MicroRNAs在Behcet病、Vogt-小柳原田综合征和Fuchs综合征中发病机制及易感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     葡萄膜炎是一类由感染因素、免疫反应等引起的眼内脉络膜组织的炎症,好发生于青壮年,易反复发作,是常见的致盲眼病之一,也被称为眼内炎症。目前葡萄膜炎的临床类型和病因多达100余种,而其中,Behcet病、Vogt-小柳原田综合征这两类疾病为我国致盲率最高的葡萄膜炎类型,而Fuchs综合征这类疾病则是一种致盲率低的葡萄膜炎类型。Behcet病、Vogt-小柳原田综合征目前普遍被认为主要是由自身免疫反应所介导的疾病,而Fuchs综合征目前报道显示与病毒感染相关。
     microRNA(微小RNA,miRNA)是一类保守的小分子非编码RNA。miRNA能与特异性的信使RNAs (mRNAs)的3’端非翻译区(untranslated region,UTR)互补结合,从而在转录后水平调控靶基因的表达,降解靶基因或者抑制转录后的翻译。目前研究显示miRNAs在免疫功能和自身免疫的调节以及病毒感染中发挥着关键的作用。
     本研究正是基于上述背景,进行了以下两大方面的实验:1.探讨五种免疫相关的microRNAs在Behcet病和Vogt-小柳原田综合征这两类自身免疫性疾病中的作用机制;2.探讨miR-146a和转录因子Ets-1基因多态是否与中国汉族人群Behcet病(BD)、Vogt-小柳原田综合征(VKH)和Fuchs’综合征(FUS)相关。通过上述研究,以期能对葡萄膜炎的发病机制有一个更深入的认识,同时为其防治寻找新的靶点。
     第一部分MiRNAs在Behcet病发病中作用
     目的:
     microRNAs(miRNAs)在免疫调节和哺乳动物免疫应答反应中发挥着重要调控作用。在本文中,我们研究了microRNAs在Behcet病和Vogt-小柳原田综合征这两类自身免疫性疾病中的作用机制。
     方法:
     1.分别抽取活动期、静止期的Behcet病、VKH综合征患者和正常人外周静脉血,并分离这些患者和正常人外周血单个核细胞(PBMC)、CD4+T细胞和树突状细胞(DC)。
     2.抽提细胞总RNA,运用TaqMan定量PCR的方法检测外周血单个核细胞(PBMC)、CD4+T细胞和DC中五种与免疫相关的microRNAs的表达水平。
     3.体外用miRNA-155mimics和miRNA-155inhibitor分别转染DC,运用流式细胞仪检测转染后的DC与成熟度相关的表面分子标记物(CD80, CD40, CD83, CD86和HLA-DR)的表达水平。
     4.采用ELISA方法检测转染后的DC分泌的细胞因子IL-6、IL-10、IFN-γ和IL-1β的表达水平。
     5.体外共培养转染后的DC和CD4+T细胞,运用流式细胞仪检测CD4+T细胞内的细胞因子IL-17的表达水平
     6.运用miRNA数据库预测miRNA-155的靶基因,再运用双荧光素酶报告基因的检测方法验证miRNA-155对预测的靶基因的3’UTR区域的荧光素酶抑制作用,最后用Western Blot的方法进一步确认miRNA-155对靶基因的调控作用。
     结果:
     1.活动期Behcet病患者的PBMC和DC中miRNA-155的表达水平显著低于正常人,而活动期VKH患者的PBMC、活动期Behcet病患者的CD4+T细胞以及静止期Behcet病患者的PBMC和DC中这五种miRNAs水平与正常人相比均没有统计学差异。
     2.体外能成功将miRNA-155mimic及miRNA-155inhibitor转染入DC中,并且转染了miRNA-155mimic及miRNA-155inhibitor的DC能分别高表达和低表达miRNA-155。
     3.转染miRNA-155mimic及miRNA-155inhibitor后的DC,其成熟度没有统计学差异。
     4.转染miRNA-155mimics后的DC分泌的促炎因子IL-6呈现显著低表达,而抑炎因子IL-10、IL-1β则呈现显著高表达;而转染miRNA-155inhibitor后的DC分泌的促炎因子IL-6呈现显著高表达,而抑炎因子IL-10、IL-1β则呈现显著低表达。
     5.转染了miRNA-155mimics的DC共培养的CD4+T细胞中,炎症因子IL-17显著低表达;而在与转染了miRNA-155inhibitor的DC共培养的CD4+T细胞中,炎症因子IL-17显著高表达。
     6.通过综合多个生物信息学预测网站和软件的预测结果,我们根据miRNA-155保守的核苷酸序列预测到了其在人TAB2基因的3’UTR区域有一个可能的靶位点。miR-155能够结合到TAB23’UTR区域而抑制荧光素酶的表达。
     7.转染了miR-155mimics的DC中TAB2蛋白的表达量显著下降,而转染了miR-155inhibitor的DC中TAB2蛋白的表达量明显上调,两者均以GAPDH作为内参来均衡蛋白的上样量。该结果表明miR-155能够直接调控靶基因TAB2的蛋白水平表达。
     结论:
     我们的研究发现在活动期Behcet病患者中miR-155显著低表达。而在这类疾病中这种下调的miR-155水平是通过调节DC和DC4+T细胞分泌的细胞因子而发挥作用的,并且这个调节作用是通过miR-155调控了靶基因TAB2而实现的。
     第二部分MiRNAs与Behcet病、Vogt-小柳原田综合征和Fuchs综合征遗传易感性研究
     目的:
     本实验旨在探讨miR-146a和转录因子Ets-1基因多态是否与中国汉族人群Behcet病(BD)、Vogt-小柳原田综合征(VKH)和Fuchs’综合征(FUS)相关。
     方法:
     1.运用PCR-RFLP和测序的方法对669例BD患者的miR-146a和Ets-1基因的三个多态位点(miR-146a/rs2910164, ets-1/rs1128334和rs10893872)进行了基因分型。
