有效支持IPTV业务的扇出无关交换结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络电视打破了传统广播电视的信息分配模式,给人们获取、传播与利用信息的方式和效率带来革命性进步,给信息通信技术产业的发展带来全新机遇。从满足终端用户需求和产业发展要求的角度,网络电视业务是互联网发展的主流业务,充分体现了应用牵引的网络发展模式。
     由于现有边缘网的承载服务能力无法满足网络电视业务可控制、可管理和可运营的综合要求,国家863计划高性能宽带信息网(3Tnet)启动了重大子项课题—“大规模接入汇聚路由器(ACR)系统性能和关键技术研究”。ACR要实现对网络电视业务的支持,需要可有效支持网络电视业务的交换结构,而网络电视的应用将产生大规模的组播通信,这使得ACR的交换结构不能采用目前常用的为组播业务处理预留冗余资源的交换结构设计方法。由于ACR的交换结构对网络电视数据的处理,直接关系到ACR的工作性能,所以如何设计一种有效支持网络电视业务的交换结构,成为ACR研发过程中需要解决的关键课题。针对ACR的研发需求,本文以有效支持网络电视业务的交换结构为研究课题,依托ACR项目开展了研究工作。
     交换结构对网络电视数据的处理不是一种简单的组播数据处理,需要满足网络电视体验质量保障的要求,这使得现有复制组播、扇出组播和受限复制组播的组播交换结构模型,不能为如何设计有效支持网络电视业务的交换结构提供明确可行的解决方案。为此,本文首先通过深入分析网络电视数据的传输过程,发现了到达交换结构的网络电视数据所具有的特征;在此基础上,本文基于具有理想工作性能的输出排队交换结构的工作原理,提出了一种有效支持网络电视业务的交换结构模型——扇出无关交换结构,其核心思想是;交换结构输入端口的缓存中如果没有数据在排队,那么表明所有到达交换结构的数据均能立即被交换结构进行相应的数据处理并传输至输出目的端口中进行排队;并且,当输入数据在一定范围内变化时,无论端口规模如何变化,交换结构保持输入端口中无数据缓存状态所需的加速比或者传输链路扩展倍数保持一定;然后,由输出端口采用适当的输出排队策略来输出网络电视数据,从而为网络电视业务提供满足其传输带宽要求的输出链路带宽,由此可以满足网络电视体验质量保障的要求。
     随后,本文依照扇出无关交换结构模型,采用空分的数据处理思想,设计了一种空分扩展型扇出无关交换结构,其工作原理是;在调度机的统一调度下,Crossbar与组播模块并行工作,输入端口中的单播数据由Crossbar交换到输出目的端口,而输入端口中的网络电视数据和视频会议、远程教育、远程医疗等非网络电视业务的组播数据则由组播模块进行组播复制并输出到扇出包含的输出端口中。本文对空分扩展型扇出无关交换结构的整体结构、工作过程、子模块设计以及调度模型与调度算法进行了详细讨论;在此基础上,本文采用流体模型理论的数学方法对空分扩展型扇出无关交换结构的工作性能实现了量化分析,并且通过仿真实验实际验证了空分扩展型扇出无关交换结构的工作性能可以满足网络电视体验质量保障的要求,从而论证了扇出无关交换结构是一种有效支持网络电视业务的交换结构模型。
     为了能给工程实现提供更多的可选方案,本文在空分扩展型扇出无关交换结构之后,依照扇出无关交换结构模型,分别采用时分以及空分和时分联合的数据处理思想,设计了时分复用型以及空分时分联合型扇出无关交换结构,并对两者的整体结构、工作过程、调度模型与调度算法以及工作性能进行了深入分析。前者的工作原理是,不设置组播模块,由Crossbar在不同的时间段里,单独处理单播数据或者单独处理网络电视数据和非网络电视业务的组播数据;后者的工作原理是,设置组播模块并且组播模块在所有时间段里只处理网络电视数据和非网络电视业务的组播数据,而Crossbar在一些时间段里处理单播数据,在另一些时段里则处理网络电视数据和非网络电视业务的组播数据。
     本文依照扇出无关交换结构模型而设计的空分扩展型、时分复用型和空分时分联合型等三种不同类型的扇出无关交换结构都可以有效支持网络电视业务,从而为在工程上实现ACR的交换结构提供了多种切实可行的解决方案。针对ACR的研发需求,本文将扇出无关交换结构实际应用于ACR交换结构模块的设计和实现中,通过讨论ACR交换结构模块的总体设计、器件选型和硬件电路实现,详细说明了采用扇出无关交换结构来设计和实现ACR交换结构模块的具体方法。
IPTV not only breaks through the distribution pattern of traditional television but also innovates in the manner and the efficiency of obtaining, spreading and utilizing information and offers a vital opportunity to develop information communication technology industry. In the perspective of both the demand of terminal users and the development requirement of information communication technology industry, IPTV embodies the mode of application leading the development of network, and destines to be one of the primary services in the future internet.
