单核苷酸多态性(rs1913517和rs463426)与汉族人系统性红斑狼疮表型的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景系统性红斑狼疮(Systemic lupus erythematosus,SLE)是一种多器官受累的自身免疫性疾病,受遗传因素和环境因素等多种因素影响而发病。自2008年,四项欧洲人群的SLE全基因组关联研究(genome-wide association study,GWAS)已经确定了20多个易感基因/位点。本课题组在2009年通过SLE全基因组关联分析研究发现了9个新的易感基因位点,并确定了7个之前已报道的基因位点与SLE相关,其中包括10q11.22 (SNP rs1913517)和22q11.21(SNP rs463426)。目前,多项基因型与表型相关研究已经开展,不但为疾病的发病机制提供了遗传证据,还能够帮助确定这些易感基因是否与SLE的某些临床表型相关,且能进一步为SLE的病因和发病机制提供新的观点。
     目的探讨汉族人群中系统性红斑狼疮临床表型(面部红斑,盘状狼疮,肾脏病变,血液系统异常,神经系统异常,口腔溃疡,浆膜炎,关节炎,血管炎,抗核抗体(ANA),抗ds-DNA抗体,抗Sm抗体)与染色体10q11区域单核苷酸多态性rs1913517和22q11区域单核苷酸多态性rs463426的相关性,进一步阐明系统性红斑狼疮的发病机制,为其病因学治疗提供新的观点。
     方法按照1997年美国风湿病学会修订的SLE分类标准的11项表型、发病年龄和血管炎进行分层,行病例-病例(如有面部红斑的患者和无面部红斑的患者)分析确定与单核苷酸多态性(SNP)相关的临床表型,然后行亚表型-对照(如有面部红斑的患者/无面部红斑的患者与健康对照)分析进一步确定SNPs对不同临床表型所奉献的风险大小。应用SPSS10.0计算优势比(Odds ratio,OR)以及95%可信区间(95% confidence interval, 95%CI)和P值。P值<0.05被认为有统计学意义。
     结果1在病例-病例研究中,SNP rs1913517与抗Sm抗体(p=0.0015)相关,在亚表型-对照分析中,SNP rs1913517等位基因频率在大多数亚表型中分布具有显著性差异,但在神经系统异常(+),浆膜炎(+)和抗Sm抗体(+)患者中,SNP rs1913517位点等位基因频率分布无差异(p>0.05)。
     2 SNP rs463426的等位基因频率在病例-病例研究中与所有临床表型无统计学意义。在亚表型-对照分析中,SNP rs463426在所有亚表型中分布具有显著性差异。
     结论结果显示SNP rs1913517与汉族人系统性红斑狼疮抗Sm抗体相关,SNP rs463426与系统性红斑狼疮具体临床表型无显著相关。
Background Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease influenced by genetic and environmental factors. In 2008, recent four genome-wide association studies (GWAS) of SLE in European populations have identified more than twenty robust susceptibility genes and/or loci. We have discovered 9 novel susceptibility loci and confirmed 7 previously reported ones for SLE in a recent GWAS of Chinese Han population including 10q11.22 ( SNP rs1913517) and 22q11.21 (SNP rs463426).Several genotype-phenotype analyses of SLE have been demonstrated and revealed that the complexity of SLE with the feature of extremely heterogeneity, which might give a new insight into the etiology and pathogenesis of SLE.
     Objective? ? To investigate the association between clinical features of SLE(malar rash, discoid rash, renal disorder, hematologic disorder,neurologic disorder,oral ulcers, photosensitivity , serositis, arthritis, vasculitis or multiple autoantibodies in terms of antinuclear antibody (ANA), antibody to native DNA in abnormal titer (Anti-DNA) and antibody to Sm nuclear antigen (Anti-Sm)) and SNPs rs1913517 at 10q11.22 and rs463426 at 22q11.21 in Chinese Han population, revealed that the complexity pathogenesis of SLE, and help to further elucidate disease mechanisms and seek better clinical cure.
     Methods Subphenotyes were analyzed according to the ACR classification criteria for SLE and age onset. We performed case-only analyses (e.g. presence of Malar rash versus no Malar rash) to explore the relationship of the novel SNPs with subphenotypes of SLE, and performed case–control analyses (e.g. presence of Malar rash versus healthy controls) to examine the risk conferred by the two SNPs on different subtypes of SLE. P values, odds ratios (ORs) with 95%CI were calculated using SPSS10.0. P values<0.05 were regarded as significance.
