紫外光固化环氧丙烯酸酯/SiO_2(TiO_2)纳米复合涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光固化是一种环保技术,具有环境友好、效率高、经济和节约能源等优点,在日益苛刻的环保要求下,该项技术获得了前所未有的发展,已被广泛用于电子材料封装、塑料制件表面保护、木地板上光、汽车小面积修补等行业中。另一方面,通过纳米无机相来提高有机涂层的耐刮伤性、耐磨性等性能已成为学术界共识。若将纳米无机相引入至紫外光固化涂料中,则可完美结合纳米复合与紫外光固化技术的优点,大大推动紫外光涂料的发展与应用。目前,文献中虽然对紫外光固化纳米复合涂层也有一些研究报道,但仍然存在研究体系有限、制备方法少、不同纳米复合体系的紫外光固化动力学行为缺乏系统研究等问题。本研究以SiO_2和TiO_2为纳米无机相,设计制备了三种不同的紫外光固化纳米复合涂层体系,系统研究了这些纳米复合涂层的紫外光固化动力学、表面性能、热学性能和光学性能,以期为紫外光固化纳米复合涂层的应用提供理论基础。具体研究内容及结果如下:
     紫外光固化纳米SiO_2颗粒涂层
     按Stober方法制备了纳米二氧化硅醇溶胶粒子,在同一介质中直接采用甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)改性,再通过乙醇脱除获得浓缩的改性二氧化硅粒子在游离MPS中的分散液,在浓缩液中加入光引发剂,涂膜光固化后得到了高无机相含量的纳米SiO_2颗粒涂层。考察了纳米SiO_2粒径对浓缩液粘度、光固化动力学以及涂层表面特性、热学和光学性能的影响规律。研究表明,该方法制备的涂层表面光滑且透明,随着纳米SiO_2粒径的增加,纳米复合涂层的光固化速度,最终双键转化率和表干时间增加,但表面粗糙度、玻璃化转变温度和紫外光吸收性能有所下降。
     紫外光固化环氧丙烯酸酯/二氧化硅纳米复合涂层
     将按前述类似方法制备的改性SiO_2粒子(40nm)与环氧丙烯酸酯(EA)和三羟甲基丙烷三丙烯酸酯(TMPTA)等组分超声共混制备了紫外光固化环氧丙烯酸酯/SiO_2纳米复合涂层。考察了纳米SiO_2含量对涂层形态、紫外光固化行为、热稳定性和光学性能的影响规律,用红外光谱系统地研究了纳米复合涂层的紫外光固化动力学的影响因素,包括引发剂类型、用量、光强、膜厚、固化气氛、杂质(MPS、乙醇和水)等,并与这些因素对纯环氧丙烯酸酯的紫外光固化动力学的影响规律进行了比较。同时,采用四乙氧基硅烷(TEOS)在EA存在下水解,除乙醇,然后与TMPTA、引发剂等组分混合(即原位法)制备了紫外光固化环氧丙烯酸酯/SiO_2纳米复合涂层,比较了该方法与上述方法(即共混法)制备的纳米复合涂层的固化行为、微结构和性能。
    研究表明,采用SiO_2浓缩液超声共混法制得的纳米复合涂层中,纳米SiO_2含量即使高达22.5%时仍具有良好的分散性,突出的涂层透明性。随着纳米SiO_2含量的增加,涂层的紫外屏蔽性增加,热稳定性提高,但纳米SiO_2对EA涂层的阻燃性几乎没有影响。
     动力学研究表明,纳米SiO_2的引入不可思议地提高了EA体系的紫外光固化速度,但是由于纳米二氧化硅胶体粒子上的多孔性,纳米复合涂层与EA体系相比具有更强的氧敏感性,从而导致涂层的表干时间随着纳米SiO_2用量的增加而变长。与EA体系相比,纳米复合涂层具有更高的固化速度和最终转化率。MPS和乙醇的存在提高了纳米复合涂层的紫外光固化速度,然而水的存在却减慢涂层的光固化速度。
     与共混法相比,原位法得到的纳米复合涂层中TEOS只是部分水解,生成的是一种与有机相缠结的无机相结构。原位法制备的纳米复合涂层比共混法制备的纳米复合涂层具有更高的UV固化速度,但是,共混法制备的纳米复合材料由于良好的纳米二氧化硅的分散而具有高的玻璃化转变温度和强的紫外吸收性能。紫外光固化环氧丙烯酸酯/TiO_2纳米复合涂层
     以TMPTA和醋酸丁酯为分散介质,通过纳米TiO_2粉体的球磨分别制备了TST和TSB两种分散良好的纳米TiO_2浆料。将上述浆料与EA、TMPTA、1,6-己二醇二丙烯酸酯(HDDA)等组分混合制备了两个系列的紫外光固化环氧丙烯酸酯/TiO_2纳米复合涂层。考察了纳米TiO_2的引入和醋酸丁酯的存在对纳米复合涂层紫外光固化行为和性能的影响规律。研究发现,引入纳米TiO_2可以提高涂层的热稳定性和紫外屏蔽性能。与采用TST浆料制备的纳米复合涂层相比,利用TSB浆料制备的纳米复合涂层具有较高的最终双键转化率、良好的透明性,但是表面粗糙度稍大、紫外屏蔽性能、热学性能和玻璃化转变温度均较低。动力学研究表明,由于纳米TiO_2强的UV吸收性能,它的引入会严重地降低引发剂的引发效率,进而降低紫外光固化体系的固化速率,且随着TiO_2含量的增加,这种降低作用越明显,但是醋酸丁酯的存在有助于减弱纳米TiO_2对紫外光固化速度的降低作用。此外,低效引发剂的使用、固化气氛中氧气浓度的增加、膜厚的降低以及辐射光强的减弱都会加强氧气对含TiO_2纳米复合涂层的阻聚作用。
UV curing technology is one technology with advantages such as environmental-friend, efficiency, economy and energy saving. Due to even strict environmental protection policy, this new technology has gained a very rapidly development in the past few years and therefore being widely used in electronic packaging, surface protection of plastic device, flooring and small pitch car refinish. On the other hand, in recent years, nanocomposites become the hot topic for research and development in order to improve the property and comprehensive performance of traditional organic coating. The UV curable nanocomposite coatings combine the advantages of nanomaterials and UV curing technology together and propel the development and application of UV curable coatings greatly. Up to now, some UV curable nanocomposite coatings were reported. However, the types of the coatings are still limited and only a few reports about its preparation and photopolymerization kinetics were available. In this study, three series of nancomposite coatings with SiO_2 and TiO_2 as inorganic phase were prepared. Their UV curing behavior, surface property, thermal property and optical property were investigated as well. All these results are expected to provide some concrete evidence for the development and application of UV curable nanocomposites. The detailed research contents and results are summarized as follows:
    UV-curable SiO_2 particle nanocomposite coatings
    Nanosilica sols with various particle size were firstly synthesized by Stober method, and then modified by 3-trimethoxysilylpropyl methacrylate (MPS). After that, the ethanol was evaporated and resulted in condensed nanoslica sol with residual free MPS as the dispersing media. The particle size, viscosity and surface modification situation for the condensed nanosilica sol were characterized as well. The obtained paste-like slurries were then cured under UV irradiation directly after adding the photoinitiator, Irgacure 651. With increasing nanosilica particle size, the photopolymerization rate, final double bond conversion, and tack-free time of nanocomposites increased, while the surface roughness, glass-transition temperature, and UV absorbance of nanocomposites decreased.
    UV-curable epoxy acrylate/SiO_2 nanocomposite coatings
