超支化聚合物对PVDF多孔膜的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于树形大分子和超支化聚合物高度支化、三维立体的特殊的分子结构,近些年受到了越来越广泛的关注。其中,树形大分子的支化结构高度规整,支化度达到1,这一特性也使树形大分子的合成必须逐步进行,操作困难且耗时。相对于树形大分子,超支化聚合物支化结构的规整性虽然不如前者,但可以通过AB_2型单体以“一锅煮”的方法一步合成得到,操作简单,成本低廉,有关研究更具实际意义。在过去的几十年中,大量基于超支化聚合物的交叉学科相继出现,并且对其在不同领域中的应用进行了探索。但迄今为止,关于采用超支化聚合物对传统分离膜材料进行功能化的研究还很少。在本研究中,采用几种超支化聚合物与聚偏氟乙烯(PVDF)共混制备了多孔膜,考察了超支化聚合物对多孔膜结构和性能的影响规律。具体研究内容和主要结论概述如下:
     采用阴离子开环聚合方法合成了脂肪型超支化聚缩水甘油醚(HPG)。根据~(13)C-NMR谱图的积分结果,计算得到HPG的支化度为0.54,GPC测得的数均分子量为3265,分散度为1.48。将HPG与PVDF共混,通过相转化法制备了多孔膜。研究发现,铸膜液中HPG含量为0.5、1和2%时,HPG在膜中的保留率分别为50、59和52 mol%。水接触角测试表明,铸膜液中HPG的加入提高了PVDF多孔膜表面的亲水性。当铸膜液中HPG的含量为2 wt%时,膜表面的水接触角从纯PVDF膜的88°下降到了64°。同时,HPG的加入增加了膜表面的孔径和膜本体的孔隙率,提高了水通量。特别地,通过比较HPG和PEG对PVDF多孔膜性能的影响,发现HPG在提高亲水性方面比PEG更有效。但是,模拟实际使用过程发现,HPG仍然有从膜本体内流失的趋势,膜的亲水性逐步衰减。
     为了抑制成膜过程中HPG的流失以及提高成膜后HPG在膜本体内的稳定性,以4,4′-氧双邻苯二甲酸酐(ODPA)为交联剂,在铸膜液中对HPG进行了适度的交联。研究发现,当HPG的交联度从0增加到30%,成膜过程中HPG在膜中的保留率也从48%增加到了85%,表明交联是抑制成膜过程中HPG流失的一种有效方法。XPS分析结果表明,当含有交联HPG的PVDF多孔膜经过在60℃的热水中振荡处理后,膜表面的HPG含量有所增加,使得膜的亲水性和抗污染能力进一步提高。但是,交联度的增加使膜表面和本体的孔径和孔隙率下降,使PVDF多孔膜的水通量降低。为了调节PVDF多孔膜的性能,在含有交联HPG的铸膜液中加入了少量的聚乙烯基吡咯烷酮(PVP),制备出了既有优良的亲水性又有较高通量的PVDF多孔膜。
     以对苯二甲酰氯(TPC)为偶联剂,将单甲基聚乙二醇(MPEG,Mn=750)接枝到了超支化聚酯(HPE)的分子周围,得到了一种每个分子周围大约接枝了12条MPEG链的两亲性超支化-星形聚合物(HPE-g-MPEG),并将其与PVDF共混,通过相转化法制备了多孔膜。XPS分析结果显示,HPE-g-MPEG分子中的MPEG链在膜表面形成了富集。据此,提出了HPE-g-MPEG在膜表面存在的分子结构模型,该模型认为在浸没沉淀过程中,由于水分子和MPEG链段的强烈相互作用,HPE-g-MPEG分子发生变形,使得疏水的核裸露出来。同时,HPE-g-MPEG裸露的疏水核与PVDF的分子链产生缠结,这种缠结会阻止HPE-g-MPEG分子脱离PVDF膜表面。最终的结果是,HPE-g-MPEG分子疏水的核将其固定在膜表面,而亲水的MPEG链段则伸出膜表面形成一层亲水层。MPEG在膜表面的富集也使得膜表面的水接触角下降,当HPE-g-MPEG/PVDF的比例为3/10时,膜表面的水接触角下降到了49°。更为重要的是,当膜在60℃热水中连续振荡30天后,膜表面水接触角只有小幅度上升,说明HPE-g-MPEG在膜中具有良好的稳定性。与纯的PVDF膜相比,HPE-g-MPEG/PVDF共混膜具有更好的抗蛋白质吸附能力,更高的水通量和蛋白质溶液通量以及更好的通量恢复性能。
     分别将数均分子量为350、750和2000的MPEG接枝到了HPE分子周围,并将其与PVDF共混,通过相转化法制备了多孔膜,考察了HPE-g-MPEG分子中MPEG链长对PVDF多孔膜结构和性能的影响。研究发现,随着HPE-g-MPEG分子中MPEG链长的增加,HPE-g-MPEG分子更易于在膜表面形成富集,膜表面的MPEG链的密度和长度都有很大程度的增加,使得膜表面的亲水性大幅度提高。膜表面MPEG链密度和长度的增加极大的抑制了蛋白质在膜表面的吸附,因而使膜具有良好的抗污染性能。
     为了研究两亲性聚合物分子形态结构对膜性能的影响,选取了三嵌段(Ⅰ,EPTBP)、梳状(Ⅱ,ACPS)和超支化星形(Ⅲ,HPE-g-MPEG)三种两亲性聚合物,分别将这几种两亲性聚合物与PVDF共混,通过相转化法制备了多孔膜。元素分析和XPS结果表明,三种两亲性聚合物在成膜过程中都具有很好的稳定性。EPTBP、HPE-g-MPEG和ACPS在膜中的保留率分别为54%、73%和85%。同时发现,三种两亲性聚合物中,特别是ACPS,在膜表面有明显的富集现象。EPTBP、HPE-g-MPEG和ACPS在膜表面的富集率((O/F)_(surface)/(O/F)_(bulk))分别为1.4、1.9和2.9,该结果与保留率表现出一致性。表面富集的结果使得膜的亲水性和抗蛋白质污染能力得到明显改善,其顺序与保留率和富集率结果相同。
     考察了两亲性超支化星形聚合物(HPE-g-MPEG-Ac)对PVDF基聚合物电解质膜的结构和离子导电率的影响。首先通过相转化法制备了PVDF/HPE-g-MPEG-Ac共混膜,然后经浸取电解质溶液活化,得到多孔聚合物电解质膜。研究发现,HPE-g-MPEG-Ac的加入显著增加了PVDF多孔膜的孔隙率、降低了PVDF的结晶度、增加了多孔膜的电解质溶液的吸液率,从而提高了PVDF基聚合物电解质膜的离子导电率。当HPE-g-MPEG-Ac/PVDF比例为3/10时,聚合物电解质膜的离子导电率在常温下高达1.76×10~(-3)S/cm,为纯PVDF多孔膜聚合物电解质的4倍。聚合物电解质膜的分解电压高于4.5V,表现出良好的电化学稳定性。
Due to their unique structures, highly branched, three-dimensional polymers such as dendrimers or hyperbranched polymers attract increasing attention. Dendrimers are perfectly branched macromolecules, with a degree of branching (DB) of 1.0, which are only accessible by time-consuming multi-step syntheses. An economically interesting alternative are the randomly branched hyperbranched polymers, which can easily be produced on large scale by a one-pot polymerization of appropriate AB_2 monomers. During the past decades numerous interdisciplinary research projects on such polymers have been started and a wide variety of applications has been proposed. To date, few efforts have been made to explore the feasibility of using hyperbranched polymers to impart traditional membrane materials with special functionalities. In this research, several hyperbranched polymers were used as modifiers for PVDF porous membranes. The effects of the hyperbranched polymers on the structure and properties of PVDF porous membranes were systematically investigated. The experiment methods and results are summarized as follows.
     Hyperbranched aliphatic polyethers with narrow molecular weight distribution have been prepared via anionic polymerization of glycidol with rapid cation-exchange equilibrium. The synthesized hyperbranched polyglycerol (HPG) was characterized by FTIR, NMR, GPC, etc. The degree of branching (DB) of HPG calculated from the relative integration of ~(13)C-NMR spectrum is 0.54. The number average molecularweight (((M_n)|-)) obtained from GPC is 3265, with a dispersity of 1.48. The HPG was blended with PVDF to fabricate porous membranes via immersion precipitation process. It was found that the remaining degree of HPG in the final membranes was 50, 59 and 52 mol% for M5, M10 and M20, respectively. Water contact angle measurements indicated the improvement in the hydrophilicity of the membrane surfaces with the addition of HPG to the casting solutions. For example, the water contact angle decreased from the pure PVDF membrane's 88°to 64°when the content of HPG reached 2 wt% in the cast solution. Also, the addition of HPG increased the pore size of the membrane surfaces and the porosity of the membrane bulks, leading to an improvement in the water flux of the PVDF membranes. Specially, by comparing the effects of HPG and PEG on the properties of PVDF membranes, it was found that HPG was more effective than PEG in improving the hydrophilicity of PVDF membranes when the molecular weights of HPG and PEG are comparable. However, the HPG still showed a tendency to diffuse out of the membrane in practical applications, and appropriate methods should be employed to improve the stability of HPG in the final membranes.
