基于分解袋法的闽江河口芦苇和短叶茳芏枯落物的残留率和分解速率
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Residual Percentages and Decomposition Rates of Phragmites australis and Cyperus malaccensis Litters in the Min River Estuary based on Litter Bag Technique
  • 作者:李晓 ; 孙志高 ; 何涛 ; 高会 ; 王华 ; 王杰
  • 英文作者:LI Xiao;SUN Zhigao;HE Tao;GAO Hui;WANG Hua;WANG Jie;Institute of Geography, Fujian Normal University;Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education;Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University;
  • 关键词:枯落物分解 ; 分解袋法 ; 潮滩沼泽 ; 闽江口
  • 英文关键词:decomposition of litters;;litter bag technique;;tidal marsh;;Min River estuary
  • 中文刊名:湿地科学
  • 英文刊名:Wetland Science
  • 机构:福建师范大学地理研究所;福建师范大学湿润亚热带生态地理过程教育部重点实验室;福建师范大学福建省亚热带资源与环境重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:湿地科学
  • 年:2019
  • 期:01
  • 基金:福建省公益类科研院所重点项目(2016R1032-1);; 福建省“闽江学者奖励计划”项目;; 福建省“高等学校新世纪优秀人才”项目;; 福建师范大学地理科学学院科研创新基金项目资助
  • 语种:中文;
  • 页:96-101
  • 页数:6
  • CN:22-1349/P
  • ISSN:1672-5948
  • 分类号:X171
摘要
以闽江河口鳝鱼滩的芦苇(Phragmites australis)群落、短叶茳芏(Cyperus malaccensis)群落和芦苇+短叶茳芏群落植物枯落物为研究对象,采用分解袋法,2016年2月19日~2017年2月28日期间,研究了不同群落中两种植物枯落物的残留率和分解速率。结果表明,芦苇群落和芦苇+短叶茳芏群落中的芦苇枯落物的残留率分别为35.87%和28.67%,短叶茳芏群落和芦苇+短叶茳芏群落中的短叶茳芏枯落物的残留率分别为7.00%和9.57%;短叶茳芏群落和芦苇+短叶茳芏群落中的短叶茳芏枯落物的分解速率分别为0.007 292 g/d和0.006 150g/d;芦苇+短叶茳芏群落和芦苇群落中的芦苇枯落物的分解速率分别为0.003 243 g/d和0.002 607 g/d。芦苇+短叶茳芏群落中的芦苇枯落物分解的更快;芦苇+短叶茳芏群落中的短叶茳芏枯落物分解的较慢。
        To investigate the residual percentages and decomposition rates of Phragmites australis and Cyperus malaccensis in Shanyutan wetlands of the Min River estuary, in situ decomposition experiment was conducted in Phragmites australis community, Cyperus malaccensis community and Phragmites australis+Cyperus malaccensis community from February 19, 2016 to February 28, 2017 based on litter bag technique. The results showed that the residual percentages of litters of Phragmites australis in Phragmites australis community and Phragmites australis+Cyperus malaccensis community were 35.87% and 28.67%, and those of litters of Cyperus malaccensis in Cyperus malaccensis community and Phragmites australis+Cyperus malaccensis community were 7.00% and 9.57%. The decomposition rates of litters of Cyperus malaccensis in Cyperus malaccensis community and Phragmites australis + Cyperus malaccensis community were respectively 0.007 292 g/d and0.006 150 g/d, and those of litters of Phragmites australis in Phragmites australis+Cyperus malaccensis community and Phragmites australis community were respectively 0.003 243 g/d and 0.002 607 g/d, indicating that the decomposition of Phragmites australis in Phragmites australis+Cyperus malaccensis community were faster than those in Phragmites australis community whereas the decomposition of Cyperus malaccensis in Phragmites australis+Cyperus malaccensis community were slower than those in Cyperus malaccensis community.
引文
[1]武海涛,吕宪国,杨青,等.三江平原典型湿地枯落物早期分解过程及影响因素[J].生态学报,2007,277(10):4027-4035.
    [2]陈婷,郗敏,孔范龙,等.枯落物分解及其影响因素[J].生态学杂志,2016,3535(7):1927-1935.
    [3]孙志高,刘景双,于君宝,等.模拟湿地水分变化对小叶章枯落物分解及氮动态的影响[J].环境科学,2008,2929(8):2081-2093.
    [4]Sun Z G,Mou X J,Tong C,et al.Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River estuary,China[J].Catena,2015,12626:43-52.
    [5]Grasset C,Levrey L H,Delolme C,et al.The interaction between wetland nutrient content and plant quality controls aquatic plant decomposition[J].Wetlands Ecology&Management,2017,25(2):211-219.
    [6]Jones J A,Cherry J A,Mckee K L.Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2conditions[J].Estuarine Coastal&Shelf Science,2016,169169:38-45.
    [7]Gessner,M O.Mass loss,fungal colonization and nutrient dynamics of Phragmites australis leaves during senescence and early aerial decay[J].Aquatic Botany,2001,6969(2-4):325-339.