    The condensed nanosilica (40nm) was also incorporated into epoxy acrylate prepolymer and trimethylolpropane triacrylate (TMPTA) reactive dilute to prepare
    UV-curable epoxy acrylate/SiO_2 nanocomposite coatings. Effect of the silica content on the UV-cured coatings was investigated. The influence of photoinitiator types, photoinitiator content, UV irradiation intensity, coating thickness, curing with or without oxygen and the impurities such as ethanl, MPS, water, etc. on the UV-curing behavior were also investigated. Finally, the influence of preparing method, namely blending method described above and in situ method in which tetraethyl orthosilicate (TEOS) was directly hydrolyzed and condensed in EA, on the structure and property of nanocomoposites were compared.
    Improved inorganic particles dispersion state, thermal and optical properties were observed as well. It was also found that embedment of condensed functional nanosilica prepared by sol-gel method can surprisingly accelerate the UV curing process of epoxy acrylate matrix. It's found that the existence of MPS and ethanol can accelerate the curing speed while the presence of water decelerate the curing speed. Finally, the UV curable nanocomposites are more sensitive to the oxygen compared with the pure organic system. During the blending method, TEOS completely hydrolyzed to form nanosilica particles, which were evenly dispersed in the polymer matrix. However, for the in situ method, TEOS only partially hydrolyzed to form inorganic phases intertwisted with organic molecules. The nanocomposites prepared by the in situ method had much higher curing rates than those from the blending method, but the latter had greater glass transition temperatures and UV shielding property than the former because the blending method caused uniformly dispersed nanosilica particles whereas the in situ method did not.
    UV-curable epoxy acrylate/TiO_2 nanocomposite coatings
    Nano-TiO_2 slurries with TMPTA or n-butyl acetate as dispersing media were prepared by ball milling methods. Then, these slurries were incorporated into epoxy acrylate matrix to prepare two series of the nanocomposite formulations. In order to further improve the dispersion of titanium dioxide in the formulation, the ultrasonication was used to treat the formulation.The influence of nano-TiO_2 content and volatile organic compound on UV-curing behaviour, surface property, thermal property, optical property and titanium dioxide dispersing state of nanocomposites were investigated.
    TEM pictures show that the titanium dioxide has a good dispersion both in trimethylolpropane triacrylate and n-butyl acetate after the ball milling. The viscosity
    measurement showed that the type of the slurry has a great effect on the viscosity of nanocomposite formulation. In brief, titanium dioxide with TMPTA as dispersion media enhanced the viscosity of formulation, while the titanium dioxide with n-butyl acetate as dispersion media decreased the viscosity.
    It was found that nano-TiO_2 slurry with different medium had various impacts on the photopolymerization kinetics, tack free time, thermal and optical properties of nanocomposites. The nano-TiO_2 slurry in TMPTA decreased the UV cured rate of the nanocomposites, while the nano-TiO_2 slurry in butyl acetate increased the UV cured rate of the nanocomposites. With the increasing nano-TiO_2 content, this tendency is more obvious. However, the former could more efficiently improve tack free time, thermal stability and UV shielding properties of their nanocomposite coats than the latter.
引文
1.危恒毅,宋晓锐,杨辉荣,杨敏.紫外光固化涂料的发展现状[J].广东化工,2001,(6):27-29.
    2.滕蔓.紫外光固化涂料简介[J].化学教育,2003,(7-8):6-8.
    3.王德海,江棂.紫外光固化材料-理论与应用[M],科学出版社,北京,2001:P11.
    4.朱胜武,施文芳.紫外光/电子束固化市场状况及发展趋势[J].辐射研究与辐射工艺学报,2001,19(3):161-168.
    5.朱胜武,施文芳.紫外光/电子束固化市场分析[J].精细与专用化学品,2001,(7):13-15.
    6. Sun P. Dual cure system for coatings application[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 297-300.
    7. Kim Y B, Park J S, Cho J D, Hong J W. Dual curable acrylic pressure sensitive adhesive based on UV and thermal process[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 301-306.
    8. Xue Z, Lu J, Dong R, Zou J. Application of dual cure coatings[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 435-440.
    9.庄祥英,陈用烈.环氧/环氧丙烯酸酯的光交联和动态力学性能[J].功能高分子学报,1995,8(1):67-72.
    10.丁伟,马家举,江棂.紫外光和热双重固化对涂料性能的研究[J].淮北煤炭师范学院学报(自然科学版),2004,25(1):27-30.
    11.余宗萍.双重固化的丙烯酸酯聚氨酯合成及性能探讨[J].中国涂料,2005,20(8):21-23.