     To inhibit the loss of HPG during the immersion precipitation process and to enhance the stability of HPG in the final membrane, HPG was partially crosslinked in the cast solutions using 4,4'-oxydiphthalic anhydride (ODPA) as the crosslinking agent. The results indicated that, when the crosslinking degree increased from 0 to 30%, the remaining degree of HPG in the final membranes after the immersion precipitation process also increased from 48 mol% to as high as 85 mol%, suggesting crosslinking is an effective approach to suppress the loss of HPG. Furthermore, XPS analysis demonstrated that the content of HPG in the membrane surface increased when the membrane containing crosslinked HPG was treated by shaking in water at a relatively high temperature (60°), leading to a decrease in water contact angle and the improvement in fouling-resistance. However, a higher crosslinking degree resulted in a decrease in the porosity of both the surface and the bulk, and therefore, the reduction in water flux. In order to optimize the membrane performance, a small amount of poly(vinylpyrrolidone) (PVP) was used as an additive, and membranes with both good hydrophilicity and high water flux were fabricated.
     To endow hydrophobic poly(vinylidene fluoride) (PVDF) membranes with reliable hydrophilicity and protein-resistance, an amphiphilic hyperbranched-star polymer (HPE-g-MPEG) with about 12 hydrophilic arms in each molecule was synthesized by grafting methoxy polyethylene glycol) (MPEG) to the hyperbranched polyester (HPE) molecule using terephthaloyl chloride (TPC) as the coupling agent, and blended with PVDF to fabricate porous membranes via phase inversion process. XPS analysis results indicated that the MPEG segments of HPE-g-MPEG enriched at the membrane surface substantially. Based on the XPS results, a model depicting the deformation of the HPE-g-MPEG molecules during the immersion precipitation process and the sketch of molecular conformation in the final membrane surfaces was proposed. It was also found that the water contact angle decreased to as low as 49°for the membrane with a HPE-g-MPEG/PVDF ratio of 3/10. More importantly, the water contact angle of the blend membrane changed little after being leached continuously in water at 60℃for 30 days, indicating a quite stable presence of HPE-g-MPEG in the blend membranes. Furthermore, the blend membranes showed lower static protein adsorption, higher water and protein solution fluxes, and better water flux recovery after cleaning than the pure PVDF membrane.
     Three MPEGs with different molar mass (((M_n)|-) = 350, 750, and 2000, respectively) were grafted to the hyperbranched polyester (HPE) molecule using terephthaloyl chloride (TPC) as the coupling agent, and blended with PVDF to fabricate porous membranes via phase inversion process. With the increase in MPEG arm length, the MPEG arms in hyperbranched-star polymer were more inclined to enrich at the membrane surfaces and endowed the membranes with improved hydrophilic property. The substantial coverage of MPEG segments prohibited the protein absorption at the membrane surfaces effectively, and consequently, resulting in enhanced anti-fouling properties during the foulant solution filtration processes.
     Three kinds of amphiphilic polymers, including the tri-block copolymer of (polyethylene oxide)-(polypropylene oxide)-(polyethylene oxide) (I, EPTBP), the comb-like copolymer of polysiloxane with polyethylene oxide and polypropylene oxide side chains (II, ACPS) and the hyperbranched star copolymer of polyester-g-methoxyl polyethylene glycol (III, HPE-g-MPEG), were blended with PVDF to fabricate porous membranes via a phase inversion process, respectively, and the effects of the different structures of the amphiphilic polymers on the properties of the blend membranes were compared. XPS and elemental analysis results indicated that the three amphiphilic polymers showed good stability during the immersion precipitation process. The retention degree of the three amphiphilic polymers in the final membranes is 54%, 73% and 85% for EPTBP, HPE-g-MPEG and ACPS, respectively. It was also found that all the three amphiphilic polymers, especially ACPS, enriched obviously in the surface layer of the blend membranes. The calculated enrichment degree ((O/F)_(surface) /(O/F)_(bulk)) is 1.4, 1.9 and 2.9 for the blend membranes containing EPTBP, HPE-g-MPEG and ACPS, respectively, which is in the same sequence as the retention degree in the membrane bulks. This enrichment resulted in a membrane surface with much better hydrophilicity and protein resistance than that of the pure PVDF membrane.
     PVDF based porous membranes were prepared by blending PVDF with an amphiphilic hyperbranched-star (HPE-g-MPEG-Ac) polymer via a typical phase inversion process. And then the prepared porous membranes were filled and swollen by a liquid electrolyte solution to form polymer electrolytes. It was found that the introduction of HPE-g-MPEG-Ac resulted in a remarkable increase in porosity and a considerable reduction in crystallinity of the PVDF porous membranes, which favored the liquid electrolyte uptake and, consequently, led to a substantial increase in ion conductivity at ambient temperature. The blend membrane with a HPE-g-MPEG-Ac/PVDF ratio of 3/10 showed that the ion conductivity was as high as 1.76×10~(-3) S/cm at 20℃, which was more than 4 times that of the pure PVDF membrane. Also, the prepared polymer electrolytes showed a wide electrochemical stability up to 4.5 V versus Li~+/Li even for the blend membrane with the highest HPE-g-MPEG-Ac content in this study.
引文
1.徐又一&徐志康.高分子膜材料.化学工业出版社,北京,(2005).
    2.刘茉娥&陈欢林.新型膜分离技术.浙江大学出版社,杭州,(1999).
    3.郑领英&王学松.膜技术.化学工业出版社,北京,(2000).
    4.Asatekin,A.et al.Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers.J.Membr.Sci.285,81-89(2006).
    5.Hyun,J.,Jang,H.,Kim,K.,Na,K.& Tak,T.Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains.J.Membr.Sci.282,52-59(2006).
    6.Madaeni,S.S.& Ghaemi,N.Characterization of self-cleaning RO membranes coated with TiO_2particles under UV irradiation.J.Membr.Sci.303,221-233(2007).
    7.Revanur,R.,McCloskey,B.,Breitenkamp,K.,Freeman,B.D.& Emrick,T.Reactive Amphiphilic Graft Copolymer Coatings Applied to Poly(vinylidene fluoride)Ultrafiltration Membranes.Macromolecules 40,3624-3630(2007).
    8.Wang,Y.-C.et al.Separation of water-acetic acid mixture by pervaporation through plasma-treated asymmetric poly(4-methyl-1-pentene)membrane and dip-coated with polyacrylic acid.J.Membr.Sci.208,3-12(2002).
    9.Xu,J.B.,Lange,S.,Bartley,J.P.& Johnson,R.A.Alginate-coated microporous PTFE membranes for use in the osmotic distillation of oily feeds.J.Membr.Sci.240,81-89(2004).
    10.Akthakul,A.,Salinaro,R.F.& Mayes,A.M.Antifouling Polymer Membranes with Subnanometer Size Selectivity.Macromolecules 37,7663-7668(2004).
    11.Jiang,X.& Kumar,A.Silicone-coated polymeric membrane for separation of hydrocarbons and nitrogen at sub-ambient temperatures.J.Membr.Sci.286,285-292(2006).
    12.Bhaumik,D.,Majumdar,S.& Sirkar,K.K.Pilot-plant and laboratory studies on vapor permeation removal of VOCs from waste gas using silicone-coated hollow fibers.J.Membr.Sci.167,107-122(2000).
    13.Jiang,X.& Kumar,A.Performance of silicone-coated polymeric membrane in separation of hydrocarbons and nitrogen mixtures.J.Membr.Sci.254,179-188(2005).
    14.Majumdar,S.,Bhaumik,D.& Sirkar,K.K.Performance of commercial-size plasmapolymerized PDMS-coated hollow fiber modules in removing VOCs from N_2/air.J.Membr.Sci.214,323-330(2003).
    15.BO,I.D.,HEYMAN,J.,VINCKE,J.,VERSTRAETE,W.& LANGENHOVE,H.V.Dimethyl Sulfide Removal from Synthetic Waste Gas Using a Flat Poly(dimethylsiloxane)-Coated Composite Membrane Bioreactor.Environ.Sci.Technol.37,4228-4234(2003).
    16.Yamamoto,K.-i.et al.Antioxidation property of vitamin E-coated polysulfone dialysis membrane and recovery of oxidized vitamin E by vitamin C treatment.J.Membr.Sci.302,115-118(2007).