     2.运用PCR-RFLP和测序的方法分别对613例VKH患者的miR-146a和Ets-1基因的三个多态位点(miR-146a/rs2910164,ets-1/rs1128334和rs10893872)进行了基因分型。
     3.运用PCR-RFLP和测序的方法分别对219例FUS患者的miR-146a和Ets-1基因的三个多态位点(miR-146a/rs2910164,ets-1/rs1128334和rs10893872)进行了基因分型。
     4.运用PCR-RFLP和测序的方法分别对1132例正常人的miR-146a和Ets-1基因的三个多态位点(miR-146a/rs2910164,ets-1/rs1128334和rs10893872)进行了基因分型。
     5.运用定量PCR的方法检测miR-146a/rs2910164位点三种基因型的正常人PBMCs细胞中miR-146a表达水平。
     6.运用ELISA的方法检测miR-146a/rs2910164位点三种基因型的正常人PBMCs培养上清中细胞因子(IL-17、IL-1β、IL-6、IL-8和MCP-1)的表达水平。
     结果:
     1.正常人的miR-146a和Ets-1基因的3个SNP的分型结果都符合哈迪温伯格平衡(p>0.05)。BD患者的miR-146a基因的rs2910164CC基因型和显著低于正常对照组(pc=2.19×10~-5, OR0.61),而GC基因型频率则显著高于正常对照组(pc=0.009, OR1.38);rs2910164C等位基因的频率也显著低于正常对照组(pc=9.3×10~-5, OR0.75)。
     2.定量PCR结果显示:rs2910164基因GG基因型的正常人PBMC细胞中miR-146a基因的表达水平是CC型中miR-146a表达的2.45倍,是GC型中miR-146a表达的1.99倍。
     3. ELISA结果显示:IL-17和IL-1β表达在rs2910164基因CC基因型的正常人PBMC培养上清中显著低于GG基因型。IL-6和MCP-1的表达水平在三个基因型中没有统计学差异。而IL-8在rs2910164基因CC基因型的正常人PBMC培养上清中则显示出轻微上调的表达。
     4. Ets-1基因的2个SNP rs1128334和rs10893872,各位点基因型和等位基因的频率分布在BD病患者和正常对照组之间均统计学差异。miR-146a和Ets-1基因3个SNP的等位基因与BD患者主要临床症状也没有统计学差异。
     5.正常人的miR-146a和Ets-1基因的3个SNP的分型结果都符合哈迪温伯格平衡(p>0.05)。miR-146a和Ets-1基因3个SNP的等位基因与VKH患者主要临床症状没有统计学差异。VKH患者的miR-146a和Ets-1基因3个SNP的等位基因、基因型频率与正常对照组之间均无统计学差异。
     6.正常人的miR-146a和Ets-1基因的3个SNP的分型结果都符合哈迪温伯格平衡(p>0.05)。FUS患者的miR-146a和Ets-1基因3个SNP的等位基因、基因型频率与正常对照组之间均无统计学差异。结论:
     miR-146a基因的rs2910164与中国汉族人群中BD疾病发病有关。rs2910164CC基因型和C等位基因可能是BD疾病的保护基因。miR-146a和Ets-1基因多态与VKH和FUS无相关性。
Background
     Uveitis, a common cause of blindness in the world, can be due toinfectious or noninfectious mechanism. It has various clinical patterns andcharacteristics in different countries. Behcet’s disease (BD) andVogt-Koyanagi-Harada (VKH) syndrome are the two most common uveitisentities in China. It is generally recognized that both diseases are inducedby a complicated interaction, such as environmental factors, autoimmuneresponse and other exogenous elements. Although the etiology of FUS hasnot yet been fully understood, several studies have revealed that both viralinfection and genetic risk factors may be involved in its pathogenesis.
     Mammalian microRNAs (miRNAs) are small (18-25nt long),endogenous, noncoding RNA oligonucleotides. They are highly conservedduring evolution and have recently emerged as potent regulators of geneexpression linked to most biological function. miRNAsposttranscriptionally regulate gene expression by binding with imperfectcomplementarity to the sequences in the3’ untranslated region (3’ UTR) of target mRNAs.