    12.廖正福,袁慧雅,庞来兴,齐宇颂,陈用烈.光-暗双固化共性覆膜胶研究进展[J].绝缘材料,2004,(4):52-56.
    13.唐薰,潘山存,陈洪,李喜见.UV辐射固化胶粘剂综述[J].化学与粘合,2003,(6):296-299.
    14. Vabrik R, Czajlik I, Tury G., Rusznok I, Ille A, Vig A. A study of epoxy resin-acrylated polyurethane semi-interpenetrating polymer networks[J]. J Appl Polym Sci, 1998, 68(1): 111-119.
    15.肖善强,陈其道,陈明,洪啸吟.环氧-丙烯酸酯混杂光固化体系的研究[J].高等学校化学学报,2002,23(9):1797-1800.
    16.刘晓暄,任亚娥,郭旭,张婷,韩梅,吴光国.环氧丙烯酸酯/烯丙基醚体系的光固化动力学[J].中南民族大学学报(自然科学版),2004,23(4):1-4.
    17.陈明,陈其道,肖善强,洪啸吟.混杂光固化体系的原理及应用[J].感光科学与光化学,2001,19(3):208-216.
    18.杨永源,吴玉民,胡 辉,谭昊涯.辐射固化材料的现状和某些进展[J].感光科学与光化 学,2002,20(3):230-238.
    19.张兴华,莫清兰.光固化材料及其应用[J].化学与粘合,1994,(4):218-222.
    20.金养智,洪啸吟.我国紫外光固化涂料现状[J].精细与专用化学品,1999,(7):9-10.
    21.周晓燕,马家举,江棂.紫外光固化涂料的组成及研究[J].化工新型材料,2003,31(7):20-23.
    22.孟庆飞,华明杨.紫外光固化涂料的研究进展[J].安徽化工,2002,118(4):17-18.
    23.许岩,何德良,曾凌三.铝及其合金电化学复合处理技术及研究进展[J].电镀与涂饰,2000,19(1):47-49.
    24.游长江,贾德民,章永化.聚合物/层状硅酸盐插层纳米复合材料的研究[J].广州化学,2001,26(1):42-46.
    25.华道本.纳米技术和纳米高分子复合材料[J].现代塑料加工应用,1999,11(6):52-56.
    26. Premachandran R, Banerjee S, John V T, McPherson G L, Akkara J A, Kaplan D L, Akkava A, Kaplan D L. The Enzymatic Synthesis of Thiol-Containing Polymers to Prepare Polymer-CdS Nanocomposites[J]. Chem Mater, 1997, 9(6): 1342-1347.
    27.熊传溪.超微细Al_2O_3增韧增强聚苯乙烯的研究[J].高分子材料科学与工程,1994,10(4):69-73.
    28.宋国君,舒文艺.聚合物基纳米复合材料[J].材料导报,1996,(4):57-62.
    29.胡平等.插层聚合制备聚合物-层状硅酸盐纳米复合材料.全国高分子学术论文报告会论文集,合肥:1997,P691.
    30.王佛松,漆宗能等.插层制备聚合物-层状硅酸盐纳米复合材料[C].全国高分子学术论文报告会论文集,合肥:1997,P971.
    31. Vaia R A, Vasudevan S, Krawiec W, Scanlon L G, Giannelis E P. New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates[J]. Adv Mater, 1995, 7(2): 154-156.
    32.任斌,黄河,余成.纳米复合材料的研究进展[J].信息记录材料,2004,5(2):44-48.
    33.徐国财,马家举,邢宏龙.纳米粒子的分散及其有机复合材料的复合技术[J].中国科学基金,2001,(2):109-112.
    34.张竞敏,杨治中,唐爱民,唐正文,杨锦宗.SiO_2纳米粒子的制备、测定及其分散性的研究[J].精细化工,1997,14(1):14-21.
    35.曹明礼,余永富,袁继祖,于阳辉,车丽萍.插层型粘土复合材料的制备与研究现状[J].非金属矿,2002,25(4):5-7.
    36.任杰,刘艳,唐小真.聚合物基有机-无机纳米复合材料研究及应用前景[J].材料导报,2003,17(2):58-62.
    37. Uhl F M, Davuluri SP, Wong SC, Webster DC. Organically modified montmorillonites in UV curable urethane acrylate films[J]. Polymer, 2004, 45(18): 6175-6187.
    38. Uhl F M, Davuluri S P, Wong S C, Webster D C. Polymer Films Possessing Nanoreinforcements via Organically Modified Layered Silicate[J]. Chem Mater, 2004, 16(6): 1135-1142.
    39. Decker C, Zahouily K, Keller L, Benfarhi S, Bendaikha T, Baron J. Ultrafast synthesis of bentonite-acrylate nanocomposite materials by UV-radiation curing[J]. J Mater Sci, 2002, 37(22): 4821-4828.
    40. Benfarhi S, Decker C, Keller L, Zahouily K. Synthesis of clay nanocomposite materials by light-induced crosslinking polymerization[J]. Eur Polym J, 2004, 40(3): 493-501.
    41. Keller L, Decker C, Zahouily K, Benfarhi S, Meins J M L, Miehe-Brendle J. Synthesis of polymer nanocomposites by UV-curing of organoclay-acrylic resins [J]. Polymer, 2004, 45(22): 7437-7447.
    42. Decker C, Moussa K, Bendaikha T. Photodegradation of UV-cured coatings Ⅱ. Polyurethane-acrylate networks[J]. J Polym Sci A, 1991, 29(5): 739-747.
    43. Decker C, Biry S. Light stabilisation of polymers by radiation-cured acrylic coatings[J]. Prog Org Coat, 1996, 29(1-4): 81-87.
    44. Decker C, Zahouily K, Valet A. Curing and Photostabilization of Thermoset and Photoset Acrylate Polymers[J]. Macromol Mater Eng, 2001, 286(1): 5-16.
    45. Decker C, Zahouily K. Photostabilization of polymeric materials by photoset acrylate coatings[J]. Radiat Phys Chem, 2002, 63(1): 3-8.
    46.王慧敏,王炎,李林林,韩冬冰.环氧丙烯酸酯/蒙脱土纳米复合材料的合成及性能研究[J].材料科学与工程学报,2004,22(6):906-908.
    47.侣庆法,唐中华,范晓东.紫外光固化环氧丙烯酸酯/蒙脱土纳米复合材料的合成与表征[J].高分子材料科学与工程,2004,20(4):206-209.
    48.侣庆法,罗冠鸿,范晓东.紫外光固化聚氨酯丙烯酸酯/蒙脱土纳米复合材料的制备与表征[J].高分子材料科学与工程,2005,21(3):278-281.
    49.韩海军,梁淑君.聚合物/无机纳米复合材料的研究现状[J].科技情报开发与经济,2005,15(7):148-149.
    50.李笃信,贾德民.聚合物/无机物纳米复合材料研究进展及应用前景[J].高分子材料科学与工程,2003,19(4):22-26.
    51. Decker C. The use of UV irradiation in polymerization[J]. Polym Int, 1998, 45(2): 133-141.
    52. Decker C. Photoinitiated crosslinking polymerization[J]. Prog Polym Sci, 1996, 21(4): 593-650.
    53. Decker C. Kinetic Study and New Applications of UV Radiation Curing[J]. Macromol Rapid Commun, 2002, 23(18): 1067-1093.
    54. Xu G., Li A, Zhang L, Wu G., Yuan X, Xie T. Synthesis and characterization of silica nanocomposite in situ photopolymerization[J]. J Appl Polym Sci, 2003, 90(3): 837-840.