    17.Sun,Y.-M.,Huang,W.-F.& Chang,C.-C.Spray-coated and solution-cast ethylcellulose pseudolatex membranes.J.Membr.Sci.157,159-170(1999).
    18.Lee,H.S.& Hong,J.Electrokinetic separation of lysine and aspartic acid using polypyrrole-coated stacked membrane system.J.Membr.Sci.169,277-285(2000).
    19.GARG.D.H.et al.Hydrophilization of Microporous Polypropylene Celgard Membranes by the Chemical Modification Technique. J. Appl. Polym. Sci. 60,2087-2104 (1996).
    20. Elliott, B.J., Willis, W.B. & Bowman, C.N. Pseudo-crown ethers as fixed site carriers in facilitated transport membranes. J. Membr. Sci. 168, 109-119 (2000).
    21. Wang, Y., Kim, J.-H, Choo, K.-H., Lee, Y.-S. & Lee, C.-H. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J. Membr. Sci. 169,269-276 (2000).
    22. Yamauchi, J., Yamaoka, A., Ikemoto, K. & Matsui, T. Graft copolymerization of methyl methacrylate onto polypropylene oxidized with ozone. J. Appl. Polym. Sci. 43, 1197-1203 (1991).
    23. Liang, L., Feng, X., Peurrung, L. & Viswanathan, V. Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. J. Membr. Sci. 162, 235-246 (1999).
    24. Liang, L., Shi, M., Viswanathan, V.V., Peurrung, L.M. & Young, J.S. Temperature-sensitive polypropylene membranes prepared by plasma polymerization. J. Membr. Sci. 177, 97-108 (2000).
    25. Iwata, H., Oodate, M., Uyama, Y, Amemiya, H. & Ikada, Y. Preparation of temperature-sensitive membranes by graft polymerization onto a porous membrane. J. Membr. Sci. 55,119-130(1991).
    26. Ito, Y, Inaba, M., Chung, D.-J. & Imanishi, Y Control of Water Permeation by pH and Ionic Strength through a Porous Membrane Having Poly(carboxylic acid) Surface-Grafted. Macromolecules 25, 7313-7316 (1992).
    27. Mika, A.M., Childs, R.F. & Dickson, J.M. Chemical valves based on poly(4-vinylpyridine)-filled microporous membranes. J. Membr. Sci. 153,45-56 (1999).
    28. Yamada, K., Kimura, T., Tsutaya, H. & Hirata, M. Hydrophilic and adhesive properties of methacrylic acid-grafted polyethylene plates. J. Appl. Polym. Sci. 44, 993-1001 (1992).
    29. Sakata, J., Yamamoto, M. & Hirai, M. Plasma-polymerized membranes and gas permeability. IV. J. Appl. Polym. Sci. 37,2773-2779 (1989).
    30. Cho, D.L. & Ekengren, O. Composite membranes formed by plasma-polymerized acrylic acid for ultrafiltration of bleach effluent. J. Appl. Polym. Sci. 47,2125-2133 (1993).
    31. Kim, M., Saito, K., Furusaki, S., Sugo, T. & Ishigaki, I. Protein adsorption capacity of a porous phenylalanine-containing membrane based on a polyethylene matrix. J. Chromatography A 586, 27-33 (1991).
    32. Kabay, N., Katakai, A., Sugo, T. & Egawa, H. Preparation of fibrous adsorbents containing amidoxime groups by radiation-induced grafting and application to uranium recovery from sea water. J. Appl. Polym. Sci. 49, 599-607 (1993).
    33. Chen, Y. et al. Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties. Polymer 48, 7604-7613 (2007).
    34. Friebe, A. & Ulbricht, M. Controlled Pore Functionalization of Poly(ethylene terephthalate) Track-Etched Membranes via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir 23, 10316-10322 (2007).
    35. Xu, F.J., Zhao, J.P., Kang, E.T., Neoh, K.G. & Li, J. Functionalization of Nylon Membranes via Surface-Initiated Atom-Transfer Radical Polymerization. Langmuir 23, 8585-8592 (2007).
    36. Cheng, Z., Zhu, X., Kang, E.T. & Neoh, K.G. Modification of Poly(ether imide) Membranes via Surface-Initiated Atom Transfer Radical Polymerization.Macromolecules 39,1660-1663(2006).
    37.Singh,N.et al.Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization.J.Membr.Sci.311,225-234(2008).
    38.Balachandra,A.M.,Baker,G.L.& Bruening,M.L.Preparation of composite membranes by atom transfer radical polymerization initiated from a porous support.J.Membr.Sci.227,1-14(2003).
    39.Singh,N.,Husson,S.M.,Zdyrko,B.& Luzinov,I.Surface modification of microporous PVDF membranes by ATRP.J.Membr.Sci.262,81-89(2005).
    40.Singh,N.,Wang,J.,Ulbricht,M.,Wickramasinghe,S.R.& Husson,S.M.Surface-initiated atom transfer radical polymerization:A new method for preparation of polymeric membrane adsorbers.J.Membr.Sci.309,64-72(2008).
    41.Zhai,G.,Shi,Z.L.,Kang,E.T.& Neoh,K.G.Surface-Initiated Atom Transfer Radical Polymerization on Poly(Vinylidene Fluoride)Membrane for Antibacterial Ability.Macromol.Biosci.5,974-982(2005).
    42.Lokuge,I.,Wang,X.& Bohn,P.W.Temperature-Controlled Flow Switching in Nanocapillary Array Membranes Mediated by Poly(N-isopropylacrylamide)Polymer Brushes Grafted by Atom Transfer Radical Polymerization.Langmuir 23,305-311(2007).
    43.Oster,G.& Shibata,O.Graft copolymer of polyacrylamide and natural rubber produced by means of ultraviolet light.J.Polym.Sci.26,233-234(1957).
    44.Xu,Z.-K.,Dai,Q.-W.,Wu,J.,Huang,X.-J.& Yang,Q.Covalent Attachment of Phospholipid Analogous Polymers To Modify a Polymeric Membrane Surface:A Novel Approach.Langmuir 20,1481-1488(2004).
    45.黎雁&吕晓龙.聚偏氟乙烯多孔膜的改性研究进展.天津工业大学学报 20,74-78(2001).
    46.张丹霞,王保国&陈翠仙.等离子技术在膜分离领域的应用.膜科学与发术 22,65-70(2002).
    47.Wang,Y.J.,Chen,C.H.,Yeh,M.L.,Hsiue,G.H.& Yu,B.C.A one-side hydrophilic polypropylene membrane prepared by plasma treatment.J.Membr.Sci.53,275-286(1990).
    48.哈鸿飞&吴季兰.高分子辐射化学-原理与应用.北京大学出版社,北京,(2002).
    49.Gabriel,E.M.& Gillberg,G.E.In situ modification of microporous membranes.J.Appl.Polym.Sci.48,2081-2090(1993).
    50.Nakamura,M.,Kiyohara,S.,Saito,K.,Sugita,K.& Sugo,T.High Resolution of DL-Tryptophan at High Flow Rates Using a Bovine Serum Albumin-Multilayered Porous Hollow-Fiber Membrane.Analytical Chemistry 71,1323-1325(1999).
    51.Kiyohara,S.,Nakamura,M.,Saito,K.,Sugita,K.& Sugo,T.Binding of DL-tryptophan to BSA adsorbed in multilayers by polymer chains grafted onto a porous hollow-fiber membrane in a permeation mode.J.Membr.Sci.152,143-149(1999).
    52.Kim,M.,Kojima,J.,Saito,K.,Furusaki,S.& Sugo,T.Reduction of nonselective adsorption of proteins by hydrophilization of microfiltration membranes by radiation-induced grafting Biotechnol.Prog.10,114-120(1994).
    53.Uragami,T.,Fujimoto,M.& Sugihara,M.Studies on synthesis and permeabilities of special polymer membranes.28.Permeation characteristics and structure of interpolymer membranes from poly(vinylidene fluoride)and poly(styrene sulfonic acid).Desalination 34,311(1980).
    54.Uragami,T.,Naito,Y.& Suginara,M.Studies on synthesis and permeability of special polymer membranes.Polym.Bull.4,617-622(1981).
    55.Neus,S.P.& Peinemann,K.V.Ultrafiltration membranes from PVDF/PMMA blends.J.Membr.Sci.73,25-35(1992).
    56.Ochoa,N.A.,Masuelli,M.& Marchese,J.Effect of hydrophilicity on fouling of an emulsified oil waster with PVDF/PMMA membranes.J.Membr.Sci.226,203-211(2003).
    57.Lin,D.J.,Chang,C.L.,Lee,C.K.& Cheng,L.P.Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions.Eur.Polym.J.42,2407-2418(2006).
