藏北高寒草地土壤有机质化学组成对土壤CO_2排放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of soil organic matter chemical quantity on carbon dioxide emissions in alpine grassland soils in Northern Tibet
  • 作者:马书琴 ; 鲁旭阳
  • 英文作者:MA Shuqin;LU Xuyang;College of Tourism, Henan Normal University;Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences;
  • 关键词:土壤有机质化学组成 ; 多糖 ; 木质素 ; 二氧化碳
  • 英文关键词:soil organic matter chemical compositions;;polysaccharides;;lignins;;carbon dioxide
  • 中文刊名:草业科学
  • 英文刊名:Pratacultural Science
  • 机构:河南师范大学旅游学院;中国科学院水利部成都山地灾害与环境研究所山地表生过程与生态调控重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:草业科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金面上项目(41671262、41877338);; 河南师范大学博士科研启动课题(qd18052)
  • 语种:中文;
  • 页:9+47-56
  • 页数:11
  • CN:62-1069/S
  • ISSN:1001-0629
  • 分类号:S812.2
摘要
土壤有机质(Soil organic matter, SOM)是草地生态系统的重要碳库,但由于SOM形成的复杂性,长期以来对SOM化学组成特征的研究存在一定挑战性。本研究基于热裂解气相色谱–质谱联用(Pyrolysis-gas chromatography/mass spectrometry, Py-GC/MS)的方法,从SOM化学组成的角度分析了其对藏北高寒草甸和高寒草原两种高寒草地土壤CO_2排放的影响。研究结果显示:1)含氮化合物是两种高寒草地SOM化学组成中重要成分,分别占总SOM的38.0%和52.5%;2)多糖类和萜烯类在两种高寒草地SOM中差异性达到显著水平(P <0.05);3)通过分析两种草地SOM化学组成与土壤CO_2排放量之间的相关关系,发现多糖直接影响着土壤CO_2累积排放量,拟合方程为Y=86.76X+344.87(R~2=0.63, P<0.05),式中Y为CO_2累积排放量,X为多糖类的相对含量;4)SOM化学组成中多糖类、含氮化合物和芳香烃物质与土壤中细菌、真菌、放线菌、革兰氏阴性细菌和革兰氏阳性细菌之间显著相关(P <0.05)。综上可知,高寒草地SOM化学组成直接关系着土壤微生物的数量和CO_2的排放过程,SOM的化学成分和化学组成可以在一定程度上直接用于预测土壤CO_2的排放特征。
        The soil organic matter(SOM) represents the main terrestrial carbon pool and plays a key role in the carbon biogeochemical cycle. However, it is challenging to characterize the SOM at the molecule scale, due to its heterogeneous composition. To isolate the effects of the SOM composition on carbon dioxide emission, correlations were made between the SOM compositions and cumulative CO_2 emissions in two alpine grassland soils. The SOM compositions were investigated using pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS). The results showed that: 1) the N-compounds were the main chemical components in the two types soils, with values of 38.0% and 52.5%; 2) there was a significant difference in the relative abundance of polysaccharides and terpenes between the two grassland types(P < 0.05); 3) polysaccharides affect the soil carbon dioxide emissions, the equation for which was Y = 86.76 X + 344.87(R~2 = 0.63, P < 0.05)(Y is the cumulative CO_2 emission, X is the relative abundance of polysaccharides); 4) the relative abundance of polysaccharides, N-compounds,and aromatics are significantly(P < 0.05) correlated with the bacteria, fungi, actinomycetes, gram-negative bacteria, and gram-positive bacteria. These results indicate that the SOM chemical composition of alpine grasslands is directly related to the soil microbial community and cumulative CO_2 emission, and the relative abundance of some compounds can be used to analyze the soil respiration under specific incubation conditions, which is important for understanding the characteristics of soil CO_2 emissions under different environmental conditions.
引文
[1]DALAL R C,ALLEN D E.Greenhouse gas fluxes from natural ecosystems.Australian Journal of Botany,2008,56(5):396-407.
    [2]HOLST J,LIU C,YAO Z,BRUGGEMANN N,ZHENG X,GIESE M,BUTTERBACH-BAHL K.Fluxes of nitrous oxide,methane and carbon dioxide during freezing-thawing cycles in an Inner Mongolian steppe.Plant and Soil,2008,308(1/2):105-107.
    [3]DENG B L,LI Z Z,ZHANG L,MA Y C,LI Z,ZHANG W Y,GUO X M,NIU D K,SIEMANN E.Increases in soil CO2 and N2Oemissions with warming depend on plant species in restored alpine meadows of Wugong Mountain,China.Journal of Soils and Sediments,2016,16(3):777-784.
    [4]LANG M,CAI Z C,CHANG S X.Effects of land use type and incubation temperature on greenhouse gas emissions from Chinese and Canadian soils.Journal of Soils and Sediments,2011,11(1):15-24.
