基于遥感指数的中国南亚热带常绿林光合作用季节动态变化研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Remote Sensing Indices to Measure the Seasonal Dynamics of Photosynthesis in a Southern China Subtropical Evergreen Forest
  • 作者:孙雷刚 ; 王绍强 ; Rober ; A.MICKLER ; 陈敬华 ; 于泉洲 ; 钱钊晖 ; 周国逸 ; 孟泽
  • 英文作者:SUN Leigang;WANG Shaoqiang;Robert A.MICKLER;CHEN Jinghua;YU Quanzhou;QIAN Zhaohui;ZHOU Guoyi;MENG Ze;Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Hebei Engineering Research Center for Geographic Information Application, Institute of Geographical Sciences, Hebei Academy of Sciences;School of Geography and Information Engineering, China University of Geosciences;Department of Forestry and Environmental Resources, North Carolina State University;School of Environment and Planning, Liaocheng University;South China Botanical Garden, Chinese Academy of Sciences;
  • 关键词:荧光指数 ; 光化学植被指数 ; 光合作用 ; 总初级生产力 ; 光能利用率 ; 亚热带常绿林
  • 英文关键词:fluorescence reflectance index(FRI);;photochemical reflectance index(PRI);;photosynthesis;;gross primary productivity(GPP);;light-use efficiency(LUE);;subtropical evergreen forest
  • 中文刊名:Journal of Resources and Ecology
  • 英文刊名:资源与生态学报(英文版)
  • 机构:中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室;中国科学院大学;河北省科学院地理科学研究所河北省地理信息开发应用工程技术研究中心;中国地质大学(武汉)地理与信息工程学院;北卡罗莱纳州立大学森林与环境资源系;聊城大学环境与规划学院;中国科学院华南植物园;
  • 出版日期:2019-03-30
  • 出版单位:Journal of Resources and Ecology
  • 年:2019
  • 期:02
  • 基金:National Key Research and Development Program of China(2017YFC0503803);; National Natural Science Foundation of China(41571192);; Natural Science Foundation of Hebei,China(D2016302002);; Science and Technology Planning Project of Hebei,China(17390313D)
  • 语种:英文;
  • 页:10-24
  • 页数:15
  • CN:11-5885/P
  • ISSN:1674-764X
  • 分类号:X87;S718.5
摘要
准确监测中国南亚热带常绿林生态系统光合作用动态变化对全球陆地生态系统碳吸收估计及其对气候变化的响应至关重要。涡动协方差技术一直被认为是评估生态系统碳通量最直接的方法,虽然具有较高的时间分辨率,但在空间上有其自身的局限性。近10年,光谱观测和卫星遥感技术在植被生产力监测方面的应用大大提高了对碳通量的时空评估能力。本研究基于长时间序列光谱观测数据,提取叶绿素荧光指数(FRI)和光化学植被指数(PRI),进而评价两个生理遥感指数跟踪亚热带常绿林光合作用季节动态变化的能力。结果表明,传统NDVI指数受光照条件影响较大(R~2=0.88,p<0.001),并呈现出饱和现象,而FRI和PRI指数则能较好地跟踪植物光和功能季节性变化,且在季节尺度上两者受光照条件的影响相对较弱(FRI指数R~2=0.13;PRI指数R~2=0.51);相比PRI指数与光能利用效率(LUE)在午间具有较强的相关性,FRI指数与GPP的相关性则在早上优于午间时段;而这两种相关关系均在植被衰退季优于植被生长季。另外,通过考虑光合有效辐射因子,基于FRI指数监测GPP的能力得到显著提高,R 2从0.22提高到0.69,呈显著正相关关系(p<0.001);同时,在植被衰退季也呈现出更强的相关性(R~2=0.79,p<0.001)。研究成果表明,FRI和PRI两个生理遥感指数能够准确地监测亚热带常绿林光合作用季节动态变化,建议把其引入碳循环模型中以改进区域碳收支估计。
        The accurate measurement of the dynamics of photosynthesis in China's subtropical evergreen forest ecosystems is an important contribution to carbon(C) sink estimates in global terrestrial ecosystems and their responses to climate change. Eddy covariance has historically been the only direct method to assess C flux of whole ecosystems with high temporal resolution, but it suffers from limited spatial resolution. During the last decade, continuous global monitoring of plant primary productivity from spectroradiometer sensors on flux towers and satellites has extended the temporal and spatial coverage of C flux observations. In this study, we evaluated the performance of two physiological remote sensing indices, fluorescence reflectance index(FRI) and photochemical reflectance index(PRI), to measure the seasonal variations of photosynthesis in a subtropical evergreen forest ecosystem using continuous canopy spectral and flux measurements in the Dinghushan Nature Reserve in southern China.The more commonly used NDVI has been shown to be saturated and mainly affected by illumination(R~2=0.88, p <0.001), but FRI and PRI could better track the seasonal dynamics of plant photosynthetic functioning by comparison and are less affected by illumination(R~2=0.13 and R~2=0.51, respectively) at the seasonal scale. FRI correlated better with daily