    55. Bauer F, Ernst H, Decker U, Findeisen M, Glasel HJ, Langguth H, Hartmann E, Mehnert R, Peuker C. Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 1 FTIR and multi-nuclear NMR spectroscopy to the characterization of methacryl grafting[J]. Macromol Chem Phys, 2000, 201(18): 2654-2659.
    56. Bauer F, Sauerland V, Ernst H, Glasel H J, Naumov S, Mehnert R. Preparation of Scratch-and Abrasion-Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles, 4 Application of MALDI-TOF Mass Spectrometry to the Characterization of Surface Modified Nanoparticles[J]. Macromol Chem Phys, 2003, 204(3): 375-383.
    57. Bauer F, Sauerland V, Glasel H J, Ernst H, Findeisen M, Hartmann E, Langguth H. Marquardt B, Mehnert R. Preparation of Scratch and Abrasion Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles, 3. Effect of Filler Particles and Grafting Agents[J]. Macromol Mater Eng, 2002, 287(8): 546-552.
    58. Matejka L, Dukh O. Organic-inorganic hybrid networks[J]. Macromol Symp, 2001, 171(1): 181-188.
    59. Oh I S, Park N H, Suh K D. Mechanical and surface hardness properties of ultraviolet-cured polyurethane acrylate anionomer/silica composite film[J]. J Appl Polym Sci, 2000, 75(7): 968-975.
    60. Salleh N G, Glasel H-J, Mehnert R, Alias M S. Scratch and abrasion properties of the nanocomposites[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 541-546.
    61. Zou K, Soucek M D. UV-Curable Organic-Inorganic Hybrid Film Coatings Based on Epoxidized Cyclohexene Derivatized Linseed Oil[J]. Macromolecular Chemistry and Physics, 2004, 205(15): 2032-2039.
    62. Sepeur S, Kunze N, Werner B, Schmidt H. UV curable hard coatings on plastics[J]. Thin Solid Films, 1999, 351(1-2): 216-219.
    63. Muh E, Stieger M, Klee J E, Frey H, Mulhaupt R. Organic-inorganic hybrid networks by the sol-gel process and subsequent photopolymerization[J]. J Polym Sci A, 2001, 39(24): 4274-4282.
    64.任洪波,张林,杜爱明,邓龙江.紫外光固化丙烯酸酯/二氧化硅杂化光学增透膜的研制[J].强激光与粒子束,2004,16(5):623-626.
    65. Xu J, Shi W, Pang W. A novel UV-curable inorganic/organic hybrid urethane acrylate[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 497-504.
    66.蔡延庆,王德海,黄兴耀.紫外光固化材料表面性能的研究[J].涂料工业,2005,35(5):35-38.
    67.李爱元,徐国财.紫外光原位固化纳米复合材料制备的优化设计[J].材料保护,2003,36(8):13-15.
    68. Yang J, Zhang X, Zeng Z, Chen Y. Stabilized dispersion of titania nanoparticle in UV-curable matrix through Sol-Gel process[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 533-540.
    69. Soucek M D, Johnson A H, Meemken L E, Wegner J M. Preparation of nano-sized UV-absorbing titanium-oxo-clusters via a photo-curing ceramer process[J]. Polym Adv Tech, 2005, 16(2-3): 257-261.
    70. Kreutzer A. Additives made with nanomaterials-paradigm shift in UV-curable coating formulations[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 547-547.
    71. Wei J, Li H, Sun Z, Wang L. Influence ofnano powders on performance of white UV curable powder coatings[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 683-688.
    72. Zou J, ZhaoY, Shi W, Shen X, Nie K. Preparation and characters of hyperbranched polyester-based organic-inorganic hybrid material compared with linear polyester[J]. Polymers for Advanced Technologies, 2005, 16(1): 55-60.
    73. Zhao Y, Yang J, Shi W, Ming H. Preparation and characterization of Ⅳ curable ZnS/hyperbranched polyester nanocompostes[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 485-491.
    74. Yang Z, Zou J, Shi W. Organic/inorganic hybrid based on hyperbranehed aliphatic polyester/polyester acrylate[C]. Proceeding of Radteeh Asia Conference, Shanghai, 2005: 524-532.
    75. Hatanaka K. Cationic polymerization of an organic/inorganic hybrid oxetane compound bearing cycloaliphatic epoxide[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 505-509.
    76. Crivello J V, Mao Z B. Preparation and Cationic Photopolymerization of Organic-Inorganic Hybrid Matrixes[J]. Chem Mater, 1997, 9(7): 1562-1569.
    77. Ceska G W, Leroy C, Schaeffer B. Hybrid oligomers-organic/inorganic acrylics[C]. Proceeding of Radteeh Asia Conference, Shanghai, 2005: 455-460.
    78. Chang C W, Chu W C. Photoalignment of liquid crystals using photo-cross-linkable epoxy resin polymeriC] Proceeding of Radtech Asia Conference, Shanghai, 2005: 441-444.
    79. Zhao E. Radeure Markets: Trends across regions[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 420-426.
    80.广东牙病防治记者.纳米复合树脂[J].广东牙病防治,2005,(3):8-8.
    81.安普杰,王国建,刘琳.紫外光固化环氧丙烯酸酯涂料的表征[J].上海涂料,2003,41(1):27-30.