     At present, since the performance of current border network can not meet the controllable, manageable and operateable requirements of operators about IPTV, "High Performance Broadband Information Networks" (3Tnet) of the National High-Tech Research and Development Program of China (863 Program) launches the project of "System performance and key technologies research on the access and convergence router (ACR)". In order to support IPTV, ACR needs the kind of switch fabric which can support IPTV; however, the switch fabric of ACR can not be developed via reserving redundant resource for multicast processing because IPTV will produce a great deal of multicast communication. The support of IPTV will cast great impact on the performance of ACR, so how to develop the switch fabric which can support IPTV becomes the key problem in ACR. For this reason, this thesis devotes its research effort to the kind of switch fabric which can support IPTV.
     As for a switch fabric, the support of IPTV is not just the same as the support of multicast but needs to satisfy the requirements of quality of experience guarantees. For this reason, the state-of-the-art multicast switch fabric models, including copy multicast, fanout multicast and bounded copy multicast, can not provide clear solution for the design of switch fabric which can support IPTV. Along with a deep investigation made into the transmission process of IPTV, the characteristic of TV data arriving at a switch fabric is found out. On this basis, a new scheme of switch fabric model, named as fanout-free switch fabric, to support IPTV is proposed, which originates from the working style of the ideal output queued switch fabric. Concretely, the scheme of Fanout-free switch fabric is built on such principle that if there is no data in the queues of any input port of a switch fabric, that means all of the data arriving at the switch fabric has been processed and transmitted into the queues of output ports; moreover, no matter how the number of either input ports or output ports varies, the factor of either speedup or link dilation needed to achieve the state of that there is no data in the queues of any input port holds its own; where after, output ports take the responsibility to drain TV data out of the switch fabric at an appropriate rate so as to satisfy the requirements of quality of experience guarantees of IPTV.
     Subsequently, this thesis introduces a kind of space division expansion fanout-free switch fabric, in which arriving unicast data is switched and transmitted to output ports by crossbar; and in parallel, arriving TV data together with other multicast data of non-TV services such as video conference, distance education and telemedicine are copied and transmitted to the destined output ports by multicast module. And then, space division expansion fanout-free switch fabric is thoroughly discussed from the aspects of its architecture, operating process, design of each component, scheduling model and scheduling algorithm. Furthermore, quantitative analysis is achieved via the method of the fluid model theory, and the simulation is carried out which demonstrates that the performance of space division expansion fanout-free switch fabric can satisfy the requirements of quality of experience guarantees. Both the result of the quantitative analysis and the simulation prove that fanout-free switch fabric can support IPTV.
     In order to provide more feasible solutions, other two kinds of fanout-free switch fabric, called as time division multiplexing fanout-free switch fabric and combined space and time division fanout-free switch fabric, are proposed on the principle of time division multiplexing mode and on the principle of combined space and time division mode respectively. Likewise, such aspects as the architecture, operating process, scheduling model, scheduling algorithm and performance of both kinds are thoroughly discussed. Without multicast module, time division multiplexing fanout-free switch fabric relies on the crossbar to process either unicast data or TV data and other multicast data of non-TV services in different time phases. However, as for combined space and time division fanout-free switch fabric, not only the multicast module deals with TV data and other multicast data of non-TV services but also the crossbar processes either unicast data or TV data and other multicast data of non-TV services in different time phases.
     The proposals of space division expansion fanout-free switch fabric, time division multiplexing fanout-free switch fabric and combined space and time division fanout-free switch fabric provide various practical solutions to design and implement the switch fabric of ACR. According to the demand of ACR, this thesis uses the scheme of fanout-free switch fabric to develop the switch fabric module of ACR. Via a detailed analysis of the switch fabric module of ACR from such aspects as design, the selection of chips and hardware implementation, this thesis gives an explicit explanation about how to design and implement the switch fabric module of ACR based on the scheme of fanout-free switch fabric.
引文
[1]汪卫国.2005中国通信产业十大关键词—IPTV[EB/OL].;http;//www.cttl.cn/zhthg/invest/2005/dp/t20060621_368299.htm,2006-06-21.
    [2]刘多.ITU-T IPTV标准研究最新进展[EB/OL].;http;//www.c114.net/technic/ZZHtml_200611/T20061122956819122-1.shtml,2006-11-20.
    [3]ITU-T FG IPTV.Overall definition and description of IPTV in the business role model[EB/OL].;http;//202.102.170.235/iptvclub/FGIPTV-ID-0025e.doc,2006-07-10.
    [4]新华网.全球互联网用户数达到10.8亿[EB/OL].;http;//news3.xinhuanet.com/ec/2006-01/16/content_4057918.htm,2006-01-16.
    [5]中国互联网络信息中心(CNNIC).CNNIC发布《第19次中国互联网络发展状况统计报告》[EB/OL].;http;//www.cnnic.cn/html/Dir/2007/01/22/4395.htm.2007-01-23.