gross primary production(GPP) in the morning hours than in the afternoon hours, in contrast to PRI which correlated better with light-use efficiency(LUE) in the afternoon hours. Both FRI and PRI could show greater correlations with GPP and LUE respectively in the senescence season than in the recovery-growth season. When incident PAR was taken into account, the relationship between GPP and FRI was improved and the correlation coefficient increased from 0.22 to 0.69(p < 0.001). The strength of the correlation increased significantly in the senescence season(R~2=0.79, p < 0.001). Our results demonstrate the application of FRI and PRI as physiological indices for the accurate measurement of the seasonal dynamics of plant community photosynthesis in a subtropical evergreen forest, and suggest these indices may be applied to carbon cycle models to improve the estimation of regional carbon budgets.
引文
Allen D J,Ort D R.2001.Impacts of chilling temperatures on photosynthesis in warm-climate plants.Trends in Plant Science,6(1):36-42.
    Atherton J,Nichol C J,Porcar-Castell A.2016.Using spectral chlorophyll fluorescence and the photochemical reflectance index to predict physiological dynamics.Remote Sensing of Environment,176:17-30.
    Baker N R.2008.Chlorophyll fluorescence:A probe of photosynthesis in vivo.Annual Review of Plant Biology,59:89-113.
    Barton C V M,North P R J.2001.Remote sensing of canopy light use efficiency using the photochemical reflectance index:Model and sensitivity analysis.Remote Sensing of Environment,78(3):264-273.
    Bilger W,Schreiber U,Bock M.1995.Determination of the quantum efficiency of photosystem II and of nonphotochemical quenching of chlorophyll fluorescence in the field.Oecologia,102(4):425-432.
    B?ttcher K,Markkanen T,Thum T,et al.2016.Evaluating biosphere model estimates of the start of the vegetation active season in boreal forests by satellite observations.Remote Sensing,8(7):580.
    Chou S,Chen J M,Yu H,et al.2017.Canopy-level photochemical reflectance index from hyperspectral remote sensing and leaf-level non-photochemical quenching as early indicators of water stress in maize.Remote Sensing,9(8):794.
    Cogliati S,Verhoef W,Kraft S,et al.2015.Retrieval of sun-induced fluorescence using advanced spectral fitting methods.Remote Sensing of Environment,169:344-357.
    DaMatta F M,Ramalho J D C.2006.Impacts of drought and temperature stress on coffee physiology and production:a review.Brazilian Journal of Plant Physiology,18(1):55-81.
    Damm A,Elbers J,Erler A,et al.2010.Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production(GPP).Global Change Biology,16(1):171-186.
    Damm A,Erler A,Hillen W,et al.2011.Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence.Remote Sensing of Environment,115(8):1882-1892.
    Damm A,Guanter L,Paul-limoges E,et al.2015.Far-red sun-induced chlorophyll fluorescence shows ecosystems-specific relationships to gross primary production:An assessment based on observational and modeling approaches.Remote Sensing of Environment,166:91-105.
    Demmig-Adams B,Adams III W W.1992.Photoprotection and other responses of plants to high light stress.Annual Review of Plant Biology,43(1):599-626.
    Demmig-Adams B,Adams III W W.2006.Photoprotection in an ecological context:the remarkable complexity of thermal energy dissipation.New Phytologist,172(1):11-21.
    Dobrowski S Z,Pushnik J C,Zarco-Tejada P J,et al.2005.Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale.Remote Sensing of Environment,97(3):403-414.
    Du S S,Liu L Y,Liu X J,Hu J C.2017.Response of Canopy Solar-Induced Chlorophyll Fluorescence to the Absorbed Photosynthetically Active Radiation Absorbed by Chlorophyll.Remote Sensing,9(9):911.
