士学位论文(2002).
    [147] 张培培,侯威,何阅与何大韧,淮扬菜系的网络描述,复杂系统与复杂性科学,(2005)249.