    58.Yin,X.L.,Cheng,H.B.,Wang,X.& Yao,Y.X.Morphology and properties of hollow-fiber membrane made by PAN mixing with small amount of PVDF.J.Membr.Sci.146,179-184(1998).
    59.Yang,M.C.& Liu,T.Y.The permeation performance of polyacrylonitrile/polyvinylidine fluoride blend membranes.J.Membr.Sci.226,119-130(2003).
    60.龚琦,杜邵龙&董声雄.小截留分子量共混超滤膜的研究(Ⅰ)PVDF与PVAc的混溶性.吉林化工学院学报 18,18-23(2001).
    61.龚琦,杜邵龙&董声雄.小截留分子量共混超滤膜的研究(Ⅱ)PVDF与PVAc共混前后超滤膜性能的比较.吉林化工学院学报 18,5-8(2001).
    62.孙漓青,钱英,刘淑秀&姚仕仲.聚偏氟乙烯/磺化聚砜共混相容性及超滤膜研究.膜科学与技术 21,1-5(2001).
    63.Hester,J.F.,Banerjee,P.& Mayes,A.M.Preparation of Protein-Resistant Surfaces on Poly(vinylidene fluoride)Membranes via Surface Segregation.Macromolecules 32,1643-1650(1999).
    64.Hester,J.F.& Mayes,A.M.Design and performance of foul-resistant poly(vinylidene fluoride)membranes prepared in a single-step by surface segregation.J.Membr.Sci.202,119-135(2002).
    65.Hester,J.F.et al.ATRP of Amphiphilic Graft Copolymers Based on PVDF and Their Use as Membrane Additives.Macromolecules 35,7652-7661(2002).
    66.Hester,J.F.,Olugebefola,S.C.& Mayes,A.M.Preparation of pH-responsive polymer membranes by self-organization.J.Membr.Sci.208,375-388(2002).
    67.Kang,S.,Asatekin,A.,Mayes,A.M.& Elimelech,M.Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive.J.Membr.Sci.296,42-50(2007).
    68.Asatekin,A.,Kang,S.,Elimelech,M.& Mayes,A.M.Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide)comb copolymer additives.J.Membr.Sci.298,136-146(2007).
    69.Gozdz,A.S.,Schmutz,C.N.& Tarascon,J.M.Rechargeable lithium intercalation battery with hybrid polymeric electrolyte.US Patent No 5296318(1994).
    70.Gozdz,A.S.,Schmutz,C.N.,Tarascon,J.M.& Warren,P.C.Method of making an electrolyte activatable lithium-ion rechargeable battery cell.US Patent No 5456000(1995).
    71.Pasquier,A.D.,Zheng,T.,Amatucci,G.Go & Gozdz,A.S.Microstructure effects in plasticized electrodes based on PVDF-HFP for plastic Li-ion batteries.J.Power Sources 97-98,758-761(2001).
    72.Pasquier,A.D.,Warren,P.C.,Gozdz,A.S.& Amatucci,G.G.Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process.Solid State Ionics 135,249-257(2000).
    73.Wang,H.P.,Huang,H.T.& Wunder,S.L.Novel microporous poly(vinylidene fluoride)Blend electrolytes for Lithium-ion batteries.J.Electrochem.Soc.147,2853-2861(2000).
    74.Stephan,A.M.& Teeters,D.Characterization of PVdF-HFP polymer membranes prepared by phase inversion techniques Ⅰ.Morphology and charge-discharge studies.Electrochim.Acta 48,2143-2148(2003).
    75.Wang,Z.L.& Tang,Z.Y.A novel polymer electrolyte based on PMAML/PVDF-HFP blend.Electrochim.Acta 49,1063-1068(2004).
    76.Magistris,A.,Mustarelli,P.,Quartarone,E.,Piaggio,P.& Bottino,A.Poly(vinylidene fluoride)based porous polymer electrolytes.Electrochim.Acta 46,1635-1639(2001).
    77.Magistris,A.et al.Structure,porosity and conductivity of PVDF films for polymer electrolytes.J.Power Sources 97-98,657-660(2001).
    78.Stephan,A.M.Review on gel polymer electrolytes for lithium batteries.Eur.Polym.J.42,21-42(2006).
    79.Watanabe,M.et al.High lithium ionic conductivity of polymeric solid electrolytes.Makromol.Chem.-Rapid.Commun.2,741-744(1981).
    80.Boudin,F.,Andrieu,X.,Jehoulet,C.& Olsen,Ⅰ.Ⅰ.Microporous PVdF gel for lithium-ion batteries.J.Power Sources 81-82,804-807(1999).
    81.Wang,Y.-J.& Kim,D.PEGDA/PVdF/F127 gel type polymer electrolyte membranes for lithium secondary batteries.J.Power Sources 166,202-210(2007).
    82.Seol,W.-H.,Lee,Y.M.& Park,J.-K.Preparation and characterization of new microporous stretched membrane for lithium rechargeable battery.J.Power Sources 163,247-251(2006).
    83.Xi,J.et al.PVDF-PEO blends based microporous polymer electrolyte:Effect of PEO on pore configurations and ionic conductivity.J.Power Sources 157,501-506(2006).
    84.Xi,J.,Qiu,X.& Chen,L.PVDF-PEO/ZSM-5 based composite microporous polymer electrolyte with novel pore configuration and ionic conductivity.Solid State Ionics 177,709-713(2006).
    85.Gao,C.& Yan,D.Hyperbranched polymers:from synthesis to applications.Prog.Polym.Sci.29,183-275(2004).
    86.Kim,Y.H.& Webster,O.W.Water soluble hyperbranched polyphenylene:"A unimolecular micelle".J.Am.Chem.Soc.112,4592-4593(1990).
    87.Kim,Y.H.& Webster,O.W.Hyperbranched polyphenylenes.Macromolecules 25,5561-5572(1992).
    88.Sunder,A.,Bauer,T.,lhaupt,R.M.& Frey,H.Synthesis and Thermal Behavior of Esterified Aliphatic Hyperbranched Polyether Polyols.Macromolecules 33,1330-1337(2000).
    89.Hawker,C.J.,Lee,R.& Fréchet,J.M.J.One-Step Synthesis of Hyperbranched Dendritic Polyesters.J.Am.Chem.Soc.113,4583-4588(1991).
    90.Turner,S.R.,Walter,F.,Voit,B.I.& Mourey,T.H.Hyperbranched Aromatic Polyesters with Carboxylic Acid Terminal Groups.Macromolecules 27,1611-1616(1994).
    91.Turner,S.R.,Voit,B.I.& Mourey,T.H.All-Aromatic Hyperbranched Polyesters with Phenol and Acetate End Groups:Synthesis and Characterization.Macromolecules 26,4617-4623(1993).
    92.Bauer,S.,Ringsdorf,H.& Fischer,H.Highly Branched Liquid Crystalline Polymers with Chiral Terminal Groups.Angew.Chem.Int.Edit.32,1589-1592(1993).
    93.Hahn,S.-W.,Yun,Y.-K.& Jin,J.-I.Thermotropic Hyperbranched Polyesters Prepared from 2-[(10-(4-Hydroxyphenoxy)decyl)oxy]terephthalic Acid and 2-[(10-((4'-Hydroxy-1,1'-biphenyl-4-yl)oxy)decyl)oxy]terephthalic Acid.Macromolecules 31,6417-6425(1998).
    94.Yang,G.,Jikei,M.& Kakimoto,M.-a.Successful Thermal Self-Polycondensation of AB_2Monomer to Form Hyperbranched Aromatic Polyamide.Macromolecules 31,5964-5966(1998).
    95.Yang,G.,Jikei,M.& Kakimoto,M.-a.Synthesis and Properties of Hyperbranched Aromatic Polyamide.Macromolecules 32,2215-2220(1999).
    96.Spindler,R.& Fréchet,J.M.J.Synthesis and Characterization of Hyperbranched Polyurethanes Prepared from Blocked Isocyanate Monomers by Step-Growth Polymerization.Macromolecules 26,4809-4813(1993).
    97.Kumar,A.& Ramakrishnan,S.Hyperbranched polyurethanes with varying spacer segments between the branching points.J.Polym.Sci.Part A:Polym.Chem.34,839-848(1996).
    98.Miller,T.M.,Neenan,T.X.,Kwock,E.W.& Stein,S.M.Dendritic Analogues of Engineering Plastics:A General One-Step Synthesis of Dendritic Polyaryl Ethers.J.Am.Chem.Soc.115,356-357(1993).
    99.Morikawa,A.Preparation and Properties of Hyperbranched Poly(ether ketones)with a Various Number of Phenylene Units.Macromolecules 31,5999-6009(1998).