     Results? ? In phenotype case-only analyses, the SNP rs1913517 showed significant difference between Anti-Sm (+) and Anti-Sm (-) (OR=0.83, 95% CI: 0.74–0.93, p=0.0015). In case–control analyses, SNP rs1913517 showed an association only in patients without Neurologic disorder, Serositis and Anti-Sm, but not in the presence of Neurologic disorder ,Serositis and Anti-Sm (p>0.05).The allele frequency of rs463426 was no significantly different in all subphenotypes in case-only, but subphenotype-control analyses showed that the rs463426 was significantly associated in all subphenotypes and controls.
     Conclusion The results indicate that 10q11.22 (rs1913517) was associated with Anti-Sm of SLE.22q11.21(rs463426) having stronger genetic effect on SLE susceptibility, but it might not be associated with a certain phenotype of SLE.
引文
1.张学军.皮肤性病学.七版.北京:人民卫生出版社, 2008:149-54.
    2. Ramsey-Goldman R, M.S., Systemic lupus erythematosis, in Women and Health. 2000, Academic Press. p. 704.
    3. Zeng, Q.Y., et al., Rheumatic diseases in China. Arthritis Res Ther, 2008. 10(1): p. R17.
    4. Danchenko, N., J.A. Satia, and M.S. Anthony, Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus, 2006. 15(5): p. 308-18.
    5. Hopkinson ND,Doherty M,Powell RJ.Clinical features and race-specific incidence/prevalence rates of systemic lupus erythematosus in a geographically complete cohort of patients.Ann Rheum Dis 1994;53:675-80.
    6. Lau CS,Yin G,Mok MY.Ethnic and geographical differences in systemic lupus erythematosus:an overview.Lupus 2006;15:715-9.
    7. Ardoin SP,Pisetsky DS.Developments in the scientific understanding of lupus.Arthritis Res Ther 2008;10:218.
    8. Wong M,Tsao BP.Current topics in human SLE genetics. Springer Semin Immunopathol 2006;28:97-107.
    9. Risch N and Merikangas K.The future of genetic studies of complex human diseases. Science, 1996, 273(5281): 1516-7.
    10. Tabor H K, Risch N J, Myers R M. Candidate-gene approaches for studying complex genetic traits: practical considerations.Nat Rev Genet, 2002, 3(5):391-7.
    11. Carlson C S, Eberle M A, Kruglyak L, et al. Mapping complex disease loci in whole genome association studies. Nature, 2004, 429(6990):446-52.
    12. Taylor K E,Remmers E F,Lee A T,et al.,Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus[J]. PLoS Genet,2008.4(5):e1000084.
    13. Sanchez-Guerrero J,Karlson E W,Liang M H,et al.,Past use of oral contraceptives and the risk of developing systemic lupus erythematosus[J]. Arthritis Rheum, 1997.40(5):804-8.
    14.董笑影,巩路.雌激素与系统性红斑狼疮[J].国外医学(内科学分册), 2005, 32 (12) _4 .
    15. McClain MT , Heinlen LD , Dennis G J , et al . Early event s in lupus humoral autoimmunity suggest initiation t hrough mo2 lecular mimicry[J ] . Nat Med , 2005 , 11 (1) : 85289.
    16. Lenert P , Goeken A , Handwerger BS , et al . Innate immune responses in lupus-prone Palmerston Nort h mice : differential responses to LPS and bacterial DNA/ Cp G oligonucleotides [J ] . J Clin Immunol , 2003 , 23 (3) :2022213.
    17. Bell G M,Gordon A C,Lee P,et al.,Proliferative glomerulonephritis and exposure to organic solvents[J].Nephron,1985.40(2):161-5.
    18. Cooper G S, Parks C G, Treadwell E L, et al., Occupational risk factors for the development of systemic lupus erythematosus [J]. J Rheumatol, 2004.31 (10): 1928-33.
    19. Parks C G, Cooper G S, Nylander-French L A, et al., Occupational exposure to crystalline silica and risk of systemic lupus erythematosus: a population-based,case-control study in the southeastern United States[J]. Arthritis Rheum, 2002. 46(7): 1840-50.