    [5]LI Y Y,DONG S K,LIU S L,ZHOU H K,GAO Q Z,CAO G M,WANG X X,SU X K,ZHANG Y,TANG L,ZHAO H D,WU XY.Seasonal changes of CO2,CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China.Soil Biology and Biochemistry,2015,80:306-314.
    [6]BATJES N H.Total carbon and nitrogen in the soils of the world.European Journal of Soil Science,2014,65(1):10-21.
    [7]DAVIDSON E A,TRUMBORE S E,AMUNDSON R.Soil warming and organic carbon content.Nature,2000,408:789-790.
    [8]DERENNE S,QUéNéA K.Analytical pyrolysis as a tool to probe soil organic matter.Journal of Analytical and Applied Pyrolysis,2015,111:108-120.
    [9]DIJKSTRA E F,BOON J J,VANMOURIK J M.Analytical pyrolysis of a soil profile under Scots pine.European Journal of Soil Science,1998,49(2):295-304.
    [10]YASSIR I,BUURMAN P.Soil organic matter chemistry changes upon secondary succession in Imperata Grasslands,Indonesia:A pyrolysis-GC/MS study.Geoderma,2012,173/174:94-103.
    [11]BUURMAN P,ROSCOE R.Different chemical composition of free light,occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields,Minas Gerais,Brazil:A pyrolysis-GC/MS study.European Journal of Soil Science,2011,62(2):253-266.
    [12]NIEROP K G J,PULLEMAN M M,MARINISSEN J C Y.Management induced organic matter differentiation in grassland and arable soil:A study using pyrolysis techniques.Soil Biology and Biochemistry,2011,33(6):755-764.
    [13]MA S Q,CHEN Y C,LU X Y,WANG X D.Soil organic matter chemistry:Based on Pyrolysis-Gas Chromatography Mass Spectrometry(Py-GC/MS).Mini-Reviews in Organic Chemistry,2018,15:389-403.
    [14]GRANDY A S,STRICKLAND M S,LAUBER C L,BRADFORD M A,FIERER N.The influence of microbial communities,management,and soil texture on soil organic matter chemistry.Geoderma,2009,150(3/4):278-286.
    [15]WHITE D M,GARLAND D S,DAI X Y,PING C L.Fingerprinting soil organic matter in the arctic to help predict CO2 flux.Cold Regions Science and Technology,2002,35(3):185-194.
    [16]YANG Z M,WULLSCHLEGER S D,LIANG L Y,GRAHAM D E,GU B H.Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil.Soil Biology and Biochemistry,2016,95:202-211.
    [17]WU J S,ZHANG X Z,SHEN Z X,SHI P L,YU C Q,SONG M H,LI X J.Species richness and diversity of alpine grasslands on the Northern Tibetan Plateau:Effects of grazing exclusion and growing season precipitation.Journal of Resources and Ecology,2012,3(3):236-242.
    [18]CHEN H M,YANG Z M,CHU R K,TOLIC N,LIANG L Y,GRAHAM D E,WULLSCHLEGER S D,GU B H.Molecular insights into Arctic soil organic matter degradation under warming.Environment Science and Technology,2018,52:4555-4564.
    [19]CHEN Y C,SUN J,XIE F T,WANG X D,CHENG G W,LU X Y.Litter chemical structure is more important than species richness in affecting soil carbon and nitrogen dynamics including gas emissions from an alpine soil.Biology and Fertility of Soils,2015,51(7):791-800.
    [20]CAI Y J,WANG X D,DING W X,TIAN L L,ZHAO H,LU X Y.Potential short-term effects of yak and Tibetan sheep dung on greenhouse gas emissions in two alpine grassland soils under laboratory conditions.Biology and Fertility of Soils,2013,49(8):1215-1226.
    [21]DUAN M,LI A D,WU Y H,ZHAO Z P,PENG C H,DELUCA T H,SUN S Q.Differences of soil CO2 flux in two contrasting subalpine ecosystems on the eastern edge of the Qinghai-Tibetan Plateau:A four-year study.Atmospheric Environment,2019,198:166-174.
    [22]CAO Y Z,WANG X D,LU X Y,YAN Y,FAN J H.Soil organic carbon and nutrients along an alpine grassland transect across Northern Tibet.Journal of Mountain Science,2013,10(4):564-573.
    [23]洪江涛,吴建波,王小丹.放牧和围封对藏北高寒草原紫花针茅群落生物量分配及碳、氮、磷储量的影响.草业科学,2015,32(11):1878-1886.HONG J T,WU J B,WANG X D.Effects of grazing and fencing on Stipa purpurea community biomass allocation and carbon,nitrogen and phosphorus pools on the Northern Tibet Plateau alpine.Pratacultural Science,2015,32(11):1878-1886.