     Based on the background, the present study was designed to explainthe questions as follows:1. Whether these five known immunologicallyrelevant miRNAs (miR-155, miR-146a, miR-326, miR-181a, miR-17)involved in the development of Behcet’s disease or VKH syndrome?2.Whether microRNA-146a and Ets-1gene polymorphisms are associatedwith ocular Behcet’s disease, Vogt-Koyanagi-Harada syndrome and FuchUveitis syndrome?
     PartⅠ Effect of microRNA-155on cytokine production bydendritic cells is involved in the pathogenesis of Behcet’sdisease
     Purpose
     MicroRNA (miRNAs) have emerged as a class of gene expressionregulators in the regulation of immunity and mammalian inflammatoryresponse. In the present study, we investigated the role of miRNA inBehcet’ disease (BD), an autoinflammatory disease.
     Methods
     MiRNAs expression in peripheral blood mononuclear cells (PBMCs),dendritic cells (DCs) and CD4+T cell were examined using TaqMan real-time PCR. MiR-155mimics and inhibitor were transfected to DCs toevaluate the effects of miR-155on the DC mature and cytokine productionby these cells, and the influence of miR-155-overexpressed DCs on thecytokine production of CD4+T cells. Luciferase reporter assays andWestern blotting were performed to identify the target gene of miR-155.
     Results
     BD patients with active uveitis showed a significantly decreasedexpression of miR-155in PBMCs and DCs, but not in CD4+T cells, ascompared with normal individuals. Overexpression of miR-155couldinhibit the production of IL-6and IL-1β and promote the expression ofIL-10in DCs. MiR-155transfected DC could significantly inhibitintracellular IL-17expression of allogeneic CD4+T cells when culturedtogether. However, it did not influence the phenotypic DC maturation.Luciferase reporter assays revealed that TAB2was the target gene ofmiR-155. Western blotting results also confirmed this result.
     Conclusions
     The present results suggest that miR-155expression is decreased inactive BD patients. Downregulated miR-155could be involved in thisdisease through modulating cytokine production of DC and CD4+T cellsby targeting TAB2.
     Part Ⅱ MicroRNA-146a and Ets-1gene polymorphisms inocular Behcet’s disease, Vogt-Koyanagi-Harada syndromeand Fuch Uveitis syndrome
     Purpose
     MicroRNA-146a (miR-146a) is involved in certainimmune-mediated diseases. Transcription factor Ets-1strongly affectsmiR-146a promoter activity and directly regulates miR-146a expression.This study was performed to investigate the association of miR-146a andEts-1gene polymorphisms with Behcet’s disease (BD),Vogt-Koyanagi-Harada (VKH) disease and Fuch Uveitis syndrome (FUS)in a Chinese Han population.
     Methods
     A total of669BD patients,613VKH patients,219FUS patients and1132normal controls were genotyped for miR-146a/rs2910164,ets-1/rs1128334and rs10893872using a PCR restriction fragment lengthpolymorphism assay. miR-146a expression was examined in PBMCs byreal-time PCR. Cytokine production by PBMCs were measured by ELISA.
     Results
     A significantly decreased frequency of the homozygous rs2910164CC genotype and C allele was observed in BD patients compared with controls(pc=2.19×10~-5, odds ratio (OR)0.61; pc=9.3×10~-5, OR0.75, respectively).MiR-146a expression in GG cases was2.45-fold and1.99-fold respectivelyhigher than that in CC cases and GC cases. There was no association ofrs1128334or rs10893872with BD. There was also no association of thesethree SNPs with its main clinical features. No associations were found withthe three SNPs tested and with its clinical manifestations in VKH disease.IL-17and IL-1β production from rs2910164CC cases was markedly lowerthan that in GG cases. No effect of genotype was observed on the IL-6andMCP-1production and IL-8expression was slightly higher in CC cases.There was no association of these three SNPs with FUS.
     Conclusions
     Our study identified a strong association of rs2910164of miR-146awith BD in a Chinese population and an decreased expression of miR-146aand certain proinflammatory cytokines in individuals carrying the CCgenotype.
引文
[1]杨培增.临床葡萄膜炎[M].北京:人民卫生出版社;2004.33-44.
    [2]杨培增.葡萄膜炎的诊断与治疗[M].北京:人民卫生出版社;2009.592-770.
    [3] Nussenblatt RB. The natural history of uveitis [J]. Int Ophthalmol.1990,14(5-6):303-308.
    [4] Pras E, Neumann R, Zandman-Goddard G, et al. Intraocular inflammation inautoimmune diseases [J]. Semin Arthritis Rheum.2004,34(3):602-609.
    [5] Yabuki K, Mizuki N, Ota M, et al. Association of MICA gene and HLA-B*5101with Behcet's disease in Greece [J]. Invest Ophthalmol Vis Sci.1999,40(9):1921-1926.