    [8]Nielsen T,Andersen F?.Phosphorus dynamics during decomposition of mangrove(Rhizophora apiculata)leaves in sediments[J].Journal of Experimental Marine Biology&Ecology,2003,293(1):73-88.
    [9]Pereira P,Ca?ador I,Vale C,et al.Decomposition of belowground litter and metal dynamics in salt marshes(Tagus Estuary,Portugal)[J].Science of the Total Environment,2007,380(1-3):93-101.
    [10]Lopes M L,Martins P,Ricardo F,et al.In situ,experimental decomposition studies in estuaries:A comparison of Phragmites australis,and Fucus vesiculosus[J].Estuarine Coastal&Shelf Science,2011,9292(4):573-580.
    [11]Stagg C L,Schoolmaster D R,Krauss K W,et al.Causal mechanisms of soil organic matter decomposition:deconstructing salinity and flooding impacts in coastal wetlands[J].Ecology,2017,9898(8):2003.
    [12]Janousek C N,Buffington K J,Guntenspergen G R,et al.Inundation,Vegetation,and Sediment Effects on Litter Decomposition in Pacific Coast Tidal Marshes[J].Ecosystems,2017,20(7):1-15.
    [13]Gingerich R T,Merovich G,Anderson J T.Influence of environmental parameters on litter decomposition in wetlands in West Virginia,USA[J].Journal of Freshwater Ecology,2014,2929(4):535-549.
    [14]Sun Z G,Mou X J,Sun W L.Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis,Suaeda salsa,and Suaeda glauca,litter in newly created marshes of the Yellow River estuary,China[J].Ecological Engineering,2016,993:175-186.
    [15]Sun Z G,Mou X J.Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis,in the coastal marsh of the Yellow River estuary,China[J].Environmental Science and Pollution Research International,2016,2323(6):5189-5202.
    [16]Sun Z G,Mou X J,Sun W L.Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary,China[J].Chemosphere,2016,147147:163-172.
    [17]孙志高,牟晓杰,王玲玲,等.黄河口潮滩盐沼沉积强度对碱蓬残体分解及氮动态的影响[J].湿地科学,2015,1313(2):135-144.
    [18]Li H,Liu Y,Li J,et al.Dynamics of litter decomposition of dieback Phragmites in Spartina-invaded salt marshes[J].Ecological Engineering,2016,990:459-465.
    [19]Duan H,Wang L,Zhang Y,et al.Variable decomposition of two plant litters and their effects on the carbon sequestration ability of wetland soil in the Yangtze River estuary[J].Geoderma,2018,319319:230-238.
    [20]张林海,曾从盛,张文娟,等.闽江河口湿地枯落物分解及主要影响因子[J].应用生态学报,2012,2323(9):2404-2410.
    [21]胡伟芳,曾从盛,张美颖,等.盐度和水淹对短叶茳芏枯落物分解和二氧化碳释放的影响[J].环境科学学报,2017,3737(10):4011-4018.
    [24]胡宏友,张朝潮,李雄.盐度对秋茄凋落叶分解过程中物质与能量动态的影响[J].植物生态学报,2010,344(12):1377-1385.
    [25]Wu W.Litter Decomposition of Spartina alterniflora and Juncus roemerianus:Implications of climate change in salt marshes[J].Journal of Coastal Research,2017,3333(2):372-384.
    [26]Zhang L H,Tong C,Marrs R,et al.Comparing litter dynamics of Phragmites australis and Spartina alterniflora in a sub-tropical Chinese estuary:contrasts in early and late decomposition[J].Aquatic Botany,2014,11717(5):1-11.
    [27]Wang W Q,Sardans J,Tong C,et al.Typhoon enhancement of N and P release from litter and changes in the litter N:P ratio in a subtropical tidal wetland[J].Environmental Research Letters,2016,11(1):014003.
    [28]侯贯云,翟水晶,高会,等.盐度对互花米草枯落物分解释放硅、碳、氮元素的影响[J].生态学报,2017,3737(1):184-191.
    [29]Ewanchuk P J,Bertness M D.Structure and organization of a northern New England salt marsh plant community[J].Journal of Ecology,2004,9292(1):72-85.
    [30]何涛,孙志高,李家兵,等.闽江河口芦苇与短叶茳芏空间扩展植物-土壤系统硫含量变化特征[J].生态学报,2018,3838(5):1607-1618.
    [31]孙志高.三江平原小叶章湿地系统氮素生物地球化学过程研究[D].长春:中国科学院东北地理与农业生态研究所,2007.
    [32]王华,孙志高,李家兵,等.闽江口典型芦苇湿地与短叶茳芏湿地土壤碳氮含量的空间分布特征[J].生态学杂志,2018,3737(4):1102-1110.
    [33]Wang W Q,Wang C,Sardans J,et al.Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil-plant system in the Minjiang River tidal estuarine wetlands of China[J].Wetlands Ecology&Management,2015,23(5):865-880.