    [6]程旭.电脑空间与系统芯片[R].郑州;信息工程大学信息工程学院,2007-03-19.
    [7]周光斌.2005中国通信产业十大关键词—网络融合[EB/OL].;http;//www.cttl.cn/zhthg/invest/2005/dp/t20060621_368300.htm,2006-06-21.
    [8]韦乐平.三网融合与IPTV的发展和挑战[J].电信科学,2006,22(7);1-5.
    [9]国家统计局.国际统计数据2004之电视机、有线电视用户及个人计算机普及率[EB/OL].;http;//www.stats.gov.cn/tjsj/qtsj/gjsj/2004/t20060816_402345210.htm,2006-08-16.
    [10]邬江兴.新一代高速网络发展与应用—3Tnet与IPTV的未来发展[R].上海;国际会议中心,第二届中国国际新媒体产业发展论坛,2005-06-11.
    [11]吴鹰.IPTV的快速发展和增值实现[R].上海;国际会议中心,第二届中国国际新媒体产业发展论坛,第三届中国国际新媒体产业论坛,2006-06-18.
    [12]CHINA通信网.IPTV市场发展分析[EB/OL].;http;//www.c114.net/hottopic/ZZHtml_2006/H2006426949174512-1.shtml,2006-04-26.
    [13]汪斌强,邬江兴.基于IPv6的大规模接入汇聚路由器的设想和实现[J].电信科学,2006,22(1);5-9.
    [14]中国联通.IP城域网设计方案实例[EB/OL].;http;//www.chinaunicom.com/profile/xwdt/txjs/file930.html,2006-05-01.
    [15]詹翊春,吉萌.面向QoE的城域多业务分组承载平台[EB/OL].;http;//comm.ccidnet.com/art/1522/20060614/579877_1.html,2006-06-14.
    [16]S.Deering.Host Extensions for IP Multicasting[S].RFC 1112.IETF,1989.
    [17]W.Fenner.Internet Group Management Protocol,Version 2[S].RFC 2236.IETF,1997.
    [18]B.Cain,S.Deering,I.Kouvelas,A.Thyagarajan.Internet Group Management Protocol, Version 3[S].RFC 3376.IETF,2002.
    [19]S.Deering.Multicast Listener Discovery(MLD)for IPv6[S].RFC 2710.IETF,1999.
    [20]R.Vida.Multicast Listener Discovery Version 2(MLDv2)for IPv6[S].Internet draft,draft-vida-mld-v2-07.txt.IETF.2003.
    [21]A.Adams.Protocol Independent Multicast-Dense Mode(PIM-DM);Protocol Specification(Revised)[S].Internet draft,draft-ietf-pim-dm-new-v2-04.txt.IETF,2003.
    [22]B.Fenner.Protocol Independent Multicast-Sparse Mode(PIM-SM);Protocol Specification[S].Internet draft,draft-ietf-pim-sm-v2-new-09.txt.IETF,2004.
    [23]T.Bates.Multiprotocol Extensions for BGP-4[S].RFC 2858.IETF,2000.
    [24]B.Fenner.Multicast Source Discovery Protocol(MSDP)[S].RFC 3618.IETF,2003.
    [25]科技部863计划联合办公室.高性能宽带信息网(3Tnet)专项课题指南[EB/OL].;http;//www.863.org.cn/863_105/applyguide/guide_infotech/200406010039.html,2004-06-01.
    [26]邬江兴.中国高性能宽带信息网(3TNet)综述[EB/OL].;http;//www.c114.net/ZHANHUI/863/jx.htm,2006-01-24.
    [27]林予松.大规模网络环境下的组播通信技术研究[D].郑州;解放军信息工程大学,2005.
    [28]CAIDA.Monitor and Analysis of Traffic in Multicast Routers(MANTRA)[EB/OL].;http;//www.caida.org/tools/measurement/Mantra/,2007-04-02.
    [29]P.Rajvaidya,K.Almeroth.Analysis of Routing Characteristics in the Multicast Infrastructure[A].In;Infocom 2003[C].California,USA,April 2003;1532-1542.
    [30]GB/T 17975.1-2000,信息技术运动图像及其伴音信号的通用编码第1部分;系统.北京;中国标准出版社,2000.
    [31]GB/T 17975.2-2000,信息技术运动图像及其伴音信号的通用编码第2部分;视频.北京;中国标准出版社,2000.
    [32]GB/T 17975.3-2000,信息技术运动图像及其伴音信号的通用编码第3部分;音频.北京;中国标准出版社,2000.
    [33]F.M.Chiussi,A.Francini.Scalable Electronic Packet Switches[J].IEEE J.Select.Areas Commun.,May 2003,21(4);486-500.
    [34]中国通信标准化协会.IPTV体验质量(体验质量);了解MDI[EB/OL].;http;//www.ccsa.org.cn/technic/show_html.php?categories_id=4adb5589-d7e9-e309-5670-44b1c0b0c8c9&article_id=technic_ad42be57-2bce-eb31-9174-455a9aea34bc,2006-11-15.