    82. Kim W S, Houbertz R, Lee T H, Bae B S. Effect of photoinitiator on photopolymerization of inorganic-organic hybrid polymers (ORMOCER(?))[J]. J Polym Sci B, 2004, 42(10): 1979-1986.
    83. Cho J D, Jub H T, Han S T, Hong J W. Effects of silica nanoparticles on the kinetics and surface properties of UV-curable polyester acrylate coatings[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 718-723.
    84. Cho J D, Ju H T, Hong J W. Photocuring kinetics of UV-initiated free-radical photopolymerizations with and without silica nanoparticles[J]. J Polym Sci A, 2005, 43(3): 658-670.
    85. Bosch P, Monte F D, Mateo J L, Levy D. Photopolymerization of hydroxyethylmethacrylate in the formation of organic-inorganic hybrid sol-gel matrices[J]. J Polym Sci A, 1996, 34(16): 3289-3296.
    86. He J, Soucek M D. Preparation a thiol siloxane colloid for UV-curable organic-inorganic films based on norbornene linseed oil[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 470-484.
    87. Zong Z G, Soucek M D, Xue C C. Unusual inorganic phase formation in ultraviolet-curable organic-inorganic hybrid films[J]. J Polym Sci A, 2005, 43(8): 1607-1623.
    88. Innocenzi P, Brusatin G. A comparative FTIR study of thermal and photo-polymerization processes in hybrid sol-gel films[J]. Journal of Non-Crystalline Solids, 2004, 333(2): 137-142.
    89. Soppera O, Croutxe-Barghorn C. Real-time Fourier transform infrared study of free-radical UV-induced polymerization of hybrid sol-gel. I. Effect of silicate backbone on photopolymerization kinetics[J]. J Polym Sci A, 2003, 41(5): 716-724.
    90. Soppera O, Croutxe-Barghorn C. Real-time Fourier transform infrared study of the free-radical ultraviolet-induced polymerization of a hybrid sol-gel. Ⅱ. The effect of physicochemical parameters on the photopolymerization kinetics[J]. J Polym Sci A, 2003, 41(6): 831-840.
    91. Croutxe-Barghorn C, Feuillade M, Allonas X, Carre C, Fouassier J P. Photoinitiating systems for hybrid sol-gel coatings: toward enhanced materials for UV-curing applications[C]. Proceeding of Radtech Asia Conference, Shanghai, 2005: 659-664.
    92.周凤,李爱元.紫外光可固化纳米SiO_2复合体系流变性的研究[J].淮北煤炭师范学院学报,2004,25(3):30-35.
    93.徐国财,李爱元,储昭荣.纳米SiO_2在紫外光固化体系中的分散稳定性[J].涂料工业, 2003,33(8):12-14.
    94.徐国财,李爱元.纳米SiO_2对紫外光固化体系性质的影响[J].安徽理工大学学报,2003,23(2):53-56.
    95. Amberg-Schwab S, Katschorek H, Weber U, Burger A, Hansel R, Steinbrecher B, Harzer D. Inorganic-Organic Polymers as Migration Barriers Against Liquid and Volatile Compounds[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 699-703.
    96. Wouters M E L, Wolfs D P, Linde M C, Hovens J H P, Tinnemans A H A. Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method[J]. Prog Org Coat, 2004, 51(4): 312-319.
    97. Glasel H J, Bauer F, Ernst H, Findeisen M, Hartmann E, Langguth H, Mehnert R, Schubert R. Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 2 Characterization of radiation-cured polymeric nanocomposites[J]. Macromol Chem Phys, 2000, 201(18): 2765-2770.
    98. Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Busoli S, Pasquali L, Nannarone S. Flame retarding poly(methyl methacrylate) with nanostructured organic-inorganic hybrids coatings [J]. Polymer, 2003, 44(16): 4463-4470.
    99. Gilberts J, Tinnemans A H A, Hogerheide M P, Koster T P M. UV Curable Hard Transparent Hybrid Coating Materials on Polycarbonate Prepared by the Sol-Gel Method[J]. Journal of Sol-Gel Science and Technology, 1998, 11(2): 153-159.
    100. Gigant K, Posset U, Schottner G, Baia L, Kiefer W, Popp J. Inorganic-Organic Cross-Linking in UV Curable Hard Coats Based Upon Vinyltriethoxysilane-Tetraethoxysilane-Polyfunctional Acrylate Hybrid Polymers: A Raman Spectroscopic Study[J]. Joumal of Sol-Gel Science and Technology, 2003, 26(1-3): 369-373.
    101.井新利,郑茂盛,金志浩,许晓玲.PMMA-SiO_2原位复合材料的制备及性能研究[J].高分子材料科学与工程,1998,14(4):62-64.
    102.张玲,曾兆华,杨建文,陈用烈.光固化环氧丙烯酸酯/SiO_2杂化材料的研究[J].功能高分子学报,2003,16(4):479-482.
    103.张玲,曾兆华,杨建文,陈用烈.光固化环氧丙烯酸酯树脂有机-无机杂化体系[J].应用化学,2001,18(11):873-876.
    104. Zhang L, Zeng Z, Yang J, Chen Y. Characterization and properties of UV-curable polyurethane-acrylate/silica hybrid materials prepared by the sol-gel process[J]. Polym Int, 2004, 53(10): 1431-1435.
    105.张玲,曾兆华,杨建文,张夏虹,陈用烈.光固化聚氨酯丙烯酸酯杂化材料的核磁共振 谱[J].应用化学,2004,21(3):291-295.
    106.张玲,曾兆华,杨建文,陈用烈.溶胶凝胶法制备光固化聚氨酯丙烯酸酯杂化材料的研究[J].功能高分子学报,2004,17(3):442-446.
    107.刘辉,罗英武,李宝芳.溶胶.凝胶法制备紫外光固化纳米复合涂料[J].高校化学工程学报,2004,18(3):329-333.