    Duveiller G,Cescatti A.2016.Spatially downscaling sun-induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity.Remote Sensing of Environment,182:72-89.
    Ensminger E,Busch F,Huner N P A.2006.Photostasis and cold acclimation:sensing low temperature through photosynthesis.Physiologia Plantarum,126(1):28-44.
    Evain S,Flexas J,Moya I.2004.A new instrument for passive remote sensing:2.Measurement of leaf and canopy reflectance changes at 531nm and their relationship with photosynthesis and chlorophyll fluorescence.Remote Sensing of Environment,91(2):175-185.
    Filella I,Porcar-Castell A,Munné-Bosch S,et al.2009.PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle.International Journal of Remote Sensing,30(17):4443-4455.
    Franck F,Juneau P,Popovic R.2002.Resolution of the PhotosystemⅠand PhotosystemⅡcontributions to chlorophyll fluorescence of intact leaves at room temperature.Biochimica et Biophysica Acta-Bioenergetics,1556(2):239-246.
    Frankenberg C,Fisher J B,Worden J,et al.2011.New global observations of the terrestrial carbon cycle from GOSAT:Patterns of plant fluorescence with gross primary productivity.Geophysical Research Letters,38(17):351-365.
    Gamon J A,Field C B,Bilger W,et al.1990.Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies.Oecologia,85(1):1-7.
    Gamon J A,Field C B,Goulden M L,et al.1995.Relationships between NDVI,canopy structure,and photosynthesis in three Californian vegetation types.Ecological Applications,5(1):28-41.
    Gamon J A,Pe?uelas J,Field C B.1992.A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.Remote Sensing of Environment,41(1):35-44.
    Gamon J A,Serrano L,Surfus J S.1997.The photochemical reflectance index:an optical indicator of photosynthetic radiation use efficiency across species,functional types,and nutrient levels.Oecologia,112(4):492-501.
    Garbulsky M F,Pe?uelas J,Gamon J A,et al.2011.The photochemical reflectance index(PRI)and the remote sensing of leaf,canopy and ecosystem radiation use efficiencies:a review and meta-analysis.Remote Sensing of Environment,115(2):281-297.
    Garbulsky M F,Pe?uelas J,Papale D,et al.2010.Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems.Global Ecology&Biogeography,19(2):253-267.
    Garbulsky M F,Pe?uelas J,Ogaya R,et al.2013.Leaf and stand-level carbon uptake of a Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI.International Journal of Remote Sensing,34(4):1282-1296.
    Geddes A,B?sch H.2015.Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space.Atmospheric Measurement Techniques,8(2):859-874.
    Genty B,Briantais J M,Baker N R.1989.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochimica et Biophysica Acta-General Subjects,990(1):87-92.
    Gilmanov T G,Baker J M,Bernacchi C J,et al.2014.Productivity and carbon dioxide exchange of leguminous crops:estimates from flux tower measurements.Agronomy Journal,106(2):545-559.
    Gitelson A A,Vina A,Masek J G,et al.2008.Synoptic monitoring of gross primary productivity of maize using Landsat data.IEEE Geoscience and Remote Sensing Letters,5(2),133-137.
    Goss R,Lepetit B.2015.Biodiversity of NPQ.Journal Plant Physiology,172(1):13-32.
    Govindje E.1995.Sixty-Three Years Since Kautsky:Chlorophyll a Fluorescence.Australian Journal of Plant Physiology,22(2):131-160.
    Grace J,Nichol C,Disney M,et al.2007.Can we measure terrestrial photosynthesis from space directly,using spectral reflectance and fluorescence?Global Change Biology,13(7):1484-1497.
    Guanter L,Frankenberg C,Dudhia A,et al.2012.Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements.Remote Sensing of Environment,121(6):236-251.
    Guanter L,Zhang Y,Jung M,et al.2014.Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.Proceedings of the National Academy of Sciences of the United States of America,111(14):1327-1333.
    Hilker T,Nesic Z,Coops N C,et al.2010.A new automated multiangular radiometer instrument for tower-based observations of canopy reflectance(AMSPECⅡ).Instrumentation Science Technology,38(5):319-340.
    Hmimina G,Merlier E,Dufrêne E,Soudani K,et al.2015.Deconvolution of pigment and physiologically-related PRI variability at the canopy scale over an entire growing season.Plant Cell and Environment,38(8):1578-1590.