    [6] Norose K, Yano A. Melanoma specific Th1cytotoxic T lymphocyte lines inVogt-Koyanagi-Harada disease [J]. Br J Ophthalmol.1996,80(11):1002-1008.
    [7] Yamaki K, Gocho K, Hayakawa K, et al. Tyrosinase family proteins are antigensspecific to Vogt-Koyanagi-Harada disease [J]. J Immunol.2000,165(12):7323-7329.
    [8] Yamada K, Senju S, Shinohara T, et al. Humoral immune response directedagainst LEDGF in patients with VKH [J]. Immunol Lett.2001,78(3):161-168.
    [9] Du L, Kijlstra A, Yang P. Immune response genes in uveitis [J]. Ocul ImmunolInflamm.2009,17(4):249-256.
    [10] Kawakami Y, Suzuki Y, Shofuda T, et al. T cell immune responses againstmelanoma and melanocytes in cancer and autoimmunity [J]. Pigment CellRes.2000,13Suppl8(163-169.
    [11] Levinson RD, See RF, Rajalingam R, et al. HLA-DRB1and-DQB1alleles inmestizo patients with Vogt-Koyanagi-Harada's disease in Southern California [J].Hum Immunol.2004,65(12):1477-1482.
    [12] Ruokonen PC, Metzner S, Ucer A, et al. Intraocular antibody synthesis againstrubella virus and other microorganisms in Fuchs' heterochromic cyclitis [J].Graefes Arch Clin Exp Ophthalmol.2010,248(4):565-571.
    [13] Barequet IS, Li Q, Wang Y, et al. Herpes simplex virus DNA identification fromaqueous fluid in Fuchs heterochromic iridocyclitis [J]. Am J Ophthalmol.2000,129(5):672-673.
    [14] Kanavi MR, Soheilian M, Yazdani S, et al. Confocal scan features of keraticprecipitates in Fuchs heterochromic iridocyclitis [J]. Cornea.2010,29(1):39-42.
    [15] Valencia-Sanchez MA, Liu J, Hannon GJ, et al. Control of translation andmRNA degradation by miRNAs and siRNAs [J]. Genes Dev.2006,20(5):515-524.
    [16] Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved andnonconserved human microRNAs [J]. Nat Genet.2005,37(7):766-770.
    [17] Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing andcomputational identification of human microRNA genes [J]. Cell.2005,120(1):21-24.
    [18] Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for theidentification of MicroRNA binding sites and their correspondingheteroduplexes [J]. Cell.2006,126(6):1203-1217.
    [19] Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer [J]. CancerRes.2005,65(9):3509-3512.
    [20] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function [J].Cell.2004,116(2):281-297.
    [21] Foshay KM, Gallicano GI. Small RNAs, big potential: the role of MicroRNAs instem cell function [J]. Curr Stem Cell Res Ther.2007,2(4):264-271.
    [22] Wang G, Tam LS, Li EK, et al. Serum and urinary free microRNA level inpatients with systemic lupus erythematosus [J]. Lupus.2011,20(5):493-500.
    [23] Fulci V, Scappucci G, Sebastiani GD, et al. miR-223is overexpressed inT-lymphocytes of patients affected by rheumatoid arthritis [J]. HumImmunol.2010,71(2):206-211.
    [24] Paraboschi EM, Solda G, Gemmati D, et al. Genetic association and altered geneexpression of mir-155in multiple sclerosis patients [J]. Int J Mol Sci.2011,12(12):8695-8712.
    [25] Li F, Pignatta D, Bendix C, et al. MicroRNA regulation of plant innate immunereceptors [J]. Proc Natl Acad Sci U S A.2012,109(5):1790-1795.
    [26] Spiegel JC, Lorenzen JM, Thum T. Role of microRNAs in immunity and organtransplantation [J]. Expert Rev Mol Med.2011,13(e37.
    [27] Yu H, Lu J, Zuo L, et al. Epstein-Barr virus downregulates microRNA203through the oncoprotein latent membrane protein1: a contribution to increasedtumor incidence in epithelial cells [J]. J Virol.2012,86(6):3088-3099.
    [28] Amoroso R, Fitzsimmons L, Thomas WA, et al. Quantitative studies ofEpstein-Barr virus-encoded microRNAs provide novel insights into theirregulation [J]. J Virol.2011,85(2):996-1010.
    [29] Shirina TV, Bobrovskaia MT, Kozlov EA.[The search of miRNA genes inBombyx mori nuclear polyhedrosis virus genomes regions complementary to thelatest genes][J]. Ukr Biokhim Zh.2011,83(5):59-66.
    [30] Read RW, Holland GN, Rao NA, et al. Revised diagnostic criteria forVogt-Koyanagi-Harada disease: report of an international committee onnomenclature [J]. Am J Ophthalmol.2001,131(5):647-652.
    [31] Criteria for diagnosis of Behcet's disease. International Study Group for Behcet'sDisease [J]. Lancet.1990,335(8697):1078-1080.