    108. Hwang D K, Moon J H, Shul Y G, June K T, Kim D H, Lee DW. Scratch Resistant and Transparent UV-Protective Coating on Polycarbonate[J]. J Sol-Gel Sci Techn, 2003, 26(1-3): 783-787.
    109. Bauer F, Glasel H J, Decker U, Ernst H, Freyer A, Hartmann E, Sauerland V, Mehnert R. Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance[J]. Prog Org Coat, 2003, 47(2): 147-153.
    110. Becker O, Varley R J, Simon G P. Thermal stability and water uptake of high performance epoxy layered silicate nanocomposites[J]. Eur Polym J, 2004, 40(1): 187-195.
    111. Torre L, Frulloni E, Kenny J M, Manferti C, Camino G. Processing and characterization of epoxy-anhydride-based intercalated nanocomposites[J]. J Appl Polym Sci, 2003, 90(9): 2532-2539.
    112. Dong W, Zhu C. Optical properties of UV dye PTP-doped silica film prepared by sol-gel process[J]. Mater Lett, 2000, 45(6): 336-339.
    113. Wenning A. Tailor-made UV-curable powder clear coatings for metal applications[J]. Macromol Symp, 2002, 187(1): 597-604.
    114. Vollath D, Szabo D V. Synthesis and Properties of Nanocomposites[J]. Adv Eng Mater, 2004, 6(3): 117-127.
    115. Andrzejewska E. Photopolymerization kinetics of multifunctional monomers[J]. Prog Polym Sci, 2001, 26(4): 605-665.
    116. Xiong M, You B, Zhou S, Wu L. Study on acrylic resin/titania organic-inorganic hybrid materials prepared by the sol-gel process[J]. Polymer, 2004, 45(9): 2967-2976.
    117. Wang J Z Y, Bogner R H. Techniques to monitor the UV-curing of potential solvent-free film coating polymers[J]. Int J Pharm, 1995, 113(10): 113-122.
    118. Li F, Zhou S, Gu G, You B, Wu L. Preparation and characterization of ultraviolet-curable nanocomposite coatings initiated by benzophenone/n-methyl diethanolamine[J]. J Appl Polym Sci, 2005, 96(3): 912-918.
    119. Wei H, Lu Y, Shi W, Yuan H, Chen Y. UV curing behavior of methacrylated hyperbranched poly(amine-ester)s[J]. J Appl Polym Sci, 2001, 80(1): 51-57.
    120. Studer K, Decker C, Beck E, Schwalm R. Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I [J]. Prog. Org. Coat, 2003, 48(1): 92-100.
    121. Seubert C M, Nichols M E, Cooper V A, Gerlock J L. The long-term weathering behavior of UV curable clearcoats: I. Bulk chemical and physical analysis[J]. Polym Degrad Stabil, 2003, 81(1): 103-115.
    122.李春梁.涂装工艺学[M],北京理工大学出版社,1993.
    123.杨斌,谢美丽等.改性环氧丙烯酸酯胶粘剂的合成与性能[J].中国胶粘剂,1995,4(5):1-4.
    124.褚恒,王燕舞等.纳米技术在军事上的应用[J].化工新型材料,2001,30(8):31-38.
    125.刘琳,安普杰,等.紫外光固化环氧丙烯酸酯涂料的研制[J].涂料工业,2002,(5):4-6.
    126.Rotfy C G,黄毓礼,等.光聚合高分子材料及应用[M].北京科学技术文献出版社,1990.
    127. Bajpai M, Shukla V. Preparation and characterisation of pigmented UV curable coating based on cresol novalac epoxy acrylate resins[J]. Pigm Resin Technol, 2003, 32(6): 382-389.
    128. Stowe R W. Key factors in the UV curing process—the relationship of exposure conditions and measurement in UV process design and process control: part Ⅲ—UV measurement and control[J]. Metal Finishing, 2002, 100(8): 8-11.
    129. Chao C C, Chen W C. Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films[J]. Chem Mater, 2002, 14(10): 4242-4248.
    130. Mantia F P L, Verso S L, Dintcheva N T. EVA Copolymer Based Nanocomposites[J]. Macromol Mater Eng, 2002, 287(12): 909-914.
    131. Oestreich S, Struck D S. Additives for UV-curable coatings and inks[J]. Macromol Symp, 2002, 187(1): 333-342.
    132. Zhang L, Zeng Z H, Yang J W, et al. Structure-property behavior of UV-curable polyepoxy-acrylate hybrid materials prepared via sol-gel process[J]. J Appl Polym Sci, 2003, 87(10): 1654-1659.
    133. Bauer F, Glasel H J, Hartmann E, et al. Surface modification of nanoparticles for radiation curable acrylate clear coatings[J]. Nucl Instrum Meth B, 2003, 208(complete): 267-270.
    134. Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interface Sci, 1968, 26: 62-69.
    135. Suratwala T I, Hanna M L, Miller E L, Whitman P K, Thomas I M, Ehrmann P R, Maxwell R S. Surface chemistry and trimethylsilyl functionalization of Stober silica sois[J]. J Non-CrystSolids, 2003, 316(2-3): 349-363.
    136. West J K, Torre G L, Hench L L. The UV-visible spectrum in porous type Ⅵ silica: Application and theory[J]. J Non-Cryst Solids, 1996, 195(1-2): 45-53.
    137. Zhou S X, Wu L M, Sun J, et al. The change of the properties of acrylic-based polyurethane via addition of nano-silica[J]. Prog Org Coat, 2002, 45(1): 33-42.
    138. Beiner M, Huth H. Nanophase separation and hindered glass transition in side-chain polymers[J]. Nat Mater, 2003,2(9): 595-599.
    