    Huete A R,Didan K,Shimabukuro Y E,et al.2006.Amazon rainforests green-up with sunlight in dry season.Geophysical Research Letters,33(6):272-288.
    Jeong S J,Schimel D,Frankenberg C,et al.2017.Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests.Remote Sensing of Environment,190:178-187.
    Joiner J,Guanter L,Lindstrot R,et al.2013.Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:methodology,simulations,and application to GOME-2.Atmospheric Measurement Techniques,6(10):2803-2823.
    Joiner J,Yoshida Y,Guanter L,et al.2016.New methods for retrieval of chlorophyll red fluorescence from hyper-spectral satellite instruments:simulations and application to GOME-2 and SCIAMACHY.Atmospheric Measurement Techniques,9(8):3939-3967.
    Joiner J,Yoshida Y,Vasilkov A P,et al.2011.First observations of global and seasonal terrestrial chlorophyll fluorescence from space.Biogeosciences,8(3):637-651.
    Joiner J,Yoshida Y,Vasilkov A P,et al.2014.The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange.Remote Sensing of Environment,152:375-391.
    Julitta T,Corp L A,Rossini M,et al.2016.Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers.Remote Sensing,8(2):122.
    Kitajima M,Butler W L.1975.Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.Biochimica et Biophysica Acta-Bioenergetics,376(1):105-115.
    Krause G H,Weis E.1991.Chlorophyll fluorescence and photosynthesis:The basics.Annual Review of Plant Physiology and Plant Molecular Biology,42(1):313-349.
    Lee J E,Frankenberg C,Van der Tol C,et al.2013.Forest productivity and water stress in Amazonia:observations from GOSAT chlorophyll fluorescence.Proceedings of the Royal Society B Biological Sciences,280(1761):176-188.
    Lichtenthaler H K,Rinderle U.1988.The role of chlorophyll fluorescence in the detection of stress conditions in plants.CRC Critical Reviews in Analytical Chemistry,19(sup1):S29-S85.
    Liu L Y,Guan L L,Liu X J.2017.Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence.Agricultural Forest Meteorology,232:1-9.
    Magney T S,Frankenberg C,Fisher J B,et al.2017.Connecting active to passive fluorescence with photosynthesis:A method for evaluating remote sensing measurements of Chl fluorescence.New Phytologist,215(4):1594-1608.
    Mathur S,Agrawal D,Jajoo A.2014.Photosynthesis:Response to high temperature stress.Journal of Photochemistry and Photobiology Biology,137(SI):116-126.
    Merlier E,Hmimina G,Dufrêne E,et al.2015.Explaining the variability of the photochemical reflectance index(PRI)at the canopy-scale:Disentangling the effects of phenological and physiological changes.Journal of Photochemistry and Photobiology Biology,151:161-171.
    Meroni M,Rossini M,Guanter L,et al.2009.Remote sensing of solar-induced chlorophyll fluorescence:Review of methods and applications.Remote Sensing of Environment,113(10):2037-2051.
    Monteith J L.1972.Solar radiation and productivity in tropical ecosystems.Journal of Applied Ecology,9(3):747-766.
    Monteith J L.1977.Climate and efficiency of crop production in Britain.Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,281(980):277-294.
    Müller P,Li X P,Niyogi K K.2001.Non-photochemical quenching.Aresponse to excess light energy.Plant Physiology,125(4):1558-1566.
    Murchie E H,Lawson T.2013.Chlorophyll fluorescence analysis:a guide to good practice and understanding some new applications.Journal of Experimental Botany,64(13):3983-3998.
    Nakaji T,Kosugi Y,Takanashi S,et al.2014.Estimation of light-use efficiency through a combinational use of the photochemical reflectance index and vapor pressure deficit in an evergreen tropical rainforest at Pasoh,Peninsular Malaysia.Remote Sensing of Environment,150:82-92.
    Nichol C J,Huemmrich K F,Black T A,et al.2000.Remote sensing of photosynthetic-light-use efficiency of boreal forest.Agricultural and Forest Meteorology,101(2):131-142.
    Nuarsa I W,As-syakur A R,Gunadi I G A,et al.2018.Changes in Gross Primary Production(GPP)over the past two decades due to land use conversion in a tourism city.ISPRS International Journal of Geo-information,7(2):57.
    Ouyang X,Li Y L,Zhang Q M.2014.Characteristic of microclimate in a mixed coniferous and broadleaf forest in Dinghushan Biosphere Reserve.Chinese Journal of Ecology,33(3):575-582.