    100.Martinerz,C.A.& Hay,A.S.Synthesis of poly(aryl ether)dendrimers using an aryl carbonate and mixtures of metal carbonates and metal hydroxides.J.PoIym.Sci.PartA.Polym.Chem.35,1781-1798(1997).
    101.Martinerz,C.A.& Hay,A.S.Preparation of hyperbranched macromolecules with aryl fluoride and phenol terminal functionalities using new monomers and Cs_2CO_3 or Mg(OH)_2 as the condensation agent.J.Polym.Sci.Part A.Polym.Chem.35,2015-2033(1997).
    102.Bolton,D.H.& Wooley,K.L.Synthesis and Characterization of Hyperbranched Polycarbonates.Macromolecules 30,1890-1896(1997).
    103.Mathias,L.J.& Carothers,T.W.Hyperbranched Poly(siloxysilanes.J.Am.Chem.Soc.113,4043-4044(1991).
    104.Miravet,J.F.& Fréchet,J.M.J.New Hyperbranched Poly(siloxysilanes):Variation of the Branching Pattern and End-Functionalization.Macromolecules 31,3461-3468(1998).
    105.Shu,C.-F.& Leu,C.-M.Hyperbranched Poly(ether ketone)with Carboxylic Acid Terminal Groups:Synthesis,Characterization,and Derivatization.Macromolecules 32,100-105(1999).
    106.Kricheldorf,H.R.& Stukenbrock,T.New polymer syntheses 85.Telechelic,star-shaped and hyperbranched polyesters of β-(4-hydroxyphenyl)propionic acid.Polymer 38,3373-3383(1997).
    107.Fréchet,J.M.J.et al.Self-Condensing Vinyl Polymerization:An Approach to Dendritic Materials Science 269,1080-1083(1995).
    108.Yan,D.,Muller,A.H.E.& Matyjaszewski,K.Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization.2.Degree of Branching.Macromolecules 30,7024-7033(1997).
    109.Simon,P.F.W.,Radke,W.& MUller,A.H.E.Hyperbranched methacrylates by self-condensing group transfer polymerization.Macromol.Rapid Commun.18,865-873(1997).
    110.Simon,P.F.W.& Muller,A.H.E.Synthesis of Hyperbranched and Highly Branched Methacrylates by Self-Condensing Group Transfer Copolymerization.Macromolecules 34,6206-6213(2001).
    111.Sakamoto,K.,Aimiya,T.& Kira,M.Preparation of Hyperbranched Polymethacrylates by Self-Condensing Group Transfer Polymerization. Chem. Lett. 26,1245-1251 (1997).
    112. Liu, H. & Wilen, C.-E. Hyperbranched Poly[allyl ether-alt-maleic anhydride] Produced by the Self-Condensing Alternating Copolymerization Approach. Macromolecules 34, 5067-5070 (2001).
    113. Coessens, V., Pintauer, T. & Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 26,337-377 (2001).
    114. Patten, T.E. & Matyjaszewski, K. Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials. Adv. Mater. 10,901-915 (1998).
    115. Suzuki, M., Ii, A. & Saegusa, T. Multibranching Polymerization: Palladium-Catalyzed Ringopening Polymerization of Cyclic Carbamate To Produce Hyperbranched Dendritic Polyamine. Macromolecules 25, 7071-7072 (1992).
    116. Suzuki, M., Yoshida, S., Shiraga, K. & Saegusa, T. New Ring-Opening Polymerization via a (?)-Allylpalladium Complex. 5. Multibranching Polymerization of Cyclic Carbamate To Produce Hyperbranched Dendritic Polyamine. Macromolecules 31, 1716-1719 (1998).
    117. Bednarek, M. et al. Branched polyether with multiple primary hydroxy] groups: polymerization of 3-ethyl-3-hydroxymethyloxetane. Macromol. Rapid Commun. 20, 369-372 (1999).
    118. Magnusson, H., Malmstrom, E. & Hult, A. Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromol. Rapid Commun. 20,453-457 (1999).
    119. Chen, Y., Bednarek, M., Kubisa, P. & Penczek, S. Synthesis of multihydroxyl branched polyethers by cationic copolymerization of 3,3-bis(hydromethyl)oxetane and 3-ethyl-3-(hydroxymethyl)oxetane. J. Polym. Sci. Part A: Polym. Chem. 40,1991-2002 (2002).
    120. Vandenberg, E.J. Polymerization of glycidol and its derivatives. A new rearrangement polymerization. J. Polym. Sci. Part A: Polym. Chem. 23,915-949 (1985).
    121. Tokar, R., Kubisa, P., Penczek, S. & Dworak, A. Cationic polymerization of glycidol: coexistence of the activated monomer and active chain end mechanism. Macromolecules 27, 320-322(1994).
    122. Dworak, A., Walach, W. & Trzebicka, B. Cationic polymerization of glycidol. Polymer structure and polymerization mecham'sm. Macromol. Chem. Phys. 196,1963-1970 (1995).
    123. Yan, D.Y., Hou, J., Zhu, X.Y., Kosman, J.J. & Wu, H.S. A new approach to control crystallinity of resulting polymers: selfcondensing ring opening polymerization. Macromol. Rapid Commun. 21, 557-561 (2000).
    124. Sunder, A., Hanselmann, R., Frey, H. & Mulhaupt, R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32, 4240-4246 (1999).
    125. Sunder, A., Hanselmann, R. & Frey, H. Hyperbranched polyether- polyols based on polyglycerol: polarity design by block copolymerization with propylene oxide. Macromolecules 33,309-314(2000).
    126. Liu, M., Vladimirov, N. & Frechet, J.MJ. A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer: 4-(2-hydroxyethyl)-epsilon-caprolactone. Macromolecules 32, 6881-6884 (1999).
    127. Chang, H.T. & Frechet, J.MJ. Proton-transfer polymerization: a new approach to hyperbranched polymers. J. Am. Chem. Soc. 121, 2313-2314 (1999).
    128. Gong, C.G. & Frechet, J.M.J. Proton transfer polymerization in the preparation of hyperbranched polyesters with epoxide chainends and internal hydroxyl functionalities.Macromolecules 33,4997-4999(2000).
    129.Kadokawa,J.et al.Synthesis of hyperbranched polymers via protontransfer polymerization of acrylate monomer containing two hydroxy groups.Macromol.Rapid Commun.21,362-3688(2000).
    130.Paulasaari,J.K.& Weber,W.P.Synthesis of hyperbranched polysiloxanes by base-catalyzed proton-transfer polymerization.Comparison of hyperbranched polymer microstructure and properties to those of linear analogues prepared by cationic or anionic ring-opening polymerization.Macromolecules 33,2005-2010(2000).
    131.Trollsas,M.& Hedrick,J.L.Dendrimer-like Star Polymers.J.Am.Chem.Soc.120,4644-4651(1998).
    132.Jikei,M.& Kakimoto,M.Hyperbranched polymers:a promising new class of materials.Prog.Polym.Sci.26,1233-1285(2001).
    133.Inoue,K.Functional dendrimers,hyperbranched and star polymers.Prog.Polym.Sci.25,453-571(2000).
    134.Ishizu,K.,Tsubaki,K.,Mori,A.& Uchida,S.Architecture of nanostructured polymers.Prog.Polym.Sci.28,27-54(2003).
    135.Bischoff,R.& Cray,S.E.Polysiloxanes in macromolecular architecture.Prog.Polym.Sci.24,185-219(1999).
    136.Trollsas,M.et al.New approach to hyperbranched polyesters:selfcondensing cyclic ester polymerization of bis(hydroxymethyl)-substituted □-caprolactone.Macromolecules 32,9062-9066(1999).
    137.Hong,X.,Chen,Q.,Zhang,Y.& Liu,G.Synthesis and characterization of a hyperbranched polyol with long flexible chains and its application in cationic UV curing.J.Appl.Polym.Sci.77,1353-1356(2000).
    138.王艳梅&魏杰.超支化树脂改性UV固化粉末涂料.感光科学与光化学23,126-131(2003).
    139.Petterson,B.in:Proceedings of the New Orleans Waterborne.Higher Solids and Powder Coatings Symposium,753(1994).
    140.Hong,Y.,Cooper,W.J.& Mackay,M.E.Tansactions of the society of rheology-A novel processing aid for polymer extrusion:Rheology and processing of polyethylene and hyperbranched polymer blends.J.Rheol.43,781-793(1999).
    141.Hong,Y.,Coombs,S.J.& Cooper,W.J.Film blowing of linear low-density polyethylene blended with a novel hyperbranched polymer processing aid.Polymer 41,7705-7713(2000).
    142.Nunez,C.M.,Chiou,B.-S.,Andrady,A.L.& Khan,S.A.Solution rheology of hyperbranched polyesters and their blends with linear polymers.Macromolecules 33,1720-1726(2000).