    [32] Lindberg RL, Hoffmann F, Mehling M, et al. Altered expression of miR-17-5pin CD4+lymphocytes of relapsing-remitting multiple sclerosis patients [J]. Eur JImmunol.2010,40(3):888-898.
    [33] Du C, Liu C, Kang J, et al. MicroRNA miR-326regulates TH-17differentiationand is associated with the pathogenesis of multiple sclerosis [J]. NatImmunol.2009,10(12):1252-1259.
    [34] Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA insynovial fibroblasts and synovial tissue in rheumatoid arthritis [J]. ArthritisRheum.2008,58(4):1001-1009.
    [35] Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cellsensitivity and selection [J]. Cell.2007,129(1):147-161.
    [36] Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineagedifferentiation [J]. Science.2004,303(5654):83-86.
    [37] Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction ofmicroRNA miR-146, an inhibitor targeted to signaling proteins of innateimmune responses [J]. Proc Natl Acad Sci U S A.2006,103(33):12481-12486.
    [38] Tam W. Identification and characterization of human BIC, a gene onchromosome21that encodes a noncoding RNA [J]. Gene.2001,274(1-2):157-167.
    [39] Williams AE. Functional aspects of animal microRNAs [J]. Cell Mol LifeSci.2008,65(4):545-562.
    [40] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors [J]. Nat Immunol.2010,11(5):373-384.
    [41] Liu YJ, Kanzler H, Soumelis V, et al. Dendritic cell lineage, plasticity andcross-regulation [J]. Nat Immunol.2001,2(7):585-589.
    [42] Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155fornormal immune function [J]. Science.2007,316(5824):608-611.
    [43] Liu X, Zhan Z, Xu L, et al. MicroRNA-148/152impair innate response andantigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha[J]. J Immunol.2010,185(12):7244-7251.
    [44] Doench JG, Sharp PA. Specificity of microRNA target selection in translationalrepression [J]. Genes Dev.2004,18(5):504-511.
    [45] Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J]. Cell.2002,110(4):513-520.
    [46] Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicercomplex to Ago2for microRNA processing and gene silencing [J]. Nature.2005,436(7051):740-744.
    [47] Chendrimada TP, Finn KJ, Ji X, et al. MicroRNA silencing through RISCrecruitment of eIF6[J]. Nature.2007,447(7146):823-828.
    [48] Maroney PA, Yu Y, Fisher J, et al. Evidence that microRNAs are associated withtranslating messenger RNAs in human cells [J]. Nat Struct Mol Biol.2006,13(12):1102-1107.
    [49] O'Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression ofmicroRNA-155in hematopoietic stem cells causes a myeloproliferative disorder[J]. J Exp Med.2008,205(3):585-594.
    [50] Costinean S, Sandhu SK, Pedersen IM, et al. Src homology2domain-containinginositol-5-phosphatase and CCAAT enhancer-binding protein beta are targetedby miR-155in B cells of Emicro-MiR-155transgenic mice [J]. Blood.2009,114(7):1374-1382.
    [51] Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155onchromosome21differentially interacts with its polymorphic target in theAGTR13' untranslated region: a mechanism for functional single-nucleotidepolymorphisms related to phenotypes [J]. Am J Hum Genet.2007,81(2):405-413.
    [52] Takaesu G, Kishida S, Hiyama A, et al. TAB2, a novel adaptor protein, mediatesactivation of TAK1MAPKKK by linking TAK1to TRAF6in the IL-1signaltransduction pathway [J]. Mol Cell.2000,5(4):649-658.
    [53] Ceppi M, Pereira PM, Dunand-Sauthier I, et al. MicroRNA-155modulates theinterleukin-1signaling pathway in activated human monocyte-derived dendriticcells [J]. Proc Natl Acad Sci U S A.2009,106(8):2735-2740.
    [54] Aridogan BC, Yildirim M, Baysal V, et al. Serum Levels of IL-4, IL-10, IL-12,IL-13and IFN-gamma in Behcet's disease [J]. J Dermatol.2003,30(8):602-607.
    [55] Kim J, Park JA, Lee EY, et al. Imbalance of Th17to Th1cells in Behcet'sdisease [J]. Clin Exp Rheumatol.2010,28(4Suppl60):S16-19.
    [56] Direskeneli H, Fresko I, Hamuryudan V. Effects of interferon-alpha treatment onserum IL-6, IL-8, TNF-alpha and soluble TNF-alpha receptors in Behcet'sdisease [J]. Scand J Rheumatol.2005,34(1):75-76.
    [57] de Menthon M, Lavalley MP, Maldini C, et al. HLA-B51/B5and the risk ofBehcet's disease: a systematic review and meta-analysis of case-control geneticassociation studies [J]. Arthritis Rheum.2009,61(10):1287-1296.
    [58] Krause L, Kohler AK, Altenburg A, et al. Ocular involvement is associated withHLA-B51in Adamantiades-Behcet's disease [J]. Eye (Lond).2009,23(5):1182-1186.
    [59] Jiang Z, Yang P, Hou S, et al. IL-23R gene confers susceptibility to Behcet'sdisease in a Chinese Han population [J]. Ann Rheum Dis.2010,69(7):1325-1328.