    Parazoo N,Bowman K,Fisher J B,et al.2014.Terrestrial gross primary production inferred from satellite fluorescence and vegetation models.Global Change Biology,20(1):3103-3121.
    Paredes M,Quiles M J.2015.The effects of cold stress on photosynthesis in Hibiscus Plants.PLoS ONE,10(9):e0137472.
    Peng Y,Gitelson A A,Keydan G,et al.2011.Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content.Remote Sensing of Environment,115(4):978-989.
    Pe?uelas J,Rutishauser T,Filella I.2009.Phenology feedbacks on climate change.Science,324(5929):887-888.
    Plascyk J A.1975.The MK II Fraunhofer line discriminator(FLD-II)for airborne and orbital remote sensing of solar-stimulated luminescence.Optical Engineering,14(4):339-346.
    Plascyk J A,Gabriel F C.1975.The Fraunhofer Line Discriminator MKII-An airborne instrument for precise and standardized ecological luminescence measurements.IEEE Transactions on Instrumentation and Measurement,24(4):306-313.
    Porcar-Castell A,Tyystj?rvi E,Atherton J,et al.2014.Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications:Mechanisms and challenges.Journal of Experimental Botany,65(15):4065-4095.
    Rascher U,Pieruschka R.2008.Spatio-temporal variations of photosynthesis:the potential of optical remote sensing to better understand and scale light use efficiency and stresses of plant ecosystems.Precision Agriculture,9(6):355-366.
    Rascher U,Agati G,Alonso L,et al.2009.CEFLES2:The remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands.Biogeosciences,6(7):1181-1198.
    Reichstein M,Falge E,Baldocchi D,et al.2005.On the separation of net ecosystem exchange into assimilation and ecosystem respiration:Review and improved algorithm.Global Change Biology,11(9):1424-1439.
    Richardson A D,Keenan T F,Migliavacca M,et al.2013.Climate change,phenology,and phenological control of vegetation feedbacks to the climate system.Agricultural and Forest Meteorology,169(3):156-173.
    Rossini M,Cogliati S,Meroni M,et al.2012.Remote sensing-based estimation of gross primary production in a subalpine grassland.Biogeosciences,9(7):2565-2584.
    Rouse J W.1974.Monitoring the vernal advancement and retrogradation(green wave effect)of natural vegetation.Remote Sensing Center,Texas A&M University:College Station,TX,USA.
    Running S W,Nemani R R,Heinsch F A,et al.2004.A continuous satellite-derived measure of global terrestrial primary production.Bioscience,54(6):547-560.
    Ruban A V.2017.Quantifying the efficiency of photoprotection.Philosophical Transactions of The Royal Society:B Biological Sciences,372(1730):20160393.
    Sarlikioti V,Driever S M,Marcelis L F M.2010.Photochemical reflectance index as a mean of monitoring early water stress.Annals of Applied Biology,157(1):81-89.
    Schickling A,Matveeva M,Damm A,et al.2016.Combining sun-induced chlorophyll fluorescence and photochemical reflectance index improves diurnal modeling of gross primary productivity.Remote Sensing,8(7):574.
    Schimel D,Pavlick R,Fisher J B,et al.2015.Observing terrestrial ecosystems and the carbon cycle from space.Global Change Biology,21(5):1762-1776.
    Soudani K,Hmimina G,Dufrêne E,et al.2014.Relationships between photochemical reflectance index and light use efficiency in deciduous and evergreen broadleaf forests.Remote Sensing of Environment,144(1):73-84.
    Stagakis S,Markos N,Sykioti O,et al.2014.Tracking seasonal changes of leaf and canopy light use efficiency in a Phlomis fruticose Mediterranean ecosystem using field measurements and multi-angular satellite hyperspectral imagery.ISPRS Journal of Photogrammetry Remote Sensing,97:138-151.
    Sukhova E,Sukhov V.2018.Connection of the Photochemical Reflectance Index(PRI)with the photosystem ii quantum yield and nonphotochemical quenching can be dependent on variations of photosynthetic parameters among investigated plants:A meta-analysis.Remote Sensing,10(5):771-725.
    Sun Y,Frankenberg C,Wood J D,et al.2017.OCO-2 advances photosynthesis observation from space via solar induced chlorophyll fluorescence.Science,358(6360):eaam5747.