    143.Schmaljohann,D.,Potschke,R,Hassler,R.& Voit,B.I.Blends of Amphiphilic,Hyperbranched Polyesters and Different Polyolefins.Macromolecules 32,6333-6339(1999).
    144.Voit,B.I.Blends of hyperbranched poly(etheramide)s and polyamide-6.Macromol.Mater.Sci.Eng.280-281,33-40(2000).
    145.Mecking,S.,Thomann,R.,Frey,H.& Sunder,A.Preparation of Catalytically Active Palladium Nanoclusters in Compartments of Amphiphilic Hyperbranched Polyglycerols.Macromolecules 33,3958-3960(2000).
    146.Zhao,M.,Sun,L.& Crooks,R.M.Preparation of Cu Nanoclusters within Dendrimer Templates. J. Am. Chem. Soc. 120,4877-4878 (1998).
    147. Sunder, A., Kramer, M., Hanselmann, R., Mulhaupt, R. & Frey, H. Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. Angew. Chem. Int. Ed. 38, 3552-3555 (1999).
    148. Slagt, M.Q. et al. Encapsulation of Hydrophilic Pincer-Platinum(II) Complexes in Amphiphilic Hyperbranched Polyglycerol Nanocapsules. Macromolecules 35, 5734-5737 (2002).
    149. Hawker, C.J., Chu, F., Pomery, PJ. & Hill, D.J.T. Hyperbranched Poly(ethylene glycol)s: A New Class of Ion-Conducting Materials. Macromolecules 29, 3831-3838 (1996).
    150. Miller, L.L., Duan, R.G., Tully, D.C. & Tomalia, D.A. Electrically Conducting Dendrimers. J. Am. Chem. Soc. 119,1005-1010 (1997).
    151. Lin, T., He, Q., Bai, F. & Dai, L. Design, synthesis and photophysical properties of a hyperbranched conjugated polymer. Thin Solid Films 363,122-125 (2000).
    152. He, Q. et al. Synthesis and properties of high efficiency light emitting hyperbranched conjugated polymers. Thin Solid Films 417,183-187(2002).
    153. Frey, H. & Haag, R. Dendritic polyglycerol: a new versatile biocompatible material. Reviews in Molecular Biotechnology 90, 257-267 (2002).
    154. Jeong, B., Choi, Y.K., Bae, Y.H., Zentner, G. & Kim, S.W. New biodegradable polymers for injectable drug delivery systems. J. Controlled Release 62,109-114 (1999).
    155. Tsubokawa, N., Hayashi, S. & Nishimura, J. Grafting of hyperbranched polymers onto ultrafine silica: postgraft polymerization of vinyl monomers initiated by pendant azo groupsb of grafted polymer chains on the surface. Progress in Organic Coatings 44, 69-74 (2002).
    156. Moorefield, C.N. & Newkome, GR. Unimolecular micelles: supramolecular use of dendritic constructs to create versatile molecular containers. C. R. Chimie 6, 715-724 (2003).
    157. Fang, J., Kita, H. & Okamoto, K.-i. Gas permeation properties of hyperbranched polyimide membranes. J. Membr. Sci. 182, 245-256 (1990).
    158. Suzuki, T., Yamada, Y. & Tsujita, Y. Gas transport properties of 6FDA-TAPOB hyperbranched polyimide membrane. Polymer 45, 7167-7171 (2004).
    159. Suzuki, T. & Yamada, Y. Physical and gas tansport properties of novel hyperbranched polyimide-silica hybrid membranes. Polym. Bull. 21, 324-330 (2004).
    160. Chung, T.-s., Chung, M. & Pramoda, K.P. PAMAM dendrimer-induced cross-linking modification of polyimide membranes. Langmuir 20, 2966-2969 (2004).
    161. Shao, L., Chung, T.-S. & Goh, S.H. Tansport properties of cross-linked polyimide membranes induced by different generations of diaminobutane(DBA) dendrimers. J. Membr. Sci. 238, 153-163 (2004).
    162. Kovvali, A.S., Chen, H. & K.Sirkarl, K. Dendrimer membranes: a CO2-selective molecular gate. J. Am. Chem. Soc. 122, 7594-7595 (2000).
    163. Kovvali, A.S. & K.Sirkar, K. Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind. Eng. Chem. Res. 40, 2502-2511 (2001).
    164. Kovvali, A.S. & K.Sirkar, K. Carbon Dioxide separation with novel solvents as liquid membranes. Ind. Eng. Chem. Res. 41, 2287-2295 (2002).
    165. Mika, A.M., Childs, R.F., West, M. & Lott, J.N.A. Poly(4-viny]pyridine)-filled microfiltration membranes: physicochemical properties and morphology. J. Membr. Sci. 136, 221-232 (1997).
    166. Mika, A.M., Childs, R.F. & Dickson, J.M. Porous polyelectrolyte-filled membranes: effect of cross-linking on flux and separation. J. Membr. Sci. 135, 81-92 (1997).
    167. Pandey, A.K., Childs, R.F. & West, M. Formation of pore-filled ion-exchange membranes with in situ crosslinking:poly(vinylbenzyl ammonium salt)-filled membranes. J. Polym. Sci. Part A: Polym. Chem. 2001, 807-820 (2001).
    168. Pandey, A.K., Goswami, A. & Sen, D. Formation and characterization of highly cross-linked anion-exchange membranes. J. Membr. Sci. 217,117-130 (2003).
    169. Mika, A.M., Childs, R.F. & Dickson, J.M. Ultra-low pressure water softening: a new approach to membrane construction. Desalination 121, 149-158 (1999).
    170. Stachera, D.M., Childs, R.F. & Mika, A.M. Acid recovery using diffusion dialysis with poly(4-vinylpyridine)-filled microporous membranes. J. Membr. Sci. 148,119-127(1998).
    171. Won, J., Jegal, J. & Kang, Y.S. Nano-thin film formation on polymeric supports. C. R. Chimie 6, 1185-1192(2003).
    172. Cha, B.J., Kang, Y.S. & Won, J. Preparation and Characterization of Dendrimer Layers On Poly(dimethylsiloxane) Films. Macromolecules 34, 6631-6636 (2001).
    173. Oosterom, GE., Reek, J.N.H. & Kamer, P.C.J. Transition Metal Catalysis Using Functionalized Dendrimers. Angew. Chem. Int. Ed. 40,1828-1849 (2001).
    174. Dijkstra, H.P., Ronde, N. & Klink, GP.M.v. Application of a Homogeneous Dodecakis(NCN-PdII) Catalyst in a Nanofiltration Membrane Reactor under Continuous Reaction Conditions. Adv. Synth. Catal. 345, 364-369 (2003).
    175. Diallo, M.S., Balogh, L. & Shafagati, A. Poly(amidoamine) dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ. Sci. Technol. 33, 820-824 (1999).
    176. Diallo, M.S., Christie, S., Swaminathan, P. & Balogh, L. Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20,2640-2651(2004).
    177. Diallo, M.S., Christie, S. & Swaminathan, P. Dendrimer Enhanced Ultrifiltration. I. Recovery of Cu(II) from aqueous Solutions using PAMAM Dendrimers with Ethylene Diamine Core and Terminal NH2 Groups. Environ. Sci. Technol. 39,1366-1377 (2005).
    178. Zou, J., Zhao, Y. & Shi, W. Preparation and Properties of proton conducting organic-inorganic hybrid membranes based on hyperbranched aliphatic polyester and phosphoric acid. J. Membr. Sci. 245, 35-40 (2004).
    179. Loeb, G.S. & Sourirajian, S. Sea water demineralization by means of an osmotic membrane. Adv. Chem.Ser. 38,117-132(1963).
    180. Wang, T., Wang, Y.Q., Su, Y.L. & Jiang, Z.Y. Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer. J. Membr. Sci. 280, 343-350 (2006).
    181. Jung, B. Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration. J. Membr. Sci. 229, 129-136 (2004).
    182. Park, J.Y., Acar, M.H., Akthakul, A., Kuhlman, W. & Mayes, A.M. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials 27, 856-865 (2006).
    183. Kajiyama, T., Tanaka, K.J. & Takahara, A. Surface segregation of the higher surface free energy component in symmetric polymer blend films. Macromolecules 31, 3746-3749 (1998).
    184. Hancock, L.F. Phase inversion membranes with an organized surface structure from mixtures of polysulfone and polysulfone poly(ethylene oxide) block copolymers. J. Appl. Polym. Sci. 66, 1353-1358(1997).
    185. Wang, Y.Q. et al. Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with pluronic F127. Langmuir 21, 11856-11862 (2005).
    186. Siegers, C, Biesalski, M. & Haag, R. Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem. Eur. J. 10,2831-2838 (2004).
    187. Irvine, D.J., Mayes, A.M. & Griffith-Cima, L. Self-consistent field analysis of grafted star polymers. Macromolecules 29, 6037-6043 (1996).