    20. Borchers A T,Keen C L,Gershwin M E,Drug-induced lupus[J].Ann N Y Acad Sci,2007.1108166-82.
    21. Uetrecht J,Current trends in drug-induced autoimmunity[J].Autoimmun Rev, 2005.4(5):309-14.
    22. Le Bon A, Durand V, Kamphuis E, et al. Direct stimulation of T cells by type ⅠIFN enhances the CD8+T cell response during cross-priming [J]. J Immunol,2006,176(8): 4682- 4689.
    23. Qi H, Egen JG, Huang AY, et al. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells[J]. Science,2006,312(5780): 1672- 1676.
    24. .Hom G,R R Graham,B Modrek et al.Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX.N Engl J Med,2008;358;p.900-9.
    25. Kozyrev S V,A K Abelson,J Wojcik et al.Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet, 2008;40;p.211-6.
    26. Harley J B,M E Alarcon-Riquelme,L A Criswell et al.Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM,PXK,KIAA1542 and other loci.Nat Genet,2008;40;p.204-10.
    27. Han J W,H F Zheng,Y Cui et al.Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet, 2009;41;p.1234-7.
    28. Gateva V,J K Sandling,G Hom et al.A large-scale replication study identifies TNIP1,PRDM1, JAZF1,UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet,2009;41;p.1228-33.
    29. Graham R R,Cotsapas C,Davies L,et al.Genetic variants near TNFAIP3 on 6q23 are associatedwith systemic lupus erythematosus. Nat Genet, 2008, 40(9):1056-61.
    30. McFarland H F The B cell--old player, new position on the team [J]. N Engl J Med, 2008,358(7):664-5.
    31. Sigurdsson S,Nordmark G,Garnier S,et al.,A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed,correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5[J].Hum Mol Genet,2008. 17(18):2868-76.
    32. Yang W, Ng P,Zhao M,et al.,Population differences in SLE susceptibility genes: STAT4 and BLK,but not PXK,are associated with systemic lupus erythematosus in Hong Kong Chinese[J].Genes Immun,2009.10(3):219-26.
    33. Kawasaki A, et al.Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population:a case-control association study of the STAT1-STAT4 region[J].Arthritis Res Ther,2008,10(5):R113.
    34. He, C.F., et al., TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus. 19(10): p. 1181-6.
    35. Yang, W., et al., Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 6(2): p. e1000841.
    36. Nie, D.S., et al., Identification of a novel testis-specific gene mtLR1, which is expressed at specific stages of mouse spermatogenesis. Biochem Biophys Res Commun, 2005. 328(4): p. 1010-8.
    37. Tan, E.M., et al., The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum, 1982. 25(11): p. 1271-7.
    38. Clotet, B., et al., Incidence and clinical significance of anti-ENA antibodies in systemic lupus erythematosus. Estimation by counterimmunoelectrophoresis. Scand J Rheumatol, 1984. 13(1): p. 15-20.
    39. Ni JD, Yao X, Pan HF, et al. Clinical and serological correlates of anti-Sm autoantibodies in Chinese patients with systemic lupus erythematosus: 1,584 cases[J]. Rheumatol Int, 2009, 29(11): p. 1323-6.
    40. Sabbatini, A., S. Bombardieri, and P. Migliorini, Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur J Immunol, 1993. 23(5): p. 1146-52.
    41. Deltour, S., et al., Characterization of HRG22, a human homologue of the putative tumor suppressor gene HIC1. Biochem Biophys Res Commun, 2001. 287(2): p. 427-34.
    42. Graham, R.R., et al., Review of recent genome-wide association scans in lupus. J Intern Med, 2009. 265(6): p. 680-8.
    43. Fransen, K., et al., Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn's disease. Hum Mol Genet. 19(17): p. 3482-8.
    1.张学军.皮肤性病学.七版.北京:人民卫生出版社, 2008:149-54.
    2. Ramsey-Goldman R, M.S., Systemic lupus erythematosis, in Women and Health. 2000, Academic Press. p. 704.
    3. Zeng, Q.Y. et al., Rheumatic diseases in China. Arthritis Res Ther, 2008. 10(1): p. R17.
    4. Danchenko, N., J.A. Satia, and M.S. Anthony, Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus, 2006. 15(5): p. 308-18.
    5. Taylor, K.E., et al., Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet, 2008. 4(5): p. e1000084.
    6. Cai, L.Q., et al., A single-nucleotide polymorphism of the TNFAIP3 gene is associated with systemic lupus erythematosus in Chinese Han population. Mol Biol Rep. 37(1): p. 389-94.