    139. Lombardi V, Bongiovanni R, Malucelli G, Priola A, et al. New acrylic-allylic resins containing perfluoropolyether chains for UV-cured coatings[J]. Pigm Resin Technol, 1999, 28(4): 212-216.
    
    140. Rahman M M, Khan M A, Mustafa A I. Role of sand on curing of partex surface by UV radiation[J].J Appl Polym Sci, 2002, 86(10): 2385-2392.
    
    141. Hsiue G H, LiuY L, Liao H H. Flame-retardant epoxy resins: An approach from organic-inorganic hybrid nanocomposites[J]. J Polym Sci Part A, 2001, 39(7): 986-996.
    
    142. Li F, Zhou S, Wu L. Effects of preparation method on microstructure and properties of UV-curable nanocomposite coatings containing silica [J]. J Appl Polym Sci, 2005, 98(3): 1119-1124.
    
    143. Xiong M N, Gu G X, You B, Wu L M. Preparation and characterization of poly(styrene butylacrylate) latex/nano-ZnO nanocomposites[J].J Appl Polym Sci, 2003, 90(7): 1923-1931.
    
    144. Decker C. UV-radiation curing chemistry[J]. Pigm Resin Technol, 2001, 30(5): 278-286.
    
    145. Scherzer T, Decker U. Kinetic investigations on the UV-induced photopolymerization of a diacrylate by time-resolved FTIR spectroscopy: the influence of photoinitiator concentration, light intensity and temperature[J]. Radiat Phys Chem, 1999, 55(5-6): 615-619.
    
    146. Maffezzoli A, Terzi R. Effect of irradiation intensity on the isothermal photopolymerization kinetics of acrylic resins for stereolithography[J]. Thermochimica Acta, 1998, 321(1-2):111-121
    
    147. Katoh E, Sugisawa H, Oshima A, et al. Evidence for radiation induced crosslinking in polytetrafluoroethylene by means of high-resolution solid-state ~(19)F high-speed MAS NMR[J]. Radiat Phys Chem, 1999, 54(2): 165-171.
    
    148. Parnell S, Min K, Cakmak M. Kinetic studies of polyurethane polymerization with Raman spectroscopy [J].Polymer, 2003, 44(18): 5137-5144.
    
    149. Scherzer T, Mehnert R, Lucht H. On-line monitoring of the acrylate conversion in UV photopolymerization by near-infrared reflection spectroscopy [J]. Macromol Symp, 2004, 205(1):151-162.
    
    150. Anseth K S, Bowman C N, Peppas N A. Polymerization kinetics and volume relaxation behavior of photopolymerized multifunctional monomers producing highly crosslinked networks[J]. J polym Sci Part A, 1994, 32(1):139-147.
    
    151. Carre C, Lougnot D J, Fouassier J-P. Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach[J]. Macromolecules, 1989, 22(2): 791-799.
    
    152. Falk B, Vallinas S M, Crivello J V. Monitoring photopolymerization reactions with optical pyrometry[J]. J Polym Sci Part A, 2003,41(4): 579-596.
    
    153. Norman S A. Photoinitiators for UV and visible curing of coatings: mechanisms and properties[J]. JPhotoch Photobio A, 1996, 100(1-3): 101-107.
    
    154. Studer K, Decker C, Beck E, et al. Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: Part II[J]. Prog Org Coat, 2003, 48(1): 101-111.
    
    155. Guizard C, Bac A, Barboiu M, et al. Hybrid organic-inorganic membranes with specific transport properties: Applications in separation and sensors technologies[J]. Separation and Purification Technology, 2001,25(1-3): 167-180.
    
    156. Awokola M, Lenhard W, Loffler H, et al. UV crosslinking of acryloyi functional polymers in the presence of oxygen[J]. Prog Org Coat, 2002, 44(3): 211-216.
    
    157. Valdez M T, Jenouvrier P, Fick J, Paillard E, Langlet M. Aerosol-gel deposition of photocurable ORMOSIL films doped with a terbium complex[J]. Opt Mater, 2004, 25(2): 179-184.
    
    158. Wu C. Synthesis of polyethylene-octene elastomer/SiO2-TiO2 nanocomposites via in situ polymerization: Properties and characterization of the hybrid[J]. J Polym Sci A, 2005, 43(8): 1690-1701.
    
    159. Segawa H, Tateishi K, Arai Y, Yoshida K, Kaji H. Patterning of hybrid titania film using photopolymerization[J]. Thin Solid Films, 2004, 466(1-2): 48-53.
    
    160. Hiroi R, Ray S S, Okamoto M, Shiroi T. Organically Modified Layered Titanate: A New Nanofiller to Improve the Performance of Biodegradable Polylactide[J]. Macro Rapid Commun, 2004, 25(15): 1359-1364.
    
    161. Singh R S, Grimes C A, Dickey E C. Fabrication of nanoporous TiO_2 films through benard-marangoni convection[J]. Mat Res Innov, 2002, 5(3-4): 178-184.
    
    162. Imai H, Hirashima H, Awazu K. Alternative modification methods for sol-gel coatings of silica, titania and silica-titania using ultraviolet irradiation and water vapor[J]. Thin Solid Films, 1999, 351(1-2): 91-94.
    
    163. Nussbaumer R J, Caseri W R, Smith P, Tervoort T. Polymer-Ti02 Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials[J]. Macro Mater Eng, 2003, 288(1): 44-49.
    
    164. Yang B, Yoon K. Effect of nanoparticles on the conjugated polymer in the PPV/TiO_2 nanocomposites[J]. Syn Metal, 2004, 142(1-3): 21-24.
    
    165. Yang B, Yoon K, Chung K. Dispersion effect of nanoparticles on the conjugated polymer-inorganic nanocomposites[J]. Mater Chem Phys, 2004, 83(2-3): 334-339.
    
    166. Zhang J, Ju X, Wang B, Li Q, Liu T, Hu T. Study on the optical properties of PPV/TiO2 nanocomposites[J]. Syn Metal, 2001, 118(1-3): 181-185.
    
    167. Sharma Shailendra Sharma G D. Charge conduction and photogeneration process in hybrid materials of conjugated polymer and dye-sensitized TiO_2 thin-film device[J]. J Mater Sci, 2004, 15(2): 69-74.
    
    168. Su S, Kuramoto N. Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity [J]. Syn Metal, 2000, 114(2): 147-153.
    
    169. Lu C, Cui Z, Guan C, Guan J, Yang B, Shen J. Research on Preparation, Structure and Properties of TiO_2/Polythiourethane Hybrid Optical Films with High Refractive Index[J]. Macro Mater Eng, 2003, 288(9): 717-723.
    