    [35]张文.基于用户体验质量设计分组网络的QoS机制[J].现代电信科技,2004,9;34-36.
    [36]A.Huang and S.Knauer.Starlite;a wideband digital switch[A].In;Proc.of Globecom1984[C].Atlanta,GA,Dec.1984;121-125.
    [37]J.S.Turner.Design of a Broadcast Packet Switching Network[A].In;Proc.INFOCOM 1986[C].April 1986;8-10.
    [38]J.S.Turner.Design of a Broadcast Packet Switching Network[J].IEEE Trans.Commun.,Jun 1988,36;734-743.
    [39]T.T.Lee.Nonblocking Copy Networks for Multicast Packet Switching[J].IEEE J.Sel.Areas Commun.,Dec,1988,6;1445-1467.
    [40]K.Y.Eng,M.G.Hluchyj,Y.S.Yeh.Multicast and Broadcast Services in a Knockout Packet Switch[A].In;Proc.INFOCOM1988[C].New Orleans,LA,Mar.1988,;29-34.
    [41]R.J.F.Vries.ATM Multicast Connections Using the GAUSS Switch[A].In;Proc.GLOBECOM1990[C].1990;211-217.
    [42]J.N.Giacopelli,J.J.Hickey,W.S.Marcus,W.D.Sincoskie,and M.Littlewood.Sunshine;A High-Performance Self-Routing Broadband Packet Switch Architecture[J].IEEE,J.Select.Areas Commun.,Oct.,1991,9(8);1289-1298.
    [43]R.Cusani,F.Sestini.A Recursive Multistage Structure for Multicast ATM Switching[A].In;Proc.INFOCOM1991[C];1289-1295.
    [44]D.J.Marchok,C.E.Rohrs,R.M.Schafer.Multicasting in a Growable Packet(ATM)Switch[C].In;Proc.INFOCOM1991;850-858.
    [45]W.D.Zhong,K.Yukimatsu.Design requirements and architectures for multicast ATM switching[J].IEICE Trans.Commun.,Nov.,1994;E77.
    [46]H.S.Kim.Design and Performance of Multinet Switch;A Multistage ATM Switch Architecture with Partially Shared Buffers[J].IEEE/ACM Trans.Networking,Dec,1994,2;71-580.
    [47]D.X.Chen,J.W.Mark.Multicasting in the SCOQ Switch[A].In;Proc.INFOCOM1994[C].1994;290-297.
    [48]H.J.Chao,B.S.Choe.Design and analysis of a large-scale multicast output buffered ATM switch[J].IEEE/ACM Trans.Networking,Apr 1995,3;126-138.
    [49]Y.Yang,G.M.Masson.Broadcast Ring Sandwich Networks[J].IEEE Trans.Computers,Oct.,1995,44;1169-1180.
    [50]B.Prabhakar,N.McKeown.Designing a Multicast Switch Scheduler[A].In;Proc.33rd Annual Allerton Conference[C].Urbana-Champaign,1995;855-866.
    [51]B.Prabhakar,N.McKeown.Scheduling Multicast Cells in an Input-Queued Switch[A].In;Proc.IEEE INFOCOM1996[C].March 1996,3;271-278.
    [52]B.Prabhakar,N.McKeown.Multicast scheduling for input-queued switches[J].IEEE J.Selected Areas Commun.,1997,15(5);855-866.
    [53]P.U.Tagle,N.K.Sharma.Multicast packet switch based on dilated network[J].IEICE Trans on Communications,1998,E81-B(2);258-265.
    [54]M.H.Guo,R.S.Chang.Multicast ATM switches based on input cells scheduling[A].In;Proc.APCC[C].Sydney,Australia,1997;1629-1632.
    [55]H.J.Chao,B.S.Choe,J.S.Park,and N.Uzun.Design and implementation of Abacus switch;a scalable multicast ATM switch[J].IEEE J.Selected Areas Commun.,1997,15(5);830-843.
    [56]K.L.E.Law,A.Leon-Garcia.A large scalable ATM multicast switch[J].IEEE J.Selected Areas Commun.,1997,15(5);844-854.
    [57]N.McKeown,M.Izzard,A.Mekkittikul,B.Ellersick,and M.Horowitz.The tiny tera;A packet switch core[J].IEEE Micro,Jan./Feb.1997;26-33.
    [58]F.Chiussi,J.Kneuer,V.Kumar.Low-Cost Scalable Switching Solutions for Broadband Networking;The ATLANTA Architecture and Chip Set[J].IEEE Commun.Magazine,Dec.1997,35(12);44-53.
    [59]F.M.Chiussi,et al.A Family of ASIC devices for Next Generation Distributed Packet Switches with QoS support for IP and ATM[A].In;Proc.Hot Interconnects 9[C].Stanford,Aug 2001;21-32.
