多重分形模式下多元素综合地球化学异常的提取
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Extraction of synthetic multi-element geochemical anomalies under the multifractal model
  • 作者:向中林 ; 顾雪祥 ; 王恩营 ; 章永梅 ; 王新利 ; 彭义伟
  • 英文作者:XIANG Zhong-lin;GU Xue-xiang;WANG En-ying;ZHANG Yong-mei;WANG Xin-li;PENG Yi-wei;Institute of Resources and Environment,Henan Polytechnic University;School of Earth Sciences and Resources,China University of Geosciences,Beijing;Xinda Gold & Silver Development Centre;College of Earth Sciences, Chengdu University of Technology;
  • 关键词:地球化学异常 ; 因子分析 ; C-A多重分形模型 ; 综合异常 ; 博罗科努成矿带
  • 英文关键词:geochemical anomaly;;factor analysis;;C-A multi-element fractal model;;synthetic anomaly;;the Boluokenu metallogenic belt
  • 中文刊名:矿物学报
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:河南理工大学资源环境学院;中国地质大学(北京)地球科学与资源学院;鑫达金银开发中心;成都理工大学地球科学学院;
  • 出版日期:2019-01-09 16:45
  • 出版单位:矿物学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(批准号:41572062);; 中央返还两权价款资金综合研究项目(批准号:Y15-1-LQ04)
  • 语种:中文;
  • 页:53-61
  • 页数:9
  • CN:52-1045/P
  • ISSN:1000-4734
  • 分类号:P632
摘要
根据博罗科怒成矿带东段约660km2内2269个水系沉积物样品的11项元素分析数据的因子分析,F1因子为研究区的主要成矿或示矿元素Ag、Pb、Zn、Cu、Bi、Sn组合,体现了主要的成矿作用和过程中的信息,F2因子为Sb、As低温活泼元素组合,F3因子为W、Mo高温元素组合。各因子浓度-面积(C-A)多重分形模型拟合直线一般为四段式,根据其拐点划分出地球化学背景、区域异常、局部异常和高异常区,其局部异常可以反映不同的成矿地质条件,基于F1主成矿因子的分形异常圈定出莱历斯高尔和可克萨拉2个主要的预测靶区。各预测靶区与区内已发现矿床的分布基本吻合,揭示因子分析各主要因子的分形异常在多元素综合地球化学异常找矿中具有良好的指示意义,为地球化学找矿提供了良好的方法手段。
        According to the factor analysis of geochemical data of 11 elements for 2269 whole stream sediment samples collected from a region of about 660 km2 in the eastern section of the Boluokenu metallogenic belt, the factor F1 is the main metallogenic or ore-indicating element association of Ag, Pb, Zn, Cu, Bi, and Sn in the study area, showing the information of main mineralization process, the factor F2 is the low-temperature active element association of Sb and As,and the F3 is the high-temperature element association of W and Mo. A method based on the concentration-area(C-A)multifractal model has been applied to analyze these three factors. The C-A multifractal curves on double logarithmic diagrams can be approximately fitted by four straight lines with three turning points which can be used as thresholds to distinguish the geochemical background, regional anomaly,local anomaly, and high anomaly, respectively. The local anomalies can reflect different metallogenic geological conditions. 2 main predicted prospecting targets of the Lailisigaoer and Kekesala have been outlined based on fractal anomalies obtained by analyzing the F1 main ore-forming factor. The known deposits and mineral occurrences are basically in accordance with the outlined targets. This shows that fractal anomalies of the main factors obtained by the factor analysis have a good indicative significance for predicting exploration target by using the synthetic multi-element geochemical anomaly, and provide a useful method for geochemical prospecting.
引文
[1]赵鹏大,池顺都.初论地质异常[J].地球科学,1991(3):241-248.
    [2]刘洪,黄瀚霄,李光明,等.因子分析在藏北商旭金矿床地球化学勘查中的应用[J].中国地质,2015,42(4):1126-1136.
    [3]时艳香,纪宏金,陆继龙,等.水系沉积物地球化学分区的因子分析方法与应用[J].地质与勘探,2004(5):73-76.
    [4]赵少卿,魏俊浩,高翔,等.因子分析在地球化学分区中的应用:以内蒙古石板井地区1∶5万岩屑地球化学测量数据为例[J].地质科技情报,2012,31(2):27-34.
    [5]成秋明.成矿过程奇异性与矿床多重分形分布[J].矿物岩石地球化学通报,2008,27(3):298-305.
    [6]成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学,2006(3):337-348.
    [7]张焱,周永章.奇异性理论在钦杭成矿带(南段)庞西垌银金矿产资源预测中的应用[J].中南大学学报(自然科学版),2012,43(9):3558-3564.
    [8]成秋明.成矿过程奇异性与矿产预测定量化的新理论与新方法[J].地学前缘,2007(5):42-53.
    [9]成秋明.地质异常的奇异性度量与隐伏源致矿异常识别[J].地球科学(中国地质大学学报),2011,36(2):307-316.
    [10]Cheng Q M,Zhao P D.Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction[J].Geoscience Frontiers,2011,2(1):67-79.
    [11]Cheng Q M.Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J].Journal of Geochemical Exploration,2012,122:55-70.
    [12]Zuo R G,Wang J,Chen G X,et al.Identification of weak anomalies:a multifractal perspective[J].Journal of Geochemical Exploration,2015,148:12-24.
    [13]刘岳.区域地球化学数据分析及成矿信息融合模型研究[D].武汉:中国地质大学,2015.
    [14]Cheng Q M,Agterberg F P,Ballantyne S B.Separation of geochemical anomalies from background by fractal methods[J].Journal of Geochemical Exploration,1994,51(2):109-130.
    [15]高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816.
    [16]张作衡,王志良,左国朝,等.西天山达巴特矿区火山岩的形成时代、构造背景及对斑岩型矿化的制约[J].地质学报,2008(11):1494-1503.
    [17]董庆吉,陈建平,唐宇.R型因子分析在矿床成矿预测中的应用--以山东黄埠岭金矿为例[J].地质与勘探,2008(4):64-68.
    [18]Turcotte D L,Brown S R.Fractals and chaos in geology and geophysics[J].Phys Today,1993,46(5):68.
    [19]Cheng Q M.Multifractality and spatial statistics[J].Computers and Geosciences,1999,25(9):949-961.
    [20]谢淑云.地球化学场的分形与多重分形特征[D].武汉:中国地质大学,2003.
    [21]Cheng Q M.Multifractal distribution of eigenvalues and eigenvectors from 2d multiplicative cascade multifractal fields[J].Math Geol,2005,37(8):915-927.
    [22]Agterberg F P.Mixtures of multiplicative cascade models in geochemistry[J].Nonlinear Processes in Geophysics,2007,14(3):201-209.
    [23]Agterberg F P.New applications of the model of de wijs in regional geochemistry[J].Math Geol,2007,39(1):1-25.
    [24]Cheng Q M.Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions[J].Nonlinear Processes in Geophysics,2014,21(2):477-487.
    [25]陈国雄.基于分形与小波理论的成矿复杂信息提取与识别方法研究[D].武汉:中国地质大学,2016.
    [26]Sun L H,Wang Y J,Fan W M,et al.Post-Coliisional Magmatism in the Southern Awulale Mountain,Western Tianshan Orogen:Petrogenetic and Tectonic Implications[J].Gondwana Research,2008,14(3):383-394.
    [27]顾雪祥,章永梅,王新利,等.新疆西天山可克萨拉-艾木斯呆依铁铜矿床成岩成矿年代学及其地质意义[J].地学前缘,2013,20(6):195-209.