    170. Wang S, Zhang L, Su H, Zhang Z, Li G, Meng G, Zhang J, Wang Y, Fan J, Gao T. Two-photon absorption and optical limiting in poly(styrene maleic anhydride)/TiO_2 nanocomposites[J]. Phys Lett A, 2001,281(1): 59-63.
    
    171. Best A S, Ferry A, MacFarlane D R, Forsyth M. Conductivity in amorphous polyether nanocomposite materials[J]. Solid State Ionics, 1999, 126(3-4): 269-276.
    
    172. Kwong C, Djurisic A, Chui P, Cheng K, Chan W. Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO_2 nanocomposite solar cells[J]. Chem Phys Lett, 2004, 384(4-6): 372-375.
    
    173. Roberson L B, Poggi M A, Kowalik J, Smestad G P, Bottomley L A, Tolbert L M. Correlation of morphology and device performance in inorganic-organic TiO_2-polythiophene hybrid solid-state solar cells[J]. Coordin Chem Rev, 2004,248(13-14): 1491-1499.
    
    174. Hebestreit N, Hofmann J, Rammelt U, Plieth W. Physical and electrochemical characterization of nanocomposites formed from polythiophene and titaniumdioxide[J]. Electrochim Acta, 2003, 48(13): 1779-1788.
    
    175. Li X, Green A N M, Haque S A, Mills A, Durrant J R. Light-driven oxygen scavenging by titania/polymer nanocomposite films[J]. J Photochem Photobio A, 2004, 162(2-3): 253-259.
    
    176. Kong Y, Du H, Yang J, Shi D, Wang Y, Zhang Y, Xin W. Study on polyimide/TiO_2 nanocomposite membranes for gas separation[J]. Desalination, 2002, 146(1-3): 49-55.
    
    177. Zoppi R A, Neves S, Nunes S P. Hybrid films of poly(ethylene oxide-b-amide-6) containing sol-gel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability [J].Polymer, 2000, 41(14): 5461-5470.
    
    178. Kemmitt T, Al-Salim N I, Waterland M, Kennedy V J, Markwitz A. Photocatalytic titania coatings[J]. Current Appl Phys, 2004, 4(2-4): 189-192.
    179. Zan L, Tian L, Liu Z, Peng Z. A new polystyrene-TiO_2 nanocomposite film and its photocatalytic degradation[J]. Appl Catal A, 2004, 264(2): 237-242.
    
    180. Wu J, Uchida S, Fujishiro Y, Yin S, Sato T. Synthesis and photocatalytic properties of HTaWO_6/(Pt,TiO-2) and HTaWO_6/(Pt,Fe_2O_3) nanocomposites[J]. Int J Inorg Mater, 1999, 1(3-4): 253-258.
    
    181. Yin S, Maeda D, Ishitsuka M, Wu J, Sato T. Synthesis of HTaWO_6(Pt, TiO_2) nanocomposite with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction[J]. Solid State Ionics, 2002, 151(1-4): 377-383.
    
    182. Zhao X, Duan X. A new organic/inorganic hybrid with high electrorheological activity[J]. Mater Lett, 2002, 54(5-6): 348-351.
    
    183. Ng C B, Schadler L S, Siegel R W. Synthesis and mechanical properties of TiO_2-Epoxy nanocomposites[J]. Nanostructured Mater, 1999, 12(1-4): 507-510.
    
    184. Xiong M, Zhou S, You B, Wu L. Trialkoxysilane-capped acrylic resin/titania organic-inorganic hybrid optical films prepared by the sol-gel process[J]. J Polym Sci B, 2005, 43(6): 637-649.
    
    185. Xiong M, Zhou S, You B, Gu G, Wu L. Effect of preparation of titania sol on the structure and properties of acrylic resin/titania hybrid materials[J]. J Polym Sci B, 2004, 42(20): 3682-3694.
    
    186. Tong Y, Li Y, Xie F, Ding M. Preparation and characteristics of polyimide-TiO_2 nanocomposite film[J]. Polym Int, 2000, 49(11): 1543-1547.
    
    
    187. Xiong M, Zhou S, Wu L, Wang B, Yang L. Sol-gel derived organic-inorganic hybrid from trialkoxysilane-capped acrylic resin and titania: effects of preparation conditions on the structure and properties[J]. Polymer, 2004,45(24): 8127-8138.
    
    188. Evora V M F, Ahukla A. Fabrication, characterization, and dynamic behavior of polyester/TiO_2 nanocomposites[J]. Mater Sci Eng A, 2003, 361(1-2): 358-366.
    
    189. Zhang J, Wang X, Lu L, Li D, Yang X. Preparation and performance of high-impact polystyrene (HIPS)/nano-TiO_2 nanocomposites[J]. J Appl Polym Sci, 2003, 87(3): 381-385.
    
    190. Nakane K, Kurita T, Ogihara T, Ogata N. Properties of poly(vinyl butyral)/TiO_2 nanocomposites formed by sol-gel process[J]. Composites B, 2004, 35(3): 219-222.
    
    191. Fadhel H B, Frances C, Mamourian A. Investigations on ultra-fine grinding of titanium dioxide in a stirred media mill[J]. Powder Tech, 1999, 105(1-3): 362-373.
    
    192. Liu Y L, Lin Y L, Chen C P, et al. Preparation of epoxy resin/silica hybrid composites for epoxy molding compounds[J]. J Appl Polym Sci, 2003,90(14): 4047-4053.
    
    193. Yano S, Ito T, Shinoda K, Ikakem H, Hagiwara T, Sawaguchi T, Kurita K, Seno M. Properties and microstructures of epoxy resin/TiO_2 and SiO_2 hybrids[J]. Polym Int, 2005, 54(2): 354-361.
    
    194. Zhou S, Wu L, Xiong M, He Q, Chen G. Dispersion and UV-VIS properties of nanoparticies in coatings[J].J Disp Sci Tech, 2004, 25(4): 417-433.
    
    195. Allcock H R, Lampe F W, Mark J E. Contemporary Polymer Chemistry[M], P120,Science Publisher,2004, Beijing, China.