    [60]F.M.Chiussi,et al.A Chipset for Scalable QoS-Preserving Protocol-Independent Packet Switch Fabrics[C].In;Proc.Intl.Solid-State Circuits Conf.,San Francisco,Feb 2001;721-725.
    [61]S.Iye,N.McKeown.On the speedup required for a multicast parallel packet switch[J].IEEE Commun.Lett.,June 2001,5;269-271.
    [62]J.Turner,N.Yamanaka.Architecture Choice in Large Scale ATM Switches[J].WUCS 97-21,May 1997.
    [63]J.Turner,N.Yamanaka.Architectural Choices in Large Scale ATM Switches[J].IEICE Transactions on Communications,1998,E81-B(2);120-137.
    [64]M.H.Guo,R.S.Chang,Multicast ATM Switches;Survey and Performance Evaluation,Computer Communication Review[J],April 1998,28(2);98-131.
    [65]T.Anderson,S.Owicki,J.Saxe,and C.Thacker.High speed switch scheduling for local area networks[A].In;Proc.Fifth international Conference on Architectural support for Programming Languages and Operating Systems[C].Boston,MA,October 1992;319-352.
    [66]T.Anderson,S.Owicki,J.Saxe,and C.Thacker.High speed switch scheduling for local area networks[J].ACM Transactions on Computer Systems,Nov.1993,11(4);319-352.
    [67]Gemini switch fabric chipset[EB/OL].;http;//www.broadcom.com/products/Data-Telecom-Networks/,2007-04-01.
    [68]Cisco 12000 Gigabit Switch Router Product Overview[EB/OL].;http;//www.cisco.com,Apr 2000.
    [69]Ascend GRF Overview and Features[EB/OL].;http;//www.ascend.com.au/products/grf400,Apr 2000.
    [70]中兴通讯股份有限公司.ZXR10以太网交换机产品系列[EB/OL].;http;//www.zte.com.cn/main/P%20AND%20C/System%20equipment/Data%20communications/ZXR10%20Ethernet%20switching%20products%20series/2003112545360.shtml,2007-04-11.
    [71]神州信息技术网.华为Radium8750宽带多业务交换机[EB/OL].;http;//www.chinait.net/xinghao.asp?id=19601,2007-04-11.
    [72]S.Iyer,A.Awadallah and N.McKeown.Analysis of a packet switch with memories running slower than the line rate[A].In;Proc.IEEE INFOCOM 2000[C];529-537.
    [73]S.Iyer,N.McKeown.Analysis of the parallel packet switch architecture[J].IEEE/ACM Trans.on Networking,April 2003,11(2);314-324.
    [74]S.Iyer,N.McKeown.Making parallel packet switches practical[A].In;Proc.IEEE INFOCOM 2001[C].Alaska,U.S,April 22-26,2001;1680-1687.
    [75]Juniper Networks.High speed switching device.US Patent 5,905,726[R],1999.
    [76]J.F.Hayes,R.Breault,M.Mehmet-Ali.Performance Analysis of a Multicast Switch[J].IEEE Trans.Commun.,April 1991,39(4);581-587.
    [77]J.Y.Hui,T.Renner.Queueing Analysis for Multicast Packet Switching[J].IEEE Transactions on Communications,Feb 1994,42(2/3/4);723-731.
    [78]J.F.Hayes,R.Breault,M.Mehmet-Ali.Performance Analysis of a Multicast Switch[J].IEEE Trans.Commun.,April 1991,39(4);581-587.
    [79]J.Y.Hui,T.Renner.Queueing Analysis for Multicast Packet Switching[J].IEEE Transactions on Communications,Feb 1994,42(2/3/4);723-731.
    [80]M.Ajmone Marsan,A.Bianco,P Giaccone,E Leonardi,F Neri.On the Throughput of Input-Queued Cell-Based Switches with Multicast Traffic[A].In;Proc.IEEE INFOCOM'2001[C],Anchorage,2001;1664-1672.
    [81]A.Francini,F.M.Chiussi.Providing QoS guarantees to unicast and multicast flows in multistage packet switches[J].IEEE J.Select.Areas Commun.,Oct.2002,20;1589-1601.
    [82]M.J.Karol,M.Hluchyj,S.Morgan.Input vs.output queuing on a space-division packet switch[A].In;Proc.GLOBECOM 1986[C].1986;659-665.
    [83]M.J.Karol,M.Hluchyj,S.Morgan.Input Versus Output Queueing on a Space Division Switch[J].IEEE Trans.Comm,1987,35(12);1347-1356.
    [84]N.McKeown,V.Anantharam,J.Walrand.Achieving 100% throughput in an input-queued switch[A].In;Proc.IEEE INFOCOM 1996[C],San Francisco,CA,Mar.1996;296-302.
    [85] N. McKeown, V. Anantharam, J. Walrand. Achieving 100% throughput in an input-queued switch[J]. IEEE Trans. on Commu., Aug. 1999, 47(8): 1260-1267.