    Suyker A E,Verma S B,Burba G G,et al.2004.Growing season carbon dioxide exchange in irrigated and rainfed maize.Agricultural and Forest Meteorology,124(1):1-13.
    Takala L H,M?ttus M.2016.Spatial variation of canopy PRI with shadow fraction caused by leaf-level irradiation conditions.Remote Sensing of Environment,182:99-112.
    Thenot F,Méthy M,Winkel T.2002.The Photochemical Reflectance Index(PRI)as a water-stress index.International Journal of Remote Sensing,23:5135-5139.
    Tucker C J.1979.Red and photographic infrared linear combinations for monitoring vegetation.Remote Sensing of Environment,8(2):127-150.
    Van der Tol C,Verhoef W,Rosema A.2009.A model for chlorophyll fluorescence and photosynthesis at leaf scale.Agricultural and Forest Meteorology,149(1):96-105.
    Walther S,Voigt M,Thum T,et al.2016.Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests.Global Change Biology,22(9):2979-2996.
    Wang C L,Zhou G Y,Wang X,et al.2007.Energy balance analysis of the coniferous and broad-leaved mixed forest ecosystem in Dinghushan.Journal of Tropical Meteorolgy,23(6):643-651.
    Wang S H,Zhang L F,Huang C P,et al.2017.An NDVI-based vegetation phenology is improved to be more consistent with photosynthesis dynamics through applying a light use efficiency model over boreal high-latitude forests.Remote Sensing,9(7):695.
    Waring R H,Landsberg J J,Linder S.2016.Tamm Review:Insights gained from light use and leaf growth efficiency indices.Forest Ecology and Management,379:232-242.
    Wei S,Yi C,Fang W,et al.2017.A global study of GPP focusing on light-use efficiency in a random forest regression model.Ecosphere,8(5):e01724.
    Wittenberghe S V,Alonso L,Verrelst J,et al.2015.Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties-A bottom-up approach.Remote Sensing of Environment,158:169-179.
    Wong C Y S,Gamon J A.2015a.Three causes of variation in the Photochemical Reflectance Index(PRI)in evergreen conifers.New Phytologist,206(1):187-195.
    Wong C Y S,Gamon J A.2015b.The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.New Phytologist,206(1):196-208.
    Wood J D,Griffis T J,Baker J M,et al.2017.Multiscale analyses of solar-induced fluorescence and gross primary production.Geophysical Research Letters,44(1):533-541.
    Wu C Y,Niu Z,Tang Q,et al.2009.Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices.Agricultural and Forest Meteorology,149(6):1015-1021.
    Xing L,Xiao J F,He B B.2018.Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity estimated from flux towers in temperate forests.Remote Sensing of Environment,204:659-671.
    Yang X,Tang J W,Mustard J F,et al.2015.Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest.Geophysical Research Letters,42(8):2977-2987.
    Yu G,Chen Z,Piao S,et al.2014.High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region.Proceedings of the National Academy of Sciences of the United States of America,111(13):4910-4915.
    Zarco-Tejada P J,González-Dugo V,Berni J A J.2012.Fluorescence,temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera.Remote Sensing of Environment,117(1):322-337.
    Zarco-Tejada P J,Morales A,Testi L,et al.2013b.Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance.Remote Sensing of Environment,133:102-115.
    Zhang C,Filella I,Liu D,et al.2017.Photochemical Reflectance Index(PRI)for detecting responses of diurnal and seasonal photosynthetic activity to experimental drought and warming in a Mediterranean Shrubland.Remote Sensing,9(11):1189.
    Zhang Q,Ju W,Chen J,et al.2015.Ability of the photochemical reflectance index to track light use efficiency for a sub-tropical planted coniferous forest.Remote Sensing,7(12):16938-16962.
    Zhang Q,Chen J M,Ju W M,et al.2017.Improving the ability of the photochemical reflectance index to track canopy light use efficiency through differentiating sunlit and shaded leaves.Remote Sensing of Environment,194:1-15.
    Zhang Y G,Guanter L,Berry J A,et al.2014.Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models.Global Change Biology,20(12):3727-3742.
    Zhang Y G,Guanter L,Berry J A,et al.2017.Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications.Remote Sensing of Environment,187:145-155.
    Zhou G S,Wang Y H,Xu Z Z.2003.Progress on NECT researches.Advances in Natural Sciences,13(9):917-922..