    [60] Durrani O, Banahan K, Sheedy FJ, et al. TIRAP Ser180Leu polymorphism isassociated with Behcet's disease [J]. Rheumatology (Oxford).2011,50(10):1760-1765.
    [61] Chmaisse HN, Fakhoury HA, Salti NN, et al. The ICAM-1469T/C genepolymorphism but not241G/A is associated with Behcets disease in theLebanese population [J]. Saudi Med J.2006,27(5):604-607.
    [62] Horie Y, Kitaichi N, Katsuyama Y, et al. Evaluation of PTPN22polymorphismsand Vogt-Koyanagi-Harada disease in Japanese patients [J]. Mol Vis.2009,15(1115-1119.
    [63] de Smet MD, Bitar G, Mainigi S, et al. Human S-antigen determinantrecognition in uveitis [J]. Invest Ophthalmol Vis Sci.2001,42(13):3233-3238.
    [64] Lin X, Li S, Xie C, et al. Experimental studies of melanin associated antigen andits relationship with sympathetic ophthalmia and Vogt-Kayanagi-Haradasyndrome [J]. Yan Ke Xue Bao.2003,19(3):184-186,200.
    [65] Okunuki Y, Usui Y, Kezuka T, et al. Proteomic surveillance of retinalautoantigens in endogenous uveitis: implication of esterase D and brain-typecreatine kinase as novel autoantigens [J]. Mol Vis.2008,14(1094-1104.
    [66] Goldberg AC, Yamamoto JH, Chiarella JM, et al. HLA-DRB1*0405is thepredominant allele in Brazilian patients with Vogt-Koyanagi-Harada disease [J].Hum Immunol.1998,59(3):183-188.
    [67] Xiao T, Jiang Y, You X.[The association of HLA-DR4gene subtypes withVogt-Koyanagi-Harada syndrome][J]. Zhonghua Yan Ke Za Zhi.1997,33(4):268-271.
    [68] Nomura S, Matsuzaki T, Ozaki Y, et al. Clinical significance ofHLA-DRB1*0410in Japanese patients with idiopathic thrombocytopenicpurpura [J]. Blood.1998,91(10):3616-3622.
    [69] Davis JL, Mittal KK, Freidlin V, et al. HLA associations and ancestry inVogt-Koyanagi-Harada disease and sympathetic ophthalmia [J].Ophthalmology.1990,97(9):1137-1142.
    [70] Islam SM, Numaga J, Fujino Y, et al. HLA class II genes inVogt-Koyanagi-Harada disease [J]. Invest Ophthalmol Vis Sci.1994,35(11):3890-3896.
    [71] Min HY, Liu Y, Niu NF, et al.[Polymorphism of HLA-DQB1alleles in ChineseHan patients with Vogt-Koyanagi-Harada syndrome][J]. Zhonghua Yan Ke ZaZhi.2007,43(4):355-360.
    [72] Horie Y, Kitaichi N, Takemoto Y, et al. Polymorphism of IFN-gamma gene andVogt-Koyanagi-Harada disease [J]. Mol Vis.2007,13(2334-2338.
    [73] Du L, Yang P, Hou S, et al. Association of the CTLA-4gene withVogt-Koyanagi-Harada syndrome [J]. Clin Immunol.2008,127(1):43-48.
    [74] Hou S, Yang P, Du L, et al. Small ubiquitin-like modifier4(SUMO4)polymorphisms and Vogt-Koyanagi-Harada (VKH) syndrome in the ChineseHan population [J]. Mol Vis.2008,14(2597-2603.
    [75] Li K, Yang P, Zhao M, et al. Polymorphisms of FCRL3in a Chinese populationwith Vogt-Koyanagi-Harada (VKH) syndrome [J]. Mol Vis.2009,15(955-961.
    [76] Heiligenhaus A, Rebmann V, Neubert A, et al. Soluble HLA class I andHLA-DR plasma levels in patients with anterior uveitis [J]. TissueAntigens.2004,63(4):369-375.
    [77] Murray PI, Mooy CM, Visser-de Jong E, et al. Immunohistochemical analysis ofiris biopsy specimens from patients with Fuchs' heterochromic cyclitis [J]. Am JOphthalmol.1990,109(4):394-399.
    [78] Keavney B. Genetic association studies in complex diseases [J]. J HumHypertens.2000,14(6):361-367.
    [79] Abou-Sleiman PM, Hanna MG, Wood NW. Genetic association studies ofcomplex neurological diseases [J]. J Neurol Neurosurg Psychiatry.2006,77(12):1302-1304.
    [80] Yang P, Fang W, Jin H, et al. Clinical features of Chinese patients with Fuchs'syndrome [J]. Ophthalmology.2006,113(3):473-480.
    [81] Mizuki N, Yabuki K, Ota M, et al. Analysis of microsatellite polymorphismaround the HLA-B locus in Iranian patients with Behcet's disease [J]. TissueAntigens.2002,60(5):396-399.