    [86] J. Dai, B. Prabhakar. The throughput of data switches with and without speedup[A]. In: Proc. IEEE INFOCOM'2000[C]. May 2000: 556-564.
    [87] S-T. Chuang, A. Goel, N. McKeown, B. Prabhakar. Matching Output Queueing with a Combined Input Output Queued Switch[J]. IEEE J. Select. Areas Commun., June 1999, 17(6): 1030-1039.
    [88] J. Dai, B. Prabhakar. Matching Output Queueing with a Combined Input Output Queued Switch[A]. A short version appears in The Proceedings of Infocom 1999[C].
    [89] A. Charny. Providing QoS Guarantees in Input Buffered Crossbar Switches with Speedup[D]. PhD Thesis, U.S. MIT, 1998.
    [90] A. Charny, P. Krishna, N. Patel, R. Simcoe. Algorithms for Providing Bandwidth and Delay Guarantees in Input-buffered Crossbars with Speedup[A]. In: Proc. the 6th IEEE/IFIP IWQ0S '98[C]. May 1998: 235-244.
    [91] S. Iyer, R. Zhang and N. McKeown. Routers with a Single Stage of Buffering[A], In: Proc. ACM SIGCOMM'02[C]. Pittsburgh,Pennsylvania,USA, 2002: 251-264.
    [92] R. Schaller. Moore's law: Past, present and future [J] . IEEE Spectrum, 1997, 34(6):52-59.
    [93] M. A. Marsan, F. M. Chiussi, A. Francini, G. Galante, and E.Leonardi. Efficient multicast support in large IP routers[a]. In: Proc. IEEE GLOBECOM 2002, [C] Taipei, Taiwan, R.O.C., Nov. 17-21,2002: 2445-2450.
    [94] M. A. Marsan, F. M. Chiussi, A. Francini. Compression of Multicast Labels in Large IP Routers[J]. IEEE J. on Sel. areas in Commun., MAY 2003, 21(4): 630-641.
    [95] Y. Tamir, G. Frazier. High performance multiqueue buffers for VLSI communication switches[J].In:Proc. 15th Annu. Symp. Computer Architectures, June 1988 : 343-354.
    [96] M. J. Karol, K. M. Eng, H. Obara. Improving the performance of input-queued ATM packet switches[A]. In: Proc. the INFOCOM 1992[C], 1992: 110-115.
    [97] S. P. Majumder, R. Gangopadhyay. Optimum architecture for input queueing ATM switches[J]. IEE Electronics Letters, 28th March 1991, 27(7): 555-557.
    [98] H. Obara, Y. Hamazumi. Parallel contention resolution control for input queueing ATM switches[J]. IEE Electronics Letters, 28(9) :838-839, 23rd April 1992.
    [99] H. Obara, S. Okamoto, Y. Hamazumi. Input and output queueing ATM switch architecture with spatial and temporal slot reservation control [J]. IEE Electronics Letters, 2nd Jan 1992,28(1): 22-24.
    [100] F. M. Chiussi, A. Francini. Providing QoS Guarantees in Packet Switches[R]. Bell Laboratories, Lucent Technologies Holmdel, NJ, USA.
    [101] F. M. Chiussi, A. Francini. A distributed scheduling architecture for scalable packet switches[J]. IEEE J. Select. Areas Commun., Dec. 2000,18(12):2665-2683.
    [102] P. Goyal, H. M. Vin. Fair airport scheduling algorithms[A]. In: Proc. IEEE NOSSDAV1997[C]. St. Louis, MO, USA, May 1997: 257-265.
    [103] M. Katevenis, S. Sidiropoulos, C. Courcoubetis. Weighted round robin cell multiplexing in a general-purpose ATM switch chip[J]. IEEE J. Select. Areas Commun., Oct. 1991, 9: 1265-1279.
    [104] H.Shimonishi, M.Yoshida. An improvement of weighted round robin cell scheduling in ATM networks[A].In: Proc. IEEE GLOBECOM1997[C]. 1997,2:1119-1123.
    [105] A. K. Parekh, R. G. Gallager. A generalized processor sharing approach to flow control in integrated services networks: the single-node case[J]. IEEE/ACM Trans. Networking, June 1993,1:344-357.
    [106] L. Georgiadis, R. Guerin, V. Peris, K. Sivarajan. Efficient network QoS provisioning based on per-node traffic shaping[J]. IEEE/ACM Trans.Networking, Aug. 1996, 4: 482-501.
    
    [107] L. Kleinrock. Queueing Systems[M]. Computer Application, New York, Wiley, 1976.
    [108] A. Demers, S. Keshav, S.Shenker. Analysis and simulation of a fair queueing algorithm[A]. In: Proc. ACM SIGCOMM1989[C]. Austin, Texas, Sep 1989:1-12.