    7. He, C.F., et al., TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus. 19(10): p. 1181-6.
    8. Verstrepen L,Carpentier I,Verhelst K,et al.,ABINs:A20 binding inhibitors of NF-kappa B and apoptosis signaling[J]. Biochem Pharmacol, 2009.78 (2):105-14.
    9. Boone D L,Lee E G,Libby S,et al.,Recent advances in understanding NF-kappaB regulation[J].Inflamm Bowel Dis,2002.8(3):201-12
    10. Han, J.W., et al., Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet, 2009. 41(11): p. 1234-7.
    11. Boone D L,Turer E E,Lee E G,et al.,The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses[J].Nat Immunol,2004. 5(10):1052-60.
    12. Graham R R,Cotsapas C,Davies L,et al.,Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus[J].Nat Genet,2008. 40(9):1059-61.
    13. Musone S L,Taylor K E,Lu T T,et al.,Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus[J].Nat Genet,2008.40(9):1062-4.
    14. Lee J,Tattoli I,Wojtal K A,et al.,pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling[J].J Biol Chem, 2009.
    15. Gateva V,Sandling JK,Hom G et al.A large-scale replication study identifies TNIP1,PRDM1,JAZF1,UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus.Nat Genet 2009;41:1228-33.
    16. Stone J C,Regulation of Ras in lymphocytes:get a GRP[J].Biochem Soc Trans, 2006.34(Pt 5):858-61.
    17. Coughlin J J,Stang S L,Dower N A,et al.,RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling[J].J Immunol,2005. 175(11):7179-84.
    18. Maier H,et al.Activation of the early B-cell-specific mb-1(Ig-alpha)gene by Pax-5 is dependent on an unmethylated Ets binding site[J].Mol Cell Biol, 2003,23(6):1946-60.
    19. Garvie C W,J Hagman C Wolberger Structural studies of Ets-1/Pax5 complex formation on DNA[J].Mol Cell,2001,8(6):1267-76.
    20. Pufall M A B J Graves Ets-1 flips for new partner Pax-5[J].Structure, 2002,10(1):11-4.
    21. Moisan J,et al.Ets-1 is a negative regulator of Th17 differentiation[J].J Exp Med,2007,204(12):2825-35.
    22. Bettelli E,T Korn V K Kuchroo Th17:the third member of the effector T celltrilogy[J].Curr Opin Immunol,2007,19(6):652-7.
    23. Georgopoulos K,Bigby M,Wang JH et al.The Ikaros gene is required for the development of all lymphoid lineages.Cell 1994;79:143-56.
    24. Yap W H,et al.STAT4 is a target of the hematopoietic zinc-finger transcription factor Ikaros in T cells[J].FEBS Lett,2005,579(20):4470-8.
    25. Dymecki S M,Zwollo P,Zeller K,et al.,Structure and developmental regulation of the B-lymphoid tyrosine kinase gene blk[J].J Biol Chem, 1992.267(7) :4815-23.
    26. Hom G,Graham R R,Modrek B,et al.,Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX[J].N Engl J Med,2008.358(9):900-9.
    27. Harley J B,Alarcon-Riquelme M E,Criswell L A,et al.,Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM,PXK,KIAA1542 and other loci[J].Nat Genet,2008.40(2):204-10.
    28. Zhang Z,Zhu K J,Xu Q,et al.,The association of the BLK gene with SLE was replicated in Chinese Han[J].Arch Dermatol Res.
    29. Croft M,So T,Duan W et al.The significance of OX40 and OX40L to T-cell biology and immune disease.Immunol Rev 2009;229:173-91.
    30. Manku H,Graham DS,Vyse TJ.Association of the co-stimulator OX40L with systemic lupus erythematosus.J Mol Med 2009;87:229-34.
    31. Cunninghame Graham D S,Graham R R,Manku H,et al.,Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus[J].Nat Genet,2008.40(1):83-9.
    32. Chang Y K,Yang W,Zhao M,et al.,Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese[J].Genes Immun, 2009.10(5):414-20.
    33. Zhang S Q,Han J W,Sun L D,et al.,A single-nucleotide polymorphism of the TNFSF4 gene is associated with systemic lupus erythematosus in Chinese Han population[J].Rheumatol Int,2009.