    [82] Cohen R, Metzger S, Nahir M, et al. Association of the MIC-A gene andHLA-B51with Behcet's disease in Arabs and non-Ashkenazi Jews in Israel [J].Ann Rheum Dis.2002,61(2):157-160.
    [83] Cardon LR, Palmer LJ. Population stratification and spurious allelic association[J]. Lancet.2003,361(9357):598-604.
    [84] Heiman GA, Gorroochurn P, Hodge SE, et al. Robustness of case-control studiesto population stratification [J]. Cancer Epidemiol Biomarkers Prev.2005,14(6):1579-1580; author reply1580-1571.
    [85] Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with maturemiR-125a alters the processing of pri-miRNA [J]. Hum Mol Genet.2007,16(9):1124-1131.
    [86] Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146adecreases mature miR expression and predisposes to papillary thyroid carcinoma[J]. Proc Natl Acad Sci U S A.2008,105(20):7269-7274.
    [87] Xu T, Zhu Y, Wei QK, et al. A functional polymorphism in the miR-146a gene isassociated with the risk for hepatocellular carcinoma [J]. Carcinogenesis.2008,29(11):2126-2131.
    [88] Okubo M, Tahara T, Shibata T, et al. Association study of common geneticvariants in pre-microRNAs in patients with ulcerative colitis [J]. J ClinImmunol.2011,31(1):69-73.
    [89] Yang B, Zhang JL, Shi YY, et al. Association study of single nucleotidepolymorphisms in pre-miRNA and rheumatoid arthritis in a Han Chinesepopulation [J]. Mol Biol Rep.2011,38(8):4913-4919.
    [90] Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms ofpost-transcriptional regulation by microRNAs: are the answers in sight?[J]. NatRev Genet.2008,9(2):102-114.
    [91] Yang W, Shen N, Ye DQ, et al. Genome-wide association study in Asianpopulations identifies variants in ETS1and WDFY4associated with systemiclupus erythematosus [J]. PLoS Genet.2010,6(2):e1000841.
    [92] Guo H, Wang K, Xiong G, et al. A functional varient in microRNA-146a isassociated with risk of esophageal squamous cell carcinoma in Chinese Han [J].Fam Cancer.2010,9(4):599-603.
    [93] Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association studyidentifies new susceptibility loci for Crohn disease and implicates autophagy indisease pathogenesis [J]. Nat Genet.2007,39(5):596-604.
    [94] Jones NP. Fuchs' heterochromic uveitis: an update [J]. Surv Ophthalmol.1993,37(4):253-272.
    [95] Makley TA, Jr. Heterochromic cyclitis in identical twins [J]. Am JOphthalmol.1956,41(5):768-772.
    [96] De Bruyere M, Dernouchamps JP, Sokal G. HLA antigens in Fuchs'heterochromic iridocyclitis [J]. Am J Ophthalmol.1986,102(3):392-393.
    [97] Spriewald BM, Lefter C, Huber I, et al. A suggestive association of fuchsheterochromic cyclitis with cytotoxic T cell antigen4gene polymorphism [J].Ophthalmic Res.2007,39(2):116-120.
    [98] Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokineIL-23is composed of IL-12Rbeta1and a novel cytokine receptor subunit,IL-23R [J]. J Immunol.2002,168(11):5699-5708.
    [99] Chen F, Hou S, Jiang Z, et al. CD40polymorphisms in Han Chinese patientswith Fuch uveitis syndrome [J]. Mol Vis.2011,17(2469-2472.
    [1] Li W, Saraiya AA, Wang CC. Gene regulation in Giardia lambia involves aputative microRNA derived from a small nucleolar RNA [J]. PLoS Negl TropDis.2011,5(10):e1338.
    [2] Kawahara H, Imai T, Okano H. MicroRNAs in Neural Stem Cells andNeurogenesis [J]. Front Neurosci.2012,6(30.
    [3] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14[J]. Cell.1993,75(5):843-854.
    [4] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked byadenosines, indicates that thousands of human genes are microRNA targets [J].Cell.2005,120(1):15-20.
    [5] Langlois RA, Shapiro JS, Pham AM, et al. In vivo delivery of cytoplasmic RNAvirus-derived miRNAs [J]. Mol Ther.2012,20(2):367-375.
    [6] Foshay KM, Gallicano GI. Small RNAs, big potential: the role of MicroRNAs instem cell function [J]. Curr Stem Cell Res Ther.2007,2(4):264-271.
    [7] Neilson JR, Zheng GX, Burge CB, et al. Dynamic regulation of miRNAexpression in ordered stages of cellular development [J]. Genes Dev.2007,21(5):578-589.
    [8] Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naive, effector andmemory CD8T cells [J]. PLoS One.2007,2(10):e1020.
    [9] Zhou B, Wang S, Mayr C, et al. miR-150, a microRNA expressed in mature Band T cells, blocks early B cell development when expressed prematurely [J].Proc Natl Acad Sci U S A.2007,104(17):7080-7085.