    [109] A. Demers, S. Keshav, S.Shenker. Analysis and simulation of a fair queueing algorithm[J]. Computer Communication Review, 1995,25(1):3-26.
    [110] R. Bennett, H. Zhang. WF2Q: Worst-case fair weighted fair queueing[A]. In: Proc. IEEE INFOCOM1996[C]. Mar.l996:120-128.
    [111] J.C.R.Bennett, H.Zhang. Hierarchical packet fair queueing algorithms [J]. IEEE/ACM Trans. on Networkin, Oct. 1997, 5:675-689.
    [112] S. J. Golestani. A self-clocked fair queueing scheme for broadband applications[A]. In: Proc. IEEE INFOCOMM1994[C].1994, 2:636-645.
    [113] F. M. Chiussi, A. Francini. Minimum-delay self-clocked fair queueing algorithm for packet-switched networks[A]. In: Proc. IEEE INFOCOMM1998[C], 3: 1112-1121.
    [114] P.Goyal, H.M.Vin. Start-time fair queueing: A scheduling algorithm for integrated services packet switching networks[J]. IEEE/ACM Trans, on Networking, Oct. 1997, 5(5):690-703.
    [115] D.Stiliadis, A.Varma. Efficient fair queueing algorithms for packet switched networks[J]. IEEE/ACM Trans. on Networking, 1998,6(2): 175 -185.
    [116] S. Suri. Leap forward virtual clock: a new fair queueing scheme with guaranteed delays and throughput fairness[A]. In: Proc. IEEE INFOCOMM1997[C], New York, 1997:557-565.
    [117]J.A.Cobb.Time-shift scheduling;Fair scheduling of flow in high-speed networks[J].IEEE/ACM Trans.on Networking,June 1999,6(3);274-285.
    [118]王重钢,隆克平,龚向阳,程时端.分组交换网络中队列调度算法的研究及其展望[J].电子学报,2001,29(4);553-559.
    [119]S.Floyd,V.Jacobson.Random early detection gateways for congestion avoidance[J].IEEE/ACM Trans.Networking,Aug.1993,1(4);397-413.
    [120]A.L.Ephremides.Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks[J].IEEE Automatic Control,Dec.1992,37(12);1936-1948.
    [121]M.Bramson.Stability of two families of queueing networks and a discussion of fluid limits[J].Queueing Systems;Theory and Applications,1998,28;7-31.
    [122]H.Chen.Fluid approximations and stability of multiclass queueing networks Ⅰ;Work-conserving disciplines[J].Annals of Applied Probability,1995,5;637-665.
    [123]J.G.Dai.On positive Harris recurrence of multiclass queueing networks;A unified approach via fluid limit models[J].Annals of Applied Probability,1995,5;49-77.
    [124]J.G.Dai.A fluid-limit model criterion for instability of multiclass queueing networks[J].Annals of Applied Probability,1996,6;751-757.
    [125]J.G.Dai,S.P.Meyn.Stability and convergence of moments for multiclass queueing networks via fluid limit models[J].IEEE Transactions on Automatic Control,1995,40;1889-1904.
    [126]J.G.Dai,G.Weiss.Stability and instability of fluid models for re-entrant lines[J].Mathematics of Operations Research,1996,21;115-134.
    [127]A.Puhalskii,A.N.Rybko.Non-ergodicity of queueing networks under non-stability of their fluid models[R].Technical Report 141,University of Colorado at Denver,Center for Computational Mathematics,April 1999.
    [128]A.N.Rybko,A.L.Stolyar;Ergodicity of stochastic processes describing the operation of open queueing networks[J].Problems of Information Transmission,1992,28;199-220.
    [129]A.L.Stolyar.On the stability of multiclass queueing networks;a relaxed sufficient condition via limiting fluid processes[J].Markov Processes and Related Fields,1995,1;491-512.
    [130]J.G.Dai.Stability of fluid and stochastic processing networks[R].Miscellanea Publication,No.9,Centre for Mathematical Physics and Stochastics,Denmark(http;//www.maphysto.dk/),January 1999.
    [131]郑维行,王声望.实变函数与泛函分析[M].北京;高等教育出版社,1980.
    [132]夏道行.实变函数与泛函分析[M].第二版,北京;人民教育出版社,1980.
    [133]程其襄.实变函数与泛函分析基础[M].北京;高等教育出版社,1983.
    [134]程云鹏.矩阵论[M].第二版,西安;西北工业大学出版社,1999;80-82.
    [135]P.Billingsley.Convergence of Probability Measures[M].New York;John Wiley & Sons,1968.
    [136]G.Birkhoff.Tres observaciones sobre el algebra lineal[R].Univ.Nac.Tucuman Rev.Ser.,1946,A5;147-150.
    [137]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京;清华大学出版社,2003;2-3.
    [138]R.E.Tarjan.Data structures and network algorithms[J].Society for Industrial and Applied Mathematics,Pennsylvania,Nov 1983.