    188. Wang, Y.-Q, Su, Y.-L., Sun, Q., Ma, X.-L. & Jiang, Z.-Y. Generation of antibiofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. J. Membr. Sci. 286,228-236 (2006).
    3 89. Bernt, E. & Bengt, H. Membrane applications in raw water treatment with and without reverse osmosis desalination. Desalination 98, 3-16 (1994).
    190. Abdul, L.A., Suzylawati, I. & Subhash, B. Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157, 87-95 (2003).
    191. Toshikatsu, S. Anion exchange membrane with viologen moiety as anion exchange groups and generation of photo-induced electrical potential from the membrane. J. Membr. Sci. 118, 121-126(1996).
    192. D.L. Wang, K. Li & Teo, W.K. Preparation and characterization of Polyvinylidene fluoride (PVDF) hollow fiber membranes. J. Membr. Sci. 163,211-220 (1999).
    193. Chuang, W.Y., Young, T.H., Chiu, W.Y. & Lin, C.Y. The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes. Polymer 41, 5633-5641 (2000).
    194. Arthanareeswaran, G, Thanikaivelan, P., Srinivasn, K., Mohan, D. & Rajendran, M. Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. Eur. Polym. J. 40,2153-2159(2004).
    195. Yeow, M.L., Liu, Y. & Li, K. Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive. J. Membr. Sci. 258, 16-22 (2005).
    196. Lin, D.J., Chang, C.L., Huang, F.M. & Cheng, L.P. Effect of salt additive on the formation of microporous Poly(vinylidene fluoride) membranes by phase inversion from LiClO4/water/DMF/PVDF system. Polymer 44, 413-422 (2003).
    197. Kim, J.H. & Li, K.H. Effect of PEG additive on membrane formation by phase inversion. J. Membr. Sci. 138,153-163 (1998).
    198. Rogers, M.C., Adisa, B. & Bruce, D.A. Synthesis and characterization of dendrimer-templated mesoporous oxidation catalysts. Catal. Lett. 98, 29-36 (2004).
    199. Patri, A.K., Kukowska-Latallo, J.F. & Jr, J.R.B. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Del. Rev. 57,2203-2214 (2005).
    200. Thayumanavan, S., Bharathi, P., Sivanandan, K. & Vutukuri, D.R. Towards dendrimers as biomimetic macromolecules. C. R. Chimie 6, 767-778 (2003).
    201. Matthews, O.A., Shipway, A.N. & Stoddart, J.F. Dendrimers-branching out from curiosities into new technologies. Prog. Polym. Sci. 23,1-56 (1998).
    202. Sunder, A., Frey, H. & Mulhaupt, R. Hyperbranched polyglycerols by ringopening multibranching polymerization. Macromol. Symp. 153,187-196 (2000).
    203. Kautz, H., Sunder, A. & Frey, H. Control of the molecular weight of hyperbranched polyglycerols.Macromol.Symp.163,67-74(2001).
    204.Sunder,A.& Mulhaupt,R.Method for producing highly branched glycidolbased polyols.US Patent 6822068 B2(2004).
    205.Bergbreiter,D.E.Polyethylene surface chemistry.Prog.Polym.Sci.19,529-560(1994).
    206.Wang,X.L.,Chen,J.J.& Hong,L.Synthesis and Ionic Conductivity of Hyperbranched Poly(glycidol).J.Polym.Sci.Part B:polym,phys.39,2225-2230(2001).
    207.Mock,A.,Burgath,A.,Hanselmann,R.& Frey,H.Synthesis of hyperbranched aromatic homoand copolyesters via the slow monomer addition method.Macromolecules 34,7692-7698(2001).
    208.Yuan,Y.& Schoichet,M.S.Surface enrichment of poly(trifluorovinyl ether)s in polystyrene blends.Macromolecules 33,4926-4931(2000).
    209.Baradie,B.& Schoichet,M.S.Insight into the surface properties of fluorocarbon-vinyl acetate copolymer films and blends.Macromolecules 36,2343-2348(2003).
    210.Chen,N.& Hong,L.Surface phase morphology and composition of the casting films of PVDF-PVP blend.Polymer 43,1429-1436(2002).
    211.Termonia,Y.Fundamentals of polymer coagulation.J.Polym.Sci.Part B:Polym.Phys.33,279-288(1995).
    212.Strathmann,H.,Kock,K.,Amar,P.& Baker,R.W.The formation mechanism of asymmetric membranes.Desalination 16,179-203(1975).
    213.Boom,R.M.,Boomgaard,T.v.d.& Smolders,C.A.Mass transfer and thermodynamic during immersion precipitation for a two-polymer system:evaluation with the system PES-PVP-NMP-water.J.Membr.Sci.90,231-249(1994).
    214.Smolders,C.A.,Reuvers,A.J.,Boom,R.M.& Wienk,I.M.Microstructure in phase-inversion membranes.Part 1.Formation of macrovoids.J.Membr.Sci.73,259-275(1992).
    215.Boom,R.M.,Wienk,I.M.,Boomgaard,T.v.d.& Smolders,C.A.Microstructure in phase-inversion membranes.Part 2.The role of a polymeric additive.J.Membr.Sci.73,277-292(1992).
    216.Steen,M.L.,Jordan,A.C.& Fisher,E.R.Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment.J.Membr.Sci.204,341-357(2002).
    217.Wavhal,D.S.& Fisher,E.R.Membrane surface modification by plasmainduced polymerization of acrylamide for improved surface properties and reduced protein fouling.Langmuir 19,79-85(2003).
    218.Liu,F.P.,Gardner,D.J.& Wolcott,M.P.AModel for the description of polymer surface dynamic behavior.1.Contact angle vs.polymer surface properties.Langmuir 11,2674-2681(1995).
    219.Yasuda,T.,Miyama,M.& Yasuda,H.Dynamics of the surface configuration change of polymers in response to changes in environmental conditions.2.Comparison of changes in air and in liquid water.Langmuir 8,1425-1430(1992).
    220.Iritani,E.,Tachi,S.& Murase,T.Influence of protein adsorption on flow resistance of microfiltration membrane.Colloids Surf A:Physicochem.Eng.Asp.89,15-22(1994).
    221.Lee,J.H.,Lee,H.B.& Andrade,J.D.Blood compatibility of polyethylene oxide surfaces.Prog.Polym.Sci.20,1043-1079(1995).
    222.Unsworth,L.D.,Sheardown,H.& Brash,J.L.Protein Resistance of Surfaces Prepared by Sorption of End-Thiolated Poly(ethylene glycol)to Gold:Effect of Surface Chain Density.Langmuir 21,1036-1041(2005).
    223. Feng, W., Brash, J. & Zhu, S. Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Biomaterials 27, 847-855 (2006).
    224. Szleifer, I. Protein adsorption on surfaces with grafted polymers: a theoretical approach Biophys. J. 72, 595-612 (1997).
    225. Michel, R., Pasche, S., Textor, M. & Castner, D.G. Influence of PEG Architecture on Protein Adsorption and Conformation Langmuir 21,12327-12332 (2005).
    226. (Perstorp Specialty Chemicals AB, 2001).
    227. Komber, H., Ziemer, A. & Voit, B. Etherification as Side Reaction in the Hyperbranched Polycondensation of 2,2-Bis(hydroxymethyl)propionic Acid Macromolecules 35, 3514-3519 (2002).
    228. Ihre, H., Hult, A., Frechet, J.M.J. & Gitsov, I. Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid Macromolecules 31,4061-4068 (1998).
    229. Zagar, E., Zigon, M. & Podzimek, S. Characterization of commercial aliphatic hyperbranched polyesters. Polymer 47, 166-175 (2006).
    230. Zhai, X. et al. Amphiphilic Dendritic Molecules: Hyperbranched Polyesters with Alkyl-Terminated Branches Macromolecules 36,3101-3110 (2003).
    231. Mackay, M.E. & Carmezini, G. Manipulation of Hyperbranched Polymers' Conformation Chem. Mater. 14, 819-825 (2002).
    232. Taniguchi, M., Pieracci, J.P. & Belfort, G. Effect of Undulations on Surface Energy: A Quantitative Assessment Langmuir 17,4312-4315 (2001).
    233. Taniguchi, M. & Belfort, G. Correcting for Surface Roughness: Advancing and Receding Contact Angles Langmuir 18,6465-6467 (2002).
    234. Halperin, A. Polymer Brushes that Resist Adsorption of Model Proteins: Design Parameters Langmuir 15, 2525-2533 (1999).
    235. Szleifer, I.M. & Carignano, A. Tethered Polymer Layers: Phase Transitions and Reduction of Protein Adsorption. Macromol. Rapid Commun. 21,423-448 (2000).