    [24]鲍士旦.土壤农化分析.第三版.北京:农业出版社,2001:30-83.BAO S D.Soil Agrochemical Analysis.The Third edition.Beijing:Agriculture Press,2001:30-83.
    [25]牛磊,刘颖慧,李悦,欧阳胜男.西藏那曲地区高寒草甸不同放牧方式下土壤微生物群落结构特征.应用生态学报,2015,26(8):2298-2306.NIU L,LIU Y H,LI Y,OUYANG S N.Microbial community structure of the alpine meadow under different grazing styles in Naqu Prefecture of Tibet.Chinese Journal of Applied Ecology,2015,26(8):2298-2306.
    [26]HUANG Y,EGLINTON G,VAN DER HAGE E R E,BOON J J,BOL R,INESON P.Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques.European Journal of Soil Science,1998,49(1):1-15.
    [27]CHEN Q Y,LEI T Z,WU Y Q,SI G C,XI C W,ZHANG G X.Comparison of Soil organic matter transformation processes in different alpine ecosystems in the Qinghai-Tibet Plateau.Journal of Geophysical Research:Biogeosciences,2019,124(1):33-45.
    [28]王瑞,王平,高永恒,马钢.土壤水分波动对高寒草甸生态系统CO2和N2O排放的影响.草业科学,2018,35:266-275.WANG R,WANG P,GAO Y H,MA G.Effect of soil moisture fluctuations on CO2 and N2O emission in alpine meadow ecosystem.Pratacultural Science,2018,35:266-275.
    [29]PARE M C,BEDARD-HAUGHN A.Soil organic matter quality influences mineralization and GHG emissions in cryosols:A fieldbased study of sub-to high Arctic.Global Change Biology,2013,19(4):1126-1140.
    [30]KALBITZ K,SCHMERWITZ J,SCHWESIG D,MATZNER E.Biodegradation of soil-derived dissolved organic matter as related to its properties.Geoderma,2003,113(3/4):273-291.
    [31]FELLMAN J B,D’AMORE D V,Hood E,Boone R D.Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska.Biogeochemistry,2008,88(2):169-184.
    [32]DAI X Y,WHITE D,PING C L.Comparing bioavailability in five Arctic soils by pyrolysis-gas chromatography/mass spectrometry.Journal of Analytical and Applied Pyrolysis,2002,62(2):249-258.
    [33]TREAT C C,WOLLHEIM W M,VARNER R K,GRANDY A S,TALBOT J,FROLKING S.Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.Global Change Biology,2014,20(8):2674-2686.
    [34]RILLIG M C,CALDWELL B A,W?STEN H A B,SOLLINS P.Role of proteins in soil carbon and nitrogen storage:Controls on persistence.Biogeochemistry,2007,85(1):25-44.
    [35]CUI H J,WANG G X,YANG Y,YANG Y,CHANG R Y,RAN F.Soil microbial community composition and its driving factors in alpine grasslands along a mountain elevational gradient.Journal of Mountain Science,2016,13(6):1013-1023.
    [36]BOND-LAMBERTY B,WANG C K,GOWER S T.A global relationship between the heterotrophic and autotrophic components of soil respiration?Global Change Biology,2004,10(10):1756-1766.
    [37]CREAMER C A,DE MENEZES A B,KRULL E S,SANDERMAN J,NEWTON-WALTERS R,FARRELL M.Microbial community structure mediates response of soil C decomposition to litter addition and warming.Soil Biology and Biochemistry,2015,80:175-188.
    [38]李娜,韩晓增,尤孟阳,许玉芝.土壤团聚体与微生物相互作用研究.生态环境学报,2013,22(9):1625-1632.LI N,HAN X Z,YOU M Y,XU Y Z.Research review on soil aggregates and microbes.Ecology and Environmental Sciences,2013,22(9):1625-1632.
    [39]KIEM R,K?GEL-KNABNER I.Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils.Soil Biology and Biochemistry,2003,35(1):101-118.
    [40]K?GEL-KNABNER I,GUGGENBERGER G,KLEBER M,KANDELER E,KALBITZ K,SCHEU S,EUSTERHUES K,LEINWEBER P.Organo-mineral associations in temperate soils:Integrating biology,mineralogy,and organic matter chemistry.Journal of Plant Nutrition and Soil Science-Zeitschrift fur Pflanzenernahrung und Bodenkunde,2008,171(1):61-82.
    [41]KAMIMURA N,SAKAMOTO S,MITSUDA N,MASAI E,KAJITA S.Advances in microbial lignin degradation and its applications.Current Opinion in Biotechnology,2019,56:179-186.
    [42]谢长校,孙建中,李成林,朱道辰.细菌降解木质素的研究进展.微生物学通报,2015,42(6):1122-1132.XIE C X,SUN J Z,LI C L,ZHU D C.Exploring the lignin degradation by bacteria.Microbiology China,2015,42(6):1122-1132.