    [139]J.E.Hopcroft,R.M.Karp.An n5/2 algorithm for maximum matching in bipartite graphs[J].Society for Industrial and Applied Mathematics J.Comput.,1973,2;225-231.
    [140]E.A.Dinic.Algorithm for solution of a problem of maximum flow in a network with power estimation[J].Soviet Math.Dokl.1970,11;1277-1280.
    [141]M.Ali,H.Nguyen.A neural network implementation of an input access scheme in a high-speed packet switch[A].In;Proc.GLOBECOM1989[C],Dallas TX,Nov 1989 1;1192-1196.
    [142]A.Marrakchi,T.P.Troudet.A neural net arbitrator for large crossbar packet switches[J].IEEE Transactions on Circuits and Systems,July 1989,36(7);1039-1041.
    [143]T.P.Troudet,S.M.Walters.Hopfield neural network architecture for crossbar switch control[J].IEEE Transactions on Circuits and Systems,Jan.1991,38(1);42-57.
    [144]M.Akata.A 250 Mb/s 32x32 CMOS crosspoint LSI for ATM switching systems[J].IEEE J.Solid-State Circuits,Dec.1990,25(6);1433-1439.
    [145]H.Matsunaga,H.A.Uematsu.A 1.5Gbit/s 8x8 cross-connect switch using a time reservation algorithm[J].IEEE J.on Sel.Areas in Commu.,Oct.1991,9(8);1308-1317.
    [146]S.P.Majumder,R.Gangopadhyay.Optimum architecture for input queueing ATM switches[J].IEE Electronics Letters,28th March 1991,27(7);555-557.
    [147]H.Obara,Y.Hamazumi.Parallel contention resolution control for input queueing ATM switches[J].IEE Electronics Letters,23rd April 1992,27(9);838-839.
    [148]H.Obara,S.Okamoto,Y.Hamazumi.Input and output queueing ATM switch architecture with spatial and temporal slot reservation control[J].IEE Electronics Letters,2nd Jan.1992,22-24.
    [149]T.Anderson,S.Owicki,J.Saxie,C.Thacker.High speed switch scheduling for local area networks[J].ACM Trans.Comput.Syst.,Nov.1993,11(4);319-352.
    [150]D.Stilfiadis,A.Verma.Providing Bandwidth Guarantees in an Input-Buffered Crossbar Switch[A].In;Proc.INFOCOM1995[C].Boston,MA,April 1995;960-968.
    [151]N.McKeown.The iSLIP scheduling algorithm for input-queued switches[J]. IEEE/ACM Trans.on Networking,April 1999,7(2);188-201.
    [152]J.Chao.Saturn;a terabit packet switch using dual round-robin[J].IEEE Communication.Magazine.December 2000;78-84.
    [153]S.Phillips,N.Reingold.Fair Prioritized Scheduling in an Input-Buffered Switch[A].In;Proc.IEEE/IFIP international conference on Broadband Communications[C].Montreal,Canada,Apr.1996;358-369.
    [154]Mekkittikul,N.Nckeown.A Practical Scheduling Algorithm to Achieving 100% Throughput in Input-Queued Switches[A].In;Proc.IEEE INFOCOM1998[C].San Francisco;792-799.
    [155]SIM;A Fixed Length Packet Simulator.[DB/OL].;http;//klamath.stanford.edu/tools/SIM/,2005-04-02.
    [156]XILINX.什么是可编程逻辑[EB/OL].;http;//www.xilinx-china.com/company/about/programmable.html,2007-04-02.
    [157]YD/T 1156-2001.高端路由器测试规范[S].北京;中国标准出版社,2001.
    [158]YD/T 1097-2001.路由器设备技术规范—高端路由器[S].北京;中国标准出版社,2001.
    [159]蒋林涛.中国在ITU-T FG IPTV第二次会议上取得丰硕成果[EB/OL].;http;//www.ccsa.org.cn/worknews/content.php3?id=1076,2006-11-01.
    [160]FG IPTV.FG IPTV-OD-0005 Performance monitoring for IPTV[DB/OL].;www.itu.int/ITU-T/IPTV/events/072006/docs/OD/FGIPTV-OD-0005e.doc,2006-07-14.
    [161]FG IPTV.FG IPTV-OD-0015 IPTV Security Aspecsts[DB/OL].;www.itu.int/ITU-T/IPTV/events/072006/docs/OD/FGIPTV-OD-0015e.doc,2006-07-14.
    [162]FG IPTV.FG IPTV-OD-0019 IPTV End Systems[DB/OL].;www.itu.int/ITU-T/IPTV/events/072006/docs/OD/FGIPTV-OD-0019e.doc,2006-07-14.
    [163]FG IPTV.FG IPTV-OD-0018 IPTV middleware,Application,and Content Platforms[EB/OL].;www.itu.int/ITU-T/IPTV/events/072006/docs/OD/FGIPTV-OD-0018e.doe,2006-07-14.