    236. Sarbolouki, M.N. A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes. Sep. Sci. Technol. 17, 381-386 (1982).
    237. Suk, D.E. et al. Study on the kinetics of surface migration of surface modifying macromolecules in membrane preparation. Macromolecules 35, 3017-3021 (2002).
    238. Morra, M. On the molecular basis of fouling resistance. J. Biomater. Sci. Polym. Ed. 11, 547-569 (2000).
    239. Malmsten, M., Emoto, K. & Alstine, J.M.V. Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol) based coatings. J. Colloid Interf. Sci. 202, 507-517 (1998).
    240. Pieracci, J., Crivello, J.V. & Belfort, G. Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling. J. Membr. Sci. 156, 223-240 (1999).
    241. Reining, B., Keul, H. & Hocker, H. Amphiphilic block copolymers comprising poly (ethylene oxide) and poly (styrene) blocks-synthesis and surface morphology. Polymer 43, 7145-7154 (2002).
    242. Qin, J.J., Wong, F.-S., Li, Y. & Liu, Y.T. A high flux ultrafiltration membrane spun from PSU/PVP(K90)/DMF/1,2-propanediol. J. Membr. Sci. 211,139-147 (2003).
    243. Lu, D.R., Lee, S.J. & Park, K. Calculation of solvation interaction energies for protein adsorption on polymer surfaces. J. Biomater. Sci. Polym. Ed. 3,127 (1991).
    244. Vogler, E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interf. Sci. 74, 69-117(1998).
    245. Ishihara, K. et al. Why do Phospholipid polymers reduce protein adsorption. J. Biomed. Mater. Res. 39,323-330(1998).
    246. Kim, D.W. & Sun, Y.K. Electrochemical characterization of gel polymer electrolytes prepared with porous membranes. J. Power Sources 102,41-45 (2001).
    247. Zhang, S.S., Ervin, M.H., Xu, K. & Jow, T.R. Microporous poly(acrylonitrile-methacrylate) membrane as a separator of rechargeable lithium battery. Electrochim. Acta 49, 3339-3345 (2004).
    248. Armand, M.B. Polymer solid electrolytes - an overview. Solid State Ionics 9-10, 745-754 (1983).
    249. Schriver, D.F. et al. Structure and ion transport in polymer-salt complexes. Solid State Ionics 5, 83-88(1981).
    250. Abraham, K.M. & Jiang, Z. PEO-like polymer electrolytes with high room temperature conductivity. J. Electrochem. Soc. 144, L136 (1997).
    251. Yoon, H.K., Chung, W.S. & Jo, N.J. Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochim. Acta 50,289-293 (2004).
    252. Appetecchi, GB., Croce, F. & Scrosati, B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim. Acta 40, 991-997 (1995).
    253. Tsuchida, E., Ohno, H. & Tsunemi, K. Conduction of lithium ions in Polyvinylidene fluoride and its derivatives. Electrochim. Acta 28, 591-595 (1983).
    254. Jiang, Z., Carroll, B. & Abraham, K.M. Studies of some Poly(vinylidene fluoride) electrolytes. Electrochim. Acta 42, 2667-2677 (1997).
    255. Capiglia, C. et al. Structure and transport properties of polymer gel electrolytes based on PVDF-HFP and LiN(C_2F_5SO_2)_2. Solid State Ionics 131,291-299 (2000).
    256. Lee, C, Kim, J.H. & Bae, J.Y. Polymer gel electrolytes prepared by thermal curing of Poly(vinylidene fluoride)-hexafluoropropene/poly(ethylene glycol)/propylene carbonate/lithium perchlorate blend. Polymer 44, 7143-7155 (2003).
    257. Shi, Q., Yu, M.X., Zhou, X., Yan, Y.S. & Wan, CR. Structure and performance of porous polymer electrolytes based on P(VDF-HFP) for lithium ion batteries. J. Power Sources 103, 286-292 (2002).
    258. Saikia, D. & Kumar, A. Ionic conduction in P(VDF-HFP)/PVDF-(PC + DEC)-LiClO4 polymer gel electrolytes. Electrochim. Acta 49, 2541-2549 (2004).
    259. Michot, T., Nishimoto, A. & Watanabe, M. Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochim. Acta 45, 1347-1360(2000).
    260. Song, J.Y, Wang, Y.Y & Wan, C.C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77, 183-197 (1999).
    261. Shen, Y.J., Reddy, M.J. & Chu, P.P. Porous PVDF with LiClO4 complex as 'solid' and 'wet' polymer electrolyte. Solid State Ionics 175, 747-750 (2004).
    262. Chiang, C.-Y, Shen, Y.J., Reddy, M.J. & Chu, P.P. Complexation of Poly(vinylidene fluoride):LiPF_6 solid polymer electrolyte with enhanced ion conduction in 'wet' form. J. Power Sources 123, 222-229 (2003).
    263.Mohamed,N.S.& Arof,A.K.Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes.J.Power Sources 132,229-234(2004).
    264.Kataoka,H.,Saito,Y.& Sakai,T.Conduction Mechanisms of PVDF-Type Gel Polymer Electrolytes of Lithium Prepared by a Phase Inversion Process J.Phys.Chem.B 104,11460-11464(2000).
    265.Bottino,A.,Camera-Rota,G.,Capannelli,G.& Munari,S.The formation of microporous polyvinylidene difluoride membranes by phase separation.J.Membr.Sci.57,1-20(1991).
    266.Wu,C.-G.,Lu,M.-I.& Chuang,H.-J.PVdF-HFP/P123 hybrid with mesopores:a new matrix for high-conducting,low-leakage porous polymer electrolyte,polymer 46,5929-5938(2005).
    267.Abraham,K.M.,Alamgir,M.& Hoffman,D.K.Polymer electrolytes reinforced by Celgard membrane.J.Electrochem.Soc.142,683(1995).
    268.Song,J.Y.,Cheng,C.L.,Wang,Y.Y.& Wan,C.C.Microstructure of poly(vinylidene fluoride)-based polymer electrolyte and its effect on transport properties.J.Electrochem.Soc.149,A1230-A1236(2002).
    269.Wang,Y.D.& Cakmak,M.Hierarchical structure gradients development in injection-molded PVDF and PVDF-PMMA blends.Ⅰ.Optical and thermal analysis.J.Appl.Polym.Sci.68,909-926(1998).
    270.Saito,Y.,Kataoka,H.,Quartarone,E.& Mustarelli,P.Carrier migration mechanism of physically cross-linked polymer gel electrolytes based on PVDF membranes.J.Phys.Chem.B 106,7200-7204(2002).
    271.Saunier,J.,Gorecki,W.,Alloin,F.& Sanchez,J.Y.NMR study of cation,anion,and solvent mobilities in macroporous poly(vinylidene fluoride).J.Phys.Chem.B 109,2487-2492(2005).
    272.Wright,P.V.Electrical conductivity in ionic complexes ofpoly(ethylene oxide).Br.Polym.J.7,319-331(1975).
    273.Capiglia,C.,Saito,Y.,Yamamoto,H.,Kageyama,H.& Mustarelli,P.Transport properties and microstructure of gel polymer electrolytes.Electrochim.Acta 45,1341-1345(2000).
    274.Armand,M.B.,Chabagno,J.M.& Duclot,M.in Fast ion transport in solids(eds.Vashista,P.,Mundy,J.M.& Shenoy,G.K.)131-136(Elsevier,New York,1979).
    275.Siekierski,M.,Wieezorek,W.& Przyluski,J.AC conductivity studies of composite polymeric electrolytes.Electrochim.Acta 43,1339-1342(1998).
    276.Cohen,M.H.& Turnbull,D.Free-volume model of the amorphous phase:glass transition.J.Chem.Phys.34,120-125(1961).
    277.Cohen,M.H.& Turnbull,D.On the free-volume model of the liquid-glass transition.J.Chem.Phys.52,3038-3041(1970).
    278.Wang,Z.L.& Tang,Z.Y.Characterization of the polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene)and poly(vinyl pyrrolidone)for lithium ion battery.Mater.Chem.Phys.82,16-20(2003).
    279.Bruce,P.G.& Gray,F.M.in Solid State Electrochemistry(ed.Bruce,P.G.)119-162(Cambridge University Press,Cambridge,1995).
    280.Chung,N.K.,Kwon,Y.D.& Kim,D.Thermal,mechanical,swelling,and electrochemical properties of poly(vinylidene fluoride)-co-hexafluoropropylene/poly(ethylene glycol)hybrid-type polymer electrolytes.J.Power Sources 124,148-154(2003).
    281.Watanabe,M.,Sammi,K.& Ogata,N.Correlation between ionic conductivity and the dynamic mechanical property of polymer complexes formed by a segmented polymer poly(urethane urea) and lithium perchlorate. Macromolecules 19, 815-819 (1986).