    [10] Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction ofmicroRNA miR-146, an inhibitor targeted to signaling proteins of innateimmune responses [J]. Proc Natl Acad Sci U S A.2006,103(33):12481-12486.
    [11] Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cellsensitivity and selection [J]. Cell.2007,129(1):147-161.
    [12] Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineagedifferentiation [J]. Science.2004,303(5654):83-86.
    [13] Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cellproliferation and granulocyte function by microRNA-223[J]. Nature.2008,451(7182):1125-1129.
    [14] Mai J, Virtue A, Maley E, et al. MicroRNAs and other mechanisms regulateinterleukin-17cytokines and receptors [J]. Front Biosci (Elite Ed).2012,4(1478-1495.
    [15] Williams AE. Functional aspects of animal microRNAs [J]. Cell Mol LifeSci.2008,65(4):545-562.
    [16] Moschos SA, Williams AE, Perry MM, et al. Expression profiling in vivodemonstrates rapid changes in lung microRNA levels followinglipopolysaccharide-induced inflammation but not in the anti-inflammatoryaction of glucocorticoids [J]. BMC Genomics.2007,8(240.
    [17] Mendonca JA, Marques-Neto JF, Samara AM, et al. Increased levels ofrheumatoid factors after TNF inhibitor in rheumatoid arthritis [J]. RheumatolInt.2012,32(3):815-818.
    [18] Cetinkaya B, Guzeldemir E, Ogus E, et al. Pro-and Anti-inflammatoryCytokines in Gingival Crevicular Fluid and Serum of Rheumatoid Arthritis andChronic Periodontitis Patients [J]. J Periodontol.2012.
    [19] Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146inrheumatoid arthritis synovial tissue [J]. Arthritis Rheum.2008,58(5):1284-1292.
    [20] Pauley KM, Satoh M, Chan AL, et al. Upregulated miR-146a expression inperipheral blood mononuclear cells from rheumatoid arthritis patients [J].Arthritis Res Ther.2008,10(4):R101.
    [21] Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA insynovial fibroblasts and synovial tissue in rheumatoid arthritis [J]. ArthritisRheum.2008,58(4):1001-1009.
    [22] Philippe L, Alsaleh G, Suffert G, et al. TLR2expression is regulated bymicroRNA miR-19in rheumatoid fibroblast-like synoviocytes [J]. JImmunol.2012,188(1):454-461.
    [23] Grammatikos AP, Tsokos GC. Immunodeficiency and autoimmunity: lessonsfrom systemic lupus erythematosus [J]. Trends Mol Med.2012,18(2):101-108.
    [24] Dai Y, Huang YS, Tang M, et al. Microarray analysis of microRNA expressionin peripheral blood cells of systemic lupus erythematosus patients [J].Lupus.2007,16(12):939-946.
    [25] Lofgren SE, Frostegard J, Truedsson L, et al. Genetic association ofmiRNA-146a with systemic lupus erythematosus in Europeans throughdecreased expression of the gene [J]. Genes Immun.2012.
    [26] Nakahara J, Maeda M, Aiso S, et al. Current concepts in multiple sclerosis:autoimmunity versus oligodendrogliopathy [J]. Clin Rev Allergy Immunol.2012,42(1):26-34.
    [27] Du C, Liu C, Kang J, et al. MicroRNA miR-326regulates TH-17differentiationand is associated with the pathogenesis of multiple sclerosis [J]. NatImmunol.2009,10(12):1252-1259.
    [28] Lindberg RL, Hoffmann F, Mehling M, et al. Altered expression of miR-17-5pin CD4+lymphocytes of relapsing-remitting multiple sclerosis patients [J]. Eur JImmunol.2010,40(3):888-898.
    [29] Lorenzi JC, Brum DG, Zanette DL, et al. miR-15a and16-1are downregulatedin CD4(+) T cells of multiple sclerosis relapsing patients [J]. Int JNeurosci.2012.
    [30] Ayroldi E, Bastianelli A, Cannarile L, et al. A pathogenetic approach toautoimmune skin disease therapy: psoriasis and biological drugs, unresolvedissues, and future directions [J]. Curr Pharm Des.2011,17(29):3176-3190.
    [31] Ralfkiaer U, Hagedorn PH, Bangsgaard N, et al. Diagnostic microRNA profilingin cutaneous T-cell lymphoma (CTCL)[J]. Blood.2011,118(22):5891-5900.
    [32] Chatzikyriakidou A, Voulgari PV, Georgiou I, et al. The role of microRNA-146a(miR-146a) and its target IL-1R-associated kinase (IRAK1) in psoriatic arthritissusceptibility [J]. Scand J Immunol.2010,71(5):382-385.
    [33] Meisgen F, Xu N, Wei T, et al. MiR-21is up-regulated in psoriasis andsuppresses T cell apoptosis [J]. Exp Dermatol.2012,21(4):312-314.
    [34] Ichihara A, Jinnin M, Oyama R, et al. Increased serum levels of miR-1266inpatients with psoriasis vulgaris [J]. Eur J Dermatol.2